
Chapter 7

Solving first order differential equation numerically



Example of first order differential equation commonly 

encountered in physics

●Do you recognize these equations?

𝑑𝑣𝑦

𝑑𝑡
= −𝑔;

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣

𝑑𝑁

𝑑𝑥
= −λ𝑁;

𝑑𝑁

𝑑𝑡
= −

𝑁

τ

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥



General form of first order differential 

equations

dN(t)/dt = -N(t) /

G(t)≡-N(t)/
f(t) ≡ N(t)

dv(x)/dx = -(k/m)x

t ≡ x

d/dt ≡ d/dx

G(t)≡-(k/m)x

f(t) ≡ v(x)

dv(t)/dt = -g-hv(t)/m

G(t)≡-g-hv(t)/m

f(t) ≡ v(t)



Analytical solution of

●ZCA 101 mechanics, kinematic equation for a free 

fall object

●What is the solution, i.e., vy=vy(t)?

𝑑𝑣𝑦

𝑑𝑡
= −𝑔

𝑑𝑣𝑦
𝑑𝑡
= −𝑔

⇒  
𝑑𝑣𝑦

𝑑𝑡
𝑑𝑡 = − 𝑔𝑑𝑡

 𝑑𝑣𝑦 = 𝑣𝑦 = − 𝑔𝑑𝑡 = −𝑔𝑡 + 𝑐

⇒ 𝑣𝑦 = 𝑣𝑦 𝑡 = −𝑔𝑡 + 𝑐

𝑑𝑣𝑦

𝑑𝑡
= −𝑔



●To completely solve this first order differential 

equation, i.e., to determine vy as a function of t, and 

the arbitrary constant c, a boundary value or initial 

value of vy at a given time t is necessary. Usually (but 

not necessarily) vy(0), i.e., the value of vy at t=0 has to 

be assumed. 𝑑𝑣𝑦

𝑑𝑡
= −𝑔

 

𝑣𝑦 0

𝑣𝑦 𝑡

𝑑𝑣 = − 

0

𝑡

𝑔 𝑑𝑡 = −𝑔𝑡

⇒ 𝑣𝑦 = 𝑣𝑦 𝑡 = −𝑔𝑡 + 𝑣𝑦 0

Analytical solution of
𝑑𝑣𝑦

𝑑𝑡
= −𝑔



Analytical solution of  

●Assume vy=vy(t) a known function of t.

●To completely solve the equation so that we can know what is 

the function y(t), we need to know the value of y(0).

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

 

𝑦 0

𝑦 𝑡

𝑑𝑦 =  

0

𝑡

𝑣𝑦 𝑑𝑡

⇒ 𝑦 𝑡 − 𝑦 0 =  

0

𝑡

𝑣𝑦 𝑑𝑡



Analytical solution of

●In free fall without drag force, vy(t)=vy(0)-gt.

●The complete solution takes the form

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑦 𝑡 − 𝑦 0 =  

0

𝑡

𝑣𝑦 𝑑𝑡 =  

0

𝑡

𝑣𝑦 0 − 𝑔𝑡 𝑑𝑡

𝑦 𝑡 = 𝑦 0 + 𝑣𝑦 0 𝑡 −
1

2
𝑔𝑡2



Boundary condition

●In general, to completely solve a first order differential 

equation for a function with single variable, a boundary 

condition value must be provided.

●Generalising such argument, two boundary condition 

values must be supplied in order to completely solve a 

second order differential equation.

●n boundary condition values must be supplied in order 

to completely solve a n-th order differential equation.

●Hence, supplying boundary condition values are 

necessary when numerically solving a differential 

equation.



Analytical solution of a free fall object in a viscous medium

●Boundary condition: v=0 at t = 0.

