Chapter 8

Solving Second order differential equations numerically

Online lecture materials

 The online lecture notes by Dr. Tai-Ran Hsu of San José State University,

http://www.engr.sjsu.edu/trhsu/Chapter%204%20Second%20order%20DEs.pdf

provides a very clear explanation of the solutions and applications of some typical second order differential equations.

2nd Order Homogeneous DEs

$$\frac{d^2u(x)}{dx^2} + a\frac{du(x)}{dx} + bu(x) = 0$$

with TWO given conditions

The solutions

Case 1: $a^2 - 4b > 0$:

$$u(x) = e^{-\frac{ax}{2}} \left(c_1 e^{\sqrt{a^2 - 4b} x/2} + c_2 e^{-\sqrt{a^2 - 4b} x/2} \right)$$

Case 2: $a^2 - 4b < 0$:

$$u(x) = e^{-\frac{ax}{2}} \left[A \operatorname{Sin}\left(\frac{1}{2}\sqrt{4b - a^2}\right) x + B \operatorname{Cos}\left(\frac{1}{2}\sqrt{4b - a^2}\right) x \right]$$

Case 3: $a^2 - 4b = 0$: — A special case

$$u(x) = c_1 e^{-\frac{ax}{2}} + c_2 x e^{-\frac{ax}{2}} = (c_1 + c_2 x) e^{-\frac{ax}{2}}$$
(4.12)

where c₁, c₂, A and B are arbitrary constants to be determined by given conditions

Example 4.1 Solve the following differential equation

$$\frac{d^2u(x)}{dx^2} + 5\frac{du(x)}{dx} + 6u(x) = 0$$

$$u(x) = e^{-5x/2} \left(c_1 e^{x/2} + c_2 e^{-x/2} \right) = c_1 e^{-2x} + c_2 e^{-3x}$$

where c₁ and c₂ are arbitrary constants to be determined by given conditions

Example 4.2

$$\frac{d^2u(x)}{dx^2} + 6\frac{du(x)}{dx} + 9u(x) = 0$$

$$\frac{u(0) = 2}{\frac{du(x)}{dx}}\Big|_{x=0} = 0$$

$$u(x) = 2(1+3x)e^{-3x}$$

Typical second order, non-homogeneous ordinary differential equations

$$\frac{d^{2}u(x)}{dx^{2}} + a\frac{du(x)}{dx} + bu(x) = n(x)$$
Non-homogeneous term

Solution of Equation (4.25) consists **TWO** components:

Solution
$$u(x)$$
 = $\frac{\text{Complementary solution } u_h(x)}{\text{solution } u_h(x)}$ + $\frac{\text{Particular solution } u_p(x)}{\text{solution } u_p(x)}$

$$u(x) = u_h(x) + u_p(x)$$

Typical second order, non-homogeneous ordinary differential equations

$$\frac{d^{2}u(x)}{dx^{2}} + a\frac{du(x)}{dx} + bu(x) = n(x)$$
Non-homogeneous term

$$u(x) = u_h(x) + u_p(x)$$

$$\frac{d^2 u_h(x)}{dx^2} + a \frac{du_h(x)}{dx} + bu_h(x) = 0$$

There is NO fixed rule for deriving $u_p(x)$

Example 4.6

$$\frac{d^2y(x)}{dx^2} - \frac{dy(x)}{dx} - 2y(x) = \sin 2x$$

$$y(x) = y_h(x) + y_p(x)$$

$$\frac{d^{2}y_{h}(x)}{dx^{2}} - \frac{dy_{h}(x)}{dx} - 2y_{h}(x) = 0$$
$$y_{h}(x) = c_{1}e^{-x} + c_{2}e^{2x}$$

Guess:
$$y_p(x) = A \sin 2x + B \cos 2x$$

After some algebra

$$y(x) = y_h(x) + y_p(x) = c_1 e^{-x} + c_2 e^{2x} + \left(-\frac{3}{20} \sin 2x + \frac{1}{20} \cos 2x\right)$$

Example 4.8

$$\frac{d^2u(x)}{dx^2} + 4u(x) = 2\sin 2x$$

. .

$$u(x) = u_h(x) + u_p(x) = c_1 \cos 2x + c_2 \sin 2x - \frac{x}{2} \cos 2x$$

Simple Harmonic pendulum as a special case of second order DE

Force on the pendulum $F_{\theta} = -m g \sin \theta$ for small oscillation, $\sin \theta \approx \theta$.

