Chapter 2

Displaying and customizing various kinds of plot;

Basic animation



FIGURE 1.59 Reflections of the graph

y = \/x across the coordinate axes FIGURE 1.34 The collection of lines
(Example 5¢). y = mx has slope m and all lines pass

through the origin.



Plot a few functions on the same graph

* Reproduce the previous plots using Mathematica

e Syntax required:

* f[x_]:=; Plot; List;

* To customize the plots:

* PlotRange;PlotStyle;AxesLable;PlotLabel; PlotLegend
See sample code: C2 plotfunctions.nb



http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_plotfunctions.nb

Another example of
customizing a function plot

Black Body Radiation: a function of several variables
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Exercise

* Plot Planck’s law of black body radiation for various temperatures on
the same graph by defining R as a function of two variables.
2mhe’

* Define function of two variables: R (A, 7)=
A 5 (ehc/AkT —l)

* h, c,T, are constants



Plotting a sum of terms

Instead of an explicit function (as done previously), we plot a series,
which is a ‘function” comprised of the sum of many terms with specified
coefficients.




Generating a series using Sum(]}

* The function f(x, Ny) = 2..._;° x™ can be expressed in Mathematica
as

n=N
n
f[x_,NO_]:=Sum[x”n,{n,1,NO}]

* Use these to numerically verify that the infinite series representation
of a function converges into the generating function.



EXAMPLE 4  Applying Term-by-Term Differentiation
Find series for f'(x) and f”(x) if
1

f(x) = =l+x+x*+x+x*+- 1"+

1 — x

o0
= E_xﬂ, —l < X < 1
n=0

EXAMPLE6 ASeriesforln(1+x), -1 <x=1

The series

1
1 + ¢

=1—t+t2—£+--

converges on the open interval —1 < ¢t < 1.




Mathematica sample codes

fix)=1/(1-x)
fx)=1/(1+x)

Show that the power series representations converge to the generating
functions within the radius of convergence.



Example 2 Finding Taylor polynomial
foreXatx =0

f(x)=¢e" > f"(x)=¢"

k=n (k) 0 0 0 0 0
f (X) k € 0 € 1 € 2 € 3 € n
P(X)=> —| X =—X +—X +—X +—X +..—X
o k! 0! 1! 2! 3! n!
- x=0
2 3 n
X X X o _ ;
=1+ X+ —+ —+...— This is the Taylor polynomial of order n for e
2 31! n!
If the limitn — oo is taken, P _(x) — Taylor series.
2 3 n 00 n
. X . X X X X
The Taylor series fore iISl1+ X+ —+ —+...—+...= Z—
2 3! nl! o n!

In this special case, the Taylor series for e” converges to e” for all x.
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Mathematica sample codes

fix)=exp (x)

Show that the Taylor series representations of e¥ at x = 0 converge to
the generating functions for all values of x



Application to selected physical systems

Visualisation of

* wave and wave pulse propagation

* Geometrical optics: Ray-tracing of lens
* 2D projectile motion

e Circular motion

* Elliptic motion

e Simple harmonic motion
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Constructing wave pulse

* Two pure waves with slight difference in frequency
and wave number Aw = ®, - ®,, Ak=k, - k,, are
superimposed

y, = Acos( k. x —w,t); y, = ACOS( K,X — @,t)
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Envelop wave and phase wave

The resultant wave is a ‘wave group’ comprise of an
‘envelop’ (or the group wave) and a phase waves

y=Y¥.+Y,
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Wave pu

Se — adn even maore

localisec

"wave

* In the previous example, we add up only two slightly
different wave to form a train of wave group

* An even more ‘localised’ group wave — what we call a
“wavepulse “can be constructed by adding more sine
waves of different numbers k. and possibly different
amplitudes so that they interfere constructively over a
small region Ax and outside this region they interfere
destructively so that the resultant field approach zero

* Mathematically,

ywave pulse

= Z A cos(k,x —w.t)
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€ Ax .
A wavepulse — the wave is well localised within Ax. This is done by
adding a lot of waves with with their wave parameters {A, k;,, ®;}
slightly differ from each other (i =1, 2, 3....as many as it can)




Exercise: Simulating wave group and wave
pulse

e Construct a code to add n waves, each with an angular frequency
omegai and wave number ki into a wave pulse for a fixed t.

