Lecture 6 Numerical Integration

Trapezoid rule for integration

$$
\int_{x_0}^{x_1} f(x) dx
$$

Many methods can be used to numerically evaluate the integral

Basically the integral is the area represented between the curve and the vertical axis.

Trapezoidal rule

$$
\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{i=N-1} A_{i} = \sum_{i=0}^{i=N-1} \frac{1}{2} \Delta x [f(x_{i+1}) + f(x_{i})]
$$

= $\Delta x \{ \frac{1}{2} [f(x_{0}) + f(x_{1})] + \frac{1}{2} [f(x_{1}) + f(x_{2})] + \dots + \frac{1}{2} [f(x_{N-1}) + f(x_{N})] \}$
= $\frac{\Delta x}{2} [f(x_{0}) + f(x_{N})] + \Delta x [f(x_{1}) + f(x_{2}) + \dots + f(x_{N-2}) + f(x_{N-1})]$
= $\frac{\Delta x}{2} [f(x_{0}) + f(x_{N})] + \Delta x \sum_{i=1}^{i=N-1} f(x_{i})$

The error, is of the order $O(\Delta x)^2$

Simpson's rule for integration

- The numerical integration can be improved by treating the curve connecting the points $\{x_{i+1}, f(x_{i+1})\},\$ ${x_i, f(x_i)}$ as a section of a parabola instead of a straight line (as was assumed in trapezoid rule).
- This results in $A_i + A_{i+1} = (\Delta x/3)[f(x_i) + 4f(x_{i+1}) + f(x_{i+2})].$
- For details of the derivation, see the lecture notes by Gilles Cazelais of Camosun College, Cadana,
- [http://pages.pacificcoast.net/~cazelais/187/simpson.pd](http://pages.pacificcoast.net/~cazelais/187/simpson.pdf) [f](http://pages.pacificcoast.net/~cazelais/187/simpson.pdf)

Simpson's rule for integration (cont.)

$$
\int_{a}^{b} f(x) dx = \sum_{i=0,2,4,6,...,N-2} A_{i} + A_{i+1} = \frac{\Delta x}{3} \sum_{i=0,2,4,6,...,N-2} f(x_{i}) + 4 f(x_{i+1}) + f(x_{i+2})
$$

\n
$$
= \frac{\Delta x}{3} [\{f(x_{0}) + 4 f(x_{0+1}) + f(x_{0+2})\} + \{f(x_{2}) + 4 f(x_{2+1}) + f(x_{2+2})\}
$$

\n
$$
+ \{f(x_{4}) + 4 f(x_{4+1}) + f(x_{4+2})\} + ... + \{f(x_{N-2}) + 4 f(x_{N-1}) + f(x_{N})\}]
$$

\n
$$
= \frac{\Delta x}{3} [\{f(x_{0}) + 4 f(x_{1}) + 2 f(x_{2}) + 4 f(x_{3}) + 2 f(x_{4}) + 4 f(x_{5}) + 2 f(x_{6}) + ... + 2 f(x_{N-2}) + 4 f(x_{N-1}) + f(x_{N})]
$$

Assume *N* a large even number.

Simpson's rule for integration

$$
\int_{a}^{b} f(x) dx = \frac{\Delta x}{3} [\{f(x_{0}) + f(x_{N})\} + \frac{4 \Delta x}{3} [f(x_{1}) + f(x_{3}) + f(x_{5}) + ... + f(x_{N-1}) + \frac{2 \Delta x}{3} [f(x_{2}) + f(x_{4}) + f(x_{6}) + ... + f(x_{N-2})]
$$

The number of interval, *N*, matters: if it is too small, large error occurs. The error in Simpson's rule is of the order $O(\Delta x)^4$

Exercise

Write a code to evalate the following integral using both Trapezoid and Simpson's rule. *z* is a constant set to 1.