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣

 

𝑣 0

𝑣 𝑡
𝑑𝑣

𝑑𝑡
𝑑𝑡 =  

𝑣 0

𝑣 𝑡

𝑑𝑣 =  

0

𝑡

−𝑔 −
η

𝑚
𝑣 𝑑𝑡

⇒  

𝑣 0 =0

𝑣 𝑡
𝑑𝑣

−𝑔 −
η
𝑚
𝑣
=  

0

𝑡

𝑑𝑡

⇒ 𝑣 𝑡 = −
𝑚𝑔

η
1 − exp

−η𝑡

𝑚



Number of beta particles penetrating a 

medium (recall your first year lab 

experiments)

𝑑𝑁

𝑑𝑥
= −λ𝑁

 

𝑁0

𝑁
𝑑𝑁

𝑁
= − 

0

𝑥

λ 𝑑𝑥

𝑁 𝑥 = 𝑁0exp −λ𝑥



Number of radioactive particle 

remained after time t (recall your first 

year lab experiments. : half-life)

𝑑𝑁

𝑑𝑡
= −

𝑁

τ

 

𝑁0

𝑁
𝑑𝑁

𝑁
= − 

0

𝑡
1

τ
𝑑𝑡

𝑁 𝑡 = 𝑁0exp −
𝑡

τ



Relation of speed vs. displacement in SHM

𝐸 = 𝐾 + 𝑃 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2

⇒
𝑑𝐸

𝑑𝑥
=
𝑑

𝑑𝑥

1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 = 0

⇒ 𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

𝑣 𝑥 = 𝑣0 +
𝑘𝑥0
2

2
𝑚 −

𝑘

2𝑚
𝑥2

bondary condition: 𝑣 = 𝑣0 𝑎𝑡 𝑥 = 𝑥0

The solution is



DSolve and NDSolve
Now, we would learn how to solve these first order 

differential equations

DSolve[] (symbolically)

and

NDSolve[] (numerically)

Sample codes:

C7_NSolve_example.nb

C7_NDSolve_example.nb

mathematicafiles/C7_NSolve_example.nb
mathematicafiles/C7_NDSolve_example.nb


Now, how would you write your own 

algorithm to solve first order differential 

equations numerically?



Euler’s method for discreteising a first 

order differential equation into a 

difference equation



Discretising the differential equation

In Euler method, where the differentiation of a function at time 

t is approximated as



Essentially, Euler's method says

Boundary condition: 

the numerical value at f(t0) has to be supplied.

Differential equation

Discretise

Difference equation



Discretising the differential equation
dN(t)/dt = -N(t) /

•dN(t)/dt = -N(t) / is discretised into a difference equation,

•

•which is suitable for numerical manipulation using computer.

•There are many different way to discretise a differential 

equation.

•Euler's method is just among the easiest of them.

𝑁 𝑡 + Δ𝑡 ≈ 𝑁 𝑡 −
𝑁 𝑡

τ
Δ𝑡

⇒ 𝑁 𝑡𝑖+1 ≈ 𝑁 𝑡𝑖 −
𝑁 𝑡𝑖
τ
Δ𝑡

c.f

c.f



The code’s structure
Initialisation:

Assign (i) N (t=0), , (ii) Number of steps, Nstep, (iii) Time 
when to stop, say tfinal= 10.

●The global error is of the order O ~ t

●t = tfinal/Nstep

●In principle, the finer the time interval t is, the 
numerical solution becomes more accurate.

●ti=t0+it ; i=0,1,2,...,tfinal

●Calculate N (t1)= N (t0)- t N (t0)/.

●Then calculate N (t2)= N (t1)- t N (t1)/

●N (t3)= N (t2)- t N (t2)/,

●Stop when t = tfinal.

●Plot the output: N (t ) as function of t.

Sample code: C7_Euler_nucleidecay.nb

𝑑𝑁

𝑑𝑡
= −

𝑁

τ

mathematicafiles/C7_Euler_nucleidecay.nb


Exercise
●Develop your own version of Euler method to solve 

●Note that your code must handle the boundary condition 

properly. 

●Also use Dsolve[] to generate the analytical solutions. 

Overlap the analytical solution on top of the numerical 

solutions using Euler method to show that you have obtained 

the correct result.

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣



Sample Euler codes

●C7_Euler_freefall_dragforce.nb

●C7_Euler_SHM_v_vs_x.nb

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/Euler_dydt.nb
mathematicafiles/C7_Euler_freefall_dragforce.nb
http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/Euler_dydt.nb
mathematicafiles/C7_Euler_SHM_v_vs_x.nb

