Chapter 7

Solving first order differential equation numerically

Example of first order differential equation commonly encountered in physics

$$
\frac{dv_y}{dt} = -g; \frac{dy}{dt} = v_y
$$

\n
$$
m\frac{dv}{dt} = -mg - \eta v
$$

\n
$$
\frac{dN}{dx} = -\lambda N; \frac{dN}{dt} = -\frac{N}{\tau}
$$

\n
$$
m\frac{dv}{dx} = -kx
$$

. Do you recognize these equations?

General form of first order differential equations

 $dN(t)/dt = -N(t)/\tau$ $G(t) \equiv -N(t)/\tau$ $f(t) \equiv N(t)$

$$
dv(x)/dx = -(k/m)x
$$

\n
$$
t \equiv x
$$

\n
$$
d/dt \equiv d/dx
$$

\n
$$
G(t) \equiv -(k/m)x
$$

\n
$$
f(t) \equiv v(x)
$$

 $d\nu(t)/dt = -g - \eta \nu(t)/m$ $G(t) \equiv -g - \eta v(t)/m$ $f(t) \equiv v(t)$

Analytical solution of
$$
\frac{dv_y}{dt} = -g
$$

•ZCA 101 mechanics, kinematic equation for a free fall object \overline{d}

$$
\frac{dv_y}{dt} = -g
$$

What is the solution, i.e., $v_y = v_y(t)$?

$$
\frac{dv_y}{dt} = -g
$$

\n
$$
\Rightarrow \int \frac{dv_y}{dt} dt = -\int g dt
$$

\n
$$
\int dv_y = v_y = -\int g dt = -gt + c
$$

\n
$$
\Rightarrow v_y = v_y(t) = -gt + c
$$

Analytical solution of
$$
\frac{dv_y}{dt} = -g
$$

To completely solve this first order differential equation, i.e., to determine *v^y* as a function of *t*, and the arbitrary constant *c*, a boundary value or initial value of v_y at a given time *t* is necessary. Usually (but not necessarily) $v_y(0)$, i.e., the value of v_y at $t=0$ has to be assumed. dv_{α}

$$
\frac{dy}{dt} = -g
$$

$$
\int_{v_y(t)}^{v_y(t)} dv = -\int_{0}^{t} g dt = -gt
$$

$$
v_y(0) = v_y(t) = -gt + v_y(0)
$$

Analytical solution of $\frac{dy}{y}$ dt $= v_y$

Assume $v_y = v_y(t)$ a known function of *t*.

●To completely solve the equation so that we can know what is the function $y(t)$, we need to know the value of $y(0)$.

$$
y(t) \qquad t
$$

$$
y(0) \qquad 0
$$

$$
y(0) \qquad 0
$$

$$
\Rightarrow y(t) - y(0) = \int_{0}^{t} v_y dt
$$

Analytical solution of $\frac{dy}{y}$ dt $= v_y$

In free fall without drag force, $v_y(t)=v_y(0) - gt$.

●The complete solution takes the form

$$
y(t) - y(0) = \int_{0}^{t} v_y dt = \int_{0}^{t} (v_y(0) - gt) dt
$$

$$
y(t) = y(0) + v_y(0)t - \frac{1}{2}gt^2
$$

Boundary condition

In general, to completely solve a first order differential equation for a function with single variable, a boundary condition value must be provided.

•Generalising such argument, two boundary condition values must be supplied in order to completely solve a second order differential equation.

•*n* boundary condition values must be supplied in order to completely solve a *n*-th order differential equation.

Hence, supplying boundary condition values are necessary when numerically solving a differential equation.

Analytical solution of a free fall object in a viscous medium

$$
m\frac{dv}{dt} = -mg - \eta v
$$

Boundary condition: $v=0$ at $t=0$.