Let the integration limits be from x_0 =-1.5 to x_1 =+5.0.

$$
f(x) = \frac{x}{(z^2 + x^2)^{3/2}}
$$

$$
\int_{x_0}^{x_1} f(x) dx = ?
$$

Built-in integration function in Mathematica

- Syntax: **NIntegrate[]**
- You can compare the results of Mathematica built-in numerical integration against the one developed by you based on Simpson's and Trapizoid rules.
- Mathematica also provide a powerful symbolic integration functionality:
- Syntax **Integrate[]**.

Antiderivative and Integral

 \bullet

Give a function *f*(*x*), its antiderivative is defined as a function F(*x*) which fulfills the condition

$$
\blacksquare
$$

$$
\blacksquare'(x) = f(x)
$$

- The prime symbol means taking the derivative with respect to the variable, *x*.
- Fundamental theorem of calculus relates the integral of the function between two limits with the antiderivative to evaluated at these two limits, via

Antiderivative in Mathematica

- Given any function *f*(*x*), the corresponding antiderivative, F(*x*), can be obtained via the command
	- Integrate[f[x],x]

 \bullet

See C6 Math built in integration demo1.nb

Logarithmic integral function is formally defined as

 \bullet

- http://functions.wolfram.com/GammaBetaErf/LogIntegral /02/
- (*i*) Use Mathematica command **LogIntegral[x]** to plot the function for the interval $0 < x < 1$ (note: the end points are not included).
- (*ii*) Use the command **Nintegrate[]** to generate a set of values {li(0.05),li(0.10),li(0.15), …, li(0.95)}.
- (*iii*) Overlap the ListPlot of (*ii*) on the graph plotted in (*i*). Both code must agree.

Gamma function is formally defined as

 \bullet

- http://functions.wolfram.com/GammaBetaErf/Gamma/02/
- (*i*) Use Mathematica command **Gamma[z]** to plot the gamma function for the interval 1 < *z* < 5.
- (*ii*) Use the command **NIntegrate[]** to generate a set of values $\{\Gamma(1.00),\Gamma(1.05),\Gamma(1.10),\ldots,\Gamma(5.00)\}.$
	- (*iii*) Overlap the ListPlot of (ii) on the graph plotted in (*i*). Both code must agree.

Numerical integration with stochastic method

- Assume $f(x) >= 0$ for xinit $\lt = x \lt = x$ last.
- Set totalcountmax.
- Set inboxcount $= 0$, totalcount $= 0$.
- Find Max $f(x)$, and call it fmax.
- Define an area $A = f$ max^{*}L, where $L = x$ last-xinit.
- 1. Generate a pair of random numbers (xrand, yrand), with the condition

 $xinit < = xrand < = xlast$, 0 $\le yrand < = fmax$.

- 2. totalcount=totalcount+1.
- \cdot 3. If 0 \le = yrand \le = f(x=rand), inboxcount = inboxcount + 1
- \bullet 4. Stop if totalcount = totalcountmax.
- 5. Repeat step 1.
- The area of the curve $f(x)$ in the interval for [xinit, xlast] is given by
- Area $= A^*$ inboxcount/totalcountmax.
- See the implementation of stochastic integration code: C6 stochastic integration.nb

 $A=L*fmax=1.9245$ $L=5-0=5.0$ fmax0.3849 at x=0.707107

Exercise

Write a code to evalate the following integral using stochasitc method. *z* is a constant set to 1.

Let the integration limits be from $x_0=0$ to $x_1=+5.0$.

$$
f(x) = \frac{x}{(z^2 + x^2)^{3/2}}
$$

$$
\int_{x_0}^{x_1} f(x) dx = ?
$$

Exercise

Modify your stochasitc integraton code so that it can integtate a function with both potisive and negative signs in the range of integration. Test it on the following integral. Let the integration limits be from x_0 =-2.5 to x_1 =+5.0.

$$
f(x) = \frac{x}{(z^2 + x^2)^{3/2}}
$$

$$
\int_{x_0}^{x_1} f(x) dx = ?
$$