 Display the wave pulse for t=t0, t=t1, ..., t=tn.
e Syntax: Manipulate
e Sample code: C2 wavepulse.nb



http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_wavepulse.nb

Ray-tracing of concave and
convex lens

Using Graphics[Points, Lines] to

calculate and visualize the image formed by an object in a concave or
convex lens



Image formation by a convex lens

* An object with a size h, placed a distance x, from the center C of a
convex lens (with focal length f > 0) will form an image with size h; at a
distance x; from C.

* The image can be magnified/diminished, virtual/real or inverted/erect.



Formation of a real, inverted and magnified
image in a convex lens by an erected object

A
4._______5R_a_Y_]: ____________ T (0] (XO hO)
i S ) OBJECT,0
B, (x;, 0) focal point, F +——= " focal point, F
P TP Optical axis
optical center, C |+ > B, (x,, 0)
|l
IMAGE,|
¥ v

T, (x;, h;) convex lens



Inverted and erected image

* Assume the object is erect, with its tip located at a point T, (x,, h,)
above the optical axis, and its base B, (x,, 0) located on the optical axis.

* The image in a convex lens can be inverted or erect.

* The image is said to be inverted if its tip T;(x;, h;) is on the opposite side
as that of the object’s tip, with the base of the object B;(x; 0) located
on the optical axis.



Real and virtual image

* If the image is on the same side as that of the object, the image is
virtual

 Otherwise, it is real.



Magnification

LA
lhol
e If [m]| > 1, image is magnified; |m| < 1, image is diminished.

* Magnification of the image is given by m =



Formation of image in a convex lens via
geometrical ray tracing

* A ray from the tip of object parallel to optical axis (Ray 1) shall go
through the focal point on the other side of the lens

* A ray from the tip of the object (Ray 2) shall pass through the lens
center Cin a straight line.

* The intersection of both rays is the location of the tip of image.



Examples of image formation by a convex lens

u=03
5 u=145
f =05, Concave Pt Cuams
v=-—0.75. Virtual v=0.763158. Real
e : 78 E magnification =—0.526316, Inverted
magnification =2.5. Erect FP =(_05. O}

FP ={-05. 0}
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The coordinates of the image tip T(x, h))

* The coordinates of the image tip T/(x; h;) can be obtained by solving
the simultaneous equations of Rayl and Ray2.

* Rayl: y; = %x+h0
* Ray2:y, = :—Zx

* Solving y,=y,,




Coding exercise for convex lens
Develop a code that reads in supplied values of f of a convex lens, h,, x, of
an object and does the following:

e visualise the set-up, display the object, image, lens, focal point and
optical axis graphically.

* form the image of the object via the geometrical ray tracing method.
* Visualise your output for x,varies from 0.2ftill 3fat an interval of 0.1f.



Syntax:

* Graphics

* Point[{P1,P2,P3,...}]

* PointSize

e Lines[{P1,P2,P3,...}]

* Color

* Dotted

* PlotLabel

e Column

Sample code: C2 ray tracing of convex lens.nb



http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_ray_tracing_of_convex_lens.nb

Parametric equations for circular motion

* The parametric equations for the x and y coordinates of an object
executing circular motion are given by
x(t) = h + Rcos(wyt), y(t) = k + Rsin(w,t)
* C(h,k) center of the circle; R radius; t parameters. For a complete circle, t
varies from t=0 to t=T, T = period of the circular motion, with w, = 2?71

the angular frequency.

* Eliminating the parameter t from the parametric equations, the ordinary-
looking equation for a circle is deduced:

() () -




Visualising a circle via ParametricPlot([]

* The trajectory can be plotted using ParametricPlot.
* You can combine few plots using Show[] command.
* See sample code: C2 circular.nb



http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_circular.nb

2D projectile motion
(recall your Mechanics class)

* The trajectory of a 2D projectile with initial location (xg, Vo), speed v,
and launching angle @ are given by the equations:

e x(t) = xo + vyt cosOB; y(t) = yy + votsinf + %tz, for t from O till
T, defined as the time of flight, T=-2(yy + vy sinf)/g.
g = —9.81,;



2D projectile motion

* Plot the trajectories of a 2D projectile launched with a common initial
speed but at different angles

* Plot the trajectories of a 2D projectile launched with a common angle
but different initial speed.