Number of beta particles penetrating a medium (recall your first year lab experiments)

$$
\frac{dN}{dx} = -\lambda N
$$

$$
\int_{N_0}^{N} \frac{dN}{N} = -\int_{0}^{X} \lambda \, dx
$$

$$
N(x) = N_0 \exp[-\lambda x]
$$

Number of radioactive particle remained after time *t* (recall your first year lab experiments. τ : half-life)

Relation of speed vs. displacement in SHM

$$
E = K + P = \frac{1}{2}mv^2 + \frac{1}{2}kx^2
$$

$$
\Rightarrow \frac{dE}{dx} = \frac{d}{dx}\left(\frac{1}{2}mv^2 + \frac{1}{2}kx^2\right) = 0
$$

$$
\Rightarrow m\frac{dv}{dx} = -kx
$$

The solution is

$$
v(x) = v_0 + \frac{kx_0^2}{2}m - \frac{k}{2m}x^2
$$

boundary condition: $v = v_0$ at $x = x_0$

DSolve and NDSolve Now, we would learn how to solve these first order differential equations **DSolve[]** (symbolically) and **NDSolve[]** (numerically)

Sample codes:

[C7_NSolve_example.nb](mathematicafiles/C7_NSolve_example.nb)

[C7_NDSolve_example.nb](mathematicafiles/C7_NDSolve_example.nb)

Now, how would you write your own algorithm to solve first order differential equations numerically?

Euler's method for discreteising a first order differential equation into a difference equation

Discretising the differential equation

In Euler method, where the differentiation of a function at time *t* is approximated as

$$
\frac{df(t)}{dt} = \frac{f(t+\Delta t) - f(t)}{\Delta t} = \frac{f(t_{i+1}) - f(t_i)}{\Delta t}, \quad t_i = i\Delta t, \quad t_{i+1} - t_i = \Delta t,
$$
\n
$$
\frac{df(t_i)}{dt} = \frac{f(t_{i+1}) - f(t_i)}{\Delta t}; \quad t_i = i\Delta t \Rightarrow f(t_{i+1}) \approx f(t_i) + \frac{df(t_i)}{dt} \Delta t = f(t_i) + G(t_i) \Delta t
$$

Differential equation

Difference equation

Boundary condition: the numerical value at $f(t_0)$ has to be supplied.

Discretising the differential equation $dN(t)/dt = -N(t)/\tau$ c.f

•which is suitable for numerical manipulation using computer. •There are many different way to discretise a differential equation.

•Euler's method is just among the easiest of them.

The code's structure $\frac{dN}{dt}$ Initialisation: dt $=$ \boldsymbol{N} τ

Assign (i) $N(t=0)$, τ , (ii) Number of steps, Nstep, (iii) Time when to stop, say tfinal= 10τ .

- The global error is of the order $O \sim \Delta t$
- Δt = tfinal/Nstep

In principle, the finer the time interval Δt is, the numerical solution becomes more accurate.

$$
\bullet t_{\rm i} = t_{\rm o} + {\rm i} \Delta t
$$
; i=0,1,2,...,tfinal

- \bullet Calculate *N* (*t*₁)= *N* (*t*₀)- Δt *N* (*t*₀)/ τ .
- Then calculate $N(t_2)$ = $N(t_1)$ $\Delta t N(t_1)/\tau$
- $\Delta N (t_3) = N (t_2) \Delta t N (t_2) / \tau, ...$
- **Stop when** $t = \text{tfinal}$ **.**

 \bullet Plot the output: $N(t)$ as function of *t*.

Sample code: C₇_Euler_nucleidecay.nb

Exercise

Develop your own version of Euler method to solve

$$
m\frac{dv}{dt} = -mg - \eta v
$$

$$
m\frac{dv}{dx} = -kx
$$

Note that your code must handle the boundary condition properly.

•Also use **Dsolve**^[] to generate the analytical solutions. Overlap the analytical solution on top of the numerical solutions using Euler method to show that you have obtained the correct result.

Sample Euler codes

