Special Assigment ZCE 111

First Part: Planckian locus

Read Planckian locus on https://en.wikipedia.org/wiki/Planckian_locus

In the [CIE XYZ color space,](https://en.wikipedia.org/wiki/CIE_1931_color_space) the three coordinates defining a electromagnetic spectrum are given by X_T, Y_T, Z_T :

 $X_T = \int \overline{x}(\lambda) M(\lambda, T) d\lambda, Y_T = \int \overline{y}(\lambda) M(\lambda, T) d\lambda, Z_T = \int \overline{z}(\lambda) M(\lambda, T) d\lambda,$

where $M(\lambda, T)$ is the [spectral radiant exitance](https://en.wikipedia.org/wiki/Spectral_radiant_exitance) of the light being viewed, and

 $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ are the [color matching functions](https://en.wikipedia.org/wiki/Color_matching_function) of the CIE standard colorimetric [observer,](https://en.wikipedia.org/wiki/Standard_colorimetric_observer) shown in the diagram illustration 1, and λ is the wavelength.

The Planckian locus is determined by substituting into the above equations the black body spectral radiant exitance, which is given by [Planck's law:](https://en.wikipedia.org/wiki/Planck)

$$
M(\lambda,T)=\frac{c_1}{\lambda^5}\frac{1}{\exp\left(\frac{c_2}{\lambda T}\right)-1}
$$

where:

 $c_1 = 2\pi hc^2$ is the [first radiation constant](https://en.wikipedia.org/wiki/Planck) $c_2 = hc/k$ is the [second radiation constant](https://en.wikipedia.org/wiki/Planck)

and

M is the black body spectral radiant exitance (power per unit area per unit wavelength: watt per square meter per meter (W/m3))

 T is the [temperature](https://en.wikipedia.org/wiki/Temperature) of the black body

h is [Planck's constant](https://en.wikipedia.org/wiki/Planck)

c is the [speed of light](https://en.wikipedia.org/wiki/Speed_of_light)

k is [Boltzmann's constant](https://en.wikipedia.org/wiki/Boltzmann)

This will give the Planckian locus in CIE XYZ color space. If these coordinates are XT , YT , ZT where T is the temperature, then the CIE chromaticity coordinates will be

$$
x_T = \frac{X_T}{X_T + Y_T + Z_T}
$$

$$
y_T = \frac{Y_T}{X_T + Y_T + Z_T}
$$

A pair of crhomatocity coordinates (x,y) can be exprssed in MacAdam's chromaticity scale (u, v) as

$$
u = \frac{4x}{-2x + 12y + 3}, \quad v = \frac{6y}{-2x + 12y + 3}.
$$

A Planckian locus can be mapped out in the (u, v) chromaticity space, see Illustration 2.

Task No.1 to perform: Given the CIE color matching functions data, write a code to automatically generate the Plackian locus in (u,v) space as shown in Ilustration 2. The numerical data file for the [color matching functions](https://en.wikipedia.org/wiki/Color_matching_function) $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ can be downloaded from http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/data/StdObsFuncs.xls (as an Excel file).

Second Part: Correlated Color temperature (CCT)

Read CCT on https://en.wikipedia.org/wiki/Color_temperature

The tristimulus values (X,Y,Z) for a colour with a [spectral power distribution](https://en.wikipedia.org/wiki/Spectral_power_distribution) $S(\lambda)$

are given in terms of:

 $X = \int S(\lambda) \overline{x}(\lambda) d\lambda$, $Y = \int S(\lambda) \overline{y}(\lambda) d\lambda$, $Z = \int S(\lambda) \overline{z}(\lambda) d\lambda$,

where λ is the wavelength of the equivalent [monochromatic](https://en.wikipedia.org/wiki/Monochromatic) light (measured in [nanometers\)](https://en.wikipedia.org/wiki/Nanometers). In practice, $S(\lambda)$ is a spectrum measured experimentally, e.g., that emitted from a LED light bulb.

Task No. 2 to perform: Download the numerical data of a spectrum $S(\lambda)$ from [http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/data/spectral_power_distributio](http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/data/spectral_power_distribution.dat) [n.dat.](http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/data/spectral_power_distribution.dat) Note that the numerical data for $S(\lambda)$ is expressed in SI unit (in particular the wavelength values (in the first column) is in unit of meter).

Modify your code from **Task No. 1** to obtain the chromatocity coordinates for the $\mathbf{S} = \begin{bmatrix} \mathbf{S} & \mathbf{S} & \mathbf{S} \end{bmatrix}$. Call it $\mathbf{C}_s(\boldsymbol{u}_s, \boldsymbol{v}_s)$.

Answer: (*u^s , v ^s*)=(0.210696,0 .321492)

Task No. 3 to perform: Extent your code to do the following: Identify a point on the Planckian locus $P_N(u_N, v_N)$ at which the normal line at that point pass through $C_s[u_s,v_s]$). Identify the temperature corresponds to the Planckian locus point $P_{\scriptscriptstyle N}[u_{\scriptscriptstyle N},v_{\scriptscriptstyle N}]$. This temperature is the CCT of the spectrum \quad S (λ) .

Answer:

 $P_{N}\!\left(u_{N}, v_{N}\right)$ =(0.212529, 0.323398) 5259.3 K

Task No. 4 to perform: Output a diagram displaying (i) the Planckian curve, (ii) the point $C_s[u_s,v_s]$, (iii) $P_N[u_N,v_N]$,(iii) the normal line that passes through both $C_s[u_s,v_s]$ and $P_{N}^{}[u_{N}^{},v_{N}^{}]$, see the sample output below.

Note:

1. Make sure that your code must output explicitely (a) the values of the CCT for $S(\lambda)$, (b) the $C_s[u_s,v_s]$ dot, (c) the $P_N[u_N,v_N]$ dot, (d) the Planckian locus and (e) the normal line.

2. Your code should be fully automatic and should produce all the required output at a press of a button wihtout any manual intervention (except the act of pressing the shift+enter burron keys).