 Sample code: C2 2Dprojectile.nb

* For a fixed vO and theta, how would you determine the maximum
height numerically (not using formula)?


http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_2Dprojectile.nb

Exercise: Simulating SHM

* A pendulum executing simple harmonic motion (SHM) with length L,
released at rest from initial angular displacement\/@_ﬁ, is described by

the following equations: 8(t) = 8, cos wyt, w,= %. The period T of
the SHM is given by T=271/ w,. .

e Simulate the SHM using Manipulate[] |

* Hint: you must think properly how to
specify the time-varying positions of the

pendulum, i.e., (x(t),y(t)).
See C2 simulate pendulum.nb

(_
0



http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_simulate_pendulum.nb

Exercise: Simulating SHM
* Simulate two SHMs with different lengths L1, L2:
* Plot the phase difference between them as a function of time.




Ellipse
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* In geometry, the major axis of an ellipse is its longest diameter: line
segment that runs through the center and both foci, with ends at the widest
points of the perimeter. The semi-major axis, a, is one half of the major axis,
and thus runs from the centre, through a focus, and to the perimeter.
Essentially, it is the radius of an orbit at the orbit's two most distant points. For
the special case of a circle, the semi-major axis is the radius. One can think of
the semi-major axis as an ellipse's long radius.



http://www.mathopenref.com/coordparamellipse.html
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Ellipse
http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Focus_(geometry)
http://en.wikipedia.org/wiki/Perimeter
http://en.wikipedia.org/wiki/Focus_(geometry)
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The distance to the focal point from the center of the ellipse is sometimes
called the linear eccentricity, f, of the ellipse.

In terms of semi-major and semi-minor, f> = a? -b?.

e is the eccentricity of an ellipse is the ratio of the distance between the
two foci, to the length of the major axis or e = 2f/2a = f/a.

Semimajor and semiminor is related by e via b = V1 — e?


http://en.wikipedia.org/wiki/Eccentricity_(mathematics)

Elliptic orbit of a planet around the Sun
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e Consider a planet orbiting the Sun which is located at one of the foci of
the ellipse.

* The coordinates of the planet at time t can be expressed in parametrised
form:

x(t) = h + acos(wyt), y(t) = k + bsin(w,t)



Elliptic orbit of a planet around the Sun

* Or equivalently,
() (5
+|{— =1
a b

where x, y are the coordinates of any point on the ellipse at time t, g, b
are semi-major and semi-minor.

* C(h,k) are the coordinates of the ellipse's center.

* w, is the angular speed (a constant) of the planet. w, is related to the
period T of the planet via T=271 /w,

* Note that an ellipse is just a generalization of a circle with its radius
now replaced by a semimajor g and a semmiinor b.

* The period T is related to the parameters of the planetary system via

3
T =2r g—M, where M is the mass of the Sun.




Exercise: Generate an ellipse using
ParametricPlot[] and Show(]

* Display the parametric plot for an ellipse with your choice of h, k, a, b.
* Mark also the foci and the center C(h,k) in your plot.
e See sample code: C2 ParametricPlot ellipse.nb

* Modify the simple code to also mark the major and minor axes in your
plot.

 How would you simulate a point going around the ellipse as time
advances?


http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_ParametricPlot_ellipse.nb

Simulation of three-body Sun-Planet-Moon

At this point of time, you should be able to perform a simulation of
three-body Sun-Planet-Moon system.



Manipulate List (Array) for measuring a two-
body planetary system

e Simulation of the two-body Sun-Earth system using Grapics[] and
Points[] is good for visual display purpose.

* How to perform numerical measurement on the system, e.g., the
distance and speed of the planet as a function of time.

* As an illustration, let’s measure the distance of the Earth from the
Sun, and the speed of the Earth, both as a function of time.

e See sample code: C2 measure EarthMoon.nb



http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C2_measure_EarthMoon.nb