Equation of motion (EoM)

$$F_{\theta} = ma_{\theta}$$

$$-mgsin\theta = m\frac{dv_{\theta}}{dt} = m\frac{d}{dt}\left(\frac{dr}{dt}\right) \approx m\frac{d^{2}}{dt^{2}}(l\theta)$$

$$\frac{d^2\theta}{dt^2} \approx -\frac{g\theta}{l}$$

$$\frac{d^2u(x)}{dx^2} + a\frac{du(x)}{dx} + bu(x) = n(x)$$
The period of the SHO
given by
$$T = 2\pi \sqrt{\frac{l}{g}}$$

The period of the SHO is

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Simple Harmonic pendulum as a special case of second order DE (cont.)

$$\frac{d^{2}u(x)}{dx^{2}} + a\frac{du(x)}{dx} + bu(x) = n(x)$$

$$x \equiv t$$

$$u(x) \equiv \theta(t)$$

$$a \equiv 0$$

$$b \equiv \frac{g}{l}$$

$$n(x) \equiv 0$$

$$\frac{d^{2}\theta(t)}{dt^{2}} = -\frac{g\theta}{l}$$

Simple Harmonic pendulum as a special case of second order DE (cont.)

$$\frac{d^2\theta(t)}{dt^2} = -\frac{g\theta}{l}$$

Analytical solution:

$$\theta = \theta_0 \sin(\Omega t + \phi)$$

 $\Omega = \sqrt{g/l}$ natural frequency of the pendulum; θ_0 and ϕ are constant determined by boundary conditions

Simple Harmonic pendulum with drag force as a special case of second order DE

Drag force on a moving object, $f_d = -kv$ For a pendulum, instantaneous velocity

$$v = \omega l = l \left(d\theta / dt \right)$$

Hence, $f_d = -kl (d\theta/dt)$.

Consider the net force on the forced pendulum along the tangential direction, in the $\theta \rightarrow$ o limit:

$$F_{\theta} = -mg\sin\theta - kl\frac{d\theta}{dt} \approx -mg\theta - kl\frac{d\theta}{dt}$$

$$m\frac{d^2r}{dt^2} \approx m\frac{d^2}{dt^2}(l\theta) = ml\frac{d^2\theta}{dt^2}$$

$$F_{\theta} = m \frac{d^2 r}{dt^2} \Rightarrow \frac{d^2 \theta}{dt^2} = -\frac{g}{l} \theta - \frac{k}{m} \frac{d\theta}{dt} \equiv -\frac{g}{l} \theta - q \frac{d\theta}{dt}; q \equiv \frac{k}{m}$$

Simple Harmonic pendulum with drag force as a special case of second order DE (cont.)

$$\frac{d^{2}u(x)}{dx^{2}} + a\frac{du(x)}{dx} + bu(x) = n(x)$$

$$x \equiv t$$

$$u(x) \equiv \theta(t)$$

$$a \equiv q$$

$$b \equiv \frac{g}{l}$$

$$n(x) \equiv 0$$

$$\frac{d^{2}\theta}{dt^{2}} = -\frac{g}{l}\theta - q\frac{d\theta}{dt}; q = \frac{k}{m}$$

Analytical solutions

1. Underdamped regime (small damping). Still oscillate, but amplitude decay slowly over many period before dying totally.

$$\theta(t) = \theta_0 e^{-qt/2} \sin \left(\varphi + t \sqrt{\Omega^2 - \frac{q^2}{4}} \right)$$

$$\Omega = \sqrt{\frac{g}{l}}$$
 the natural frequency of the system

Analytical solutions

2. Overdamped regime (very large damping), decay slowly over several period before dying totally. θ is dominated by exponential term.

$$\theta(t) = \theta_0 e^{-\left(\frac{qt}{2} \pm t\sqrt{\frac{q^2}{4} - \Omega^2}\right)}$$

Analytical solutions

3. Critically damped regime, intermediate between under- and overdamping case.

$$\theta(t) = (\theta_0 + Ct)e^{-\frac{qt}{2}}$$

Overdamped

Critically damped

See <u>C8 20DE Pendulum.nb</u> where **Dsolve**[] solves the three cases of a damped pendulum analytically.

Adding driving force to the damped oscillator: forced oscillator

 $F_{\theta} = -m g \sin \theta - kl (d\theta/dt) + F_D \sin(\Omega_D t)$ Ω_D frequency of the applied force

$$\begin{split} F_{\theta} &= -mg\sin\theta - kl\frac{d\theta}{dt} + F_{D}\sin\left(\Omega_{D}t\right) \approx -mg\theta - kl\frac{d\theta}{dt} + F_{D}\sin\left(\Omega_{D}t\right); \\ F_{\theta} &= m\frac{d^{2}r}{dt^{2}} \approx m\frac{d^{2}}{dt^{2}}(l\theta) = ml\frac{d^{2}\theta}{dt^{2}}; \end{split}$$

$$F_{\theta} = m \frac{d^2 r}{dt^2} \approx m l \frac{d^2 \theta}{dt^2} \approx -m g \theta - k l \frac{d \theta}{dt} + F_D \sin (\Omega_D t)$$

$$\frac{d^{2}\theta}{dt^{2}} \approx -\frac{g}{l}\theta - q\frac{d\theta}{dt} + \frac{F_{D}\sin\left(\Omega_{D}t\right)}{ml}; q = \frac{k}{m}$$

Analytical solution

$$\theta(t) = \theta_0 \sin(\Omega_D t + \phi)$$

$$\theta_0 = \frac{F_D / (ml)}{\sqrt{(\Omega^2 - \Omega_D^2)^2 + (q\Omega_D)^2}}$$

Resonance happens when $\Omega_D = \Omega = \sqrt{g/l}$

Forced oscillator: An example of non homogeneous 2nd order DE

$$\frac{d^{2}u(x)}{dx^{2}} + a\frac{du(x)}{dx} + bu(x) = n(x)$$

$$x \equiv t$$

$$u(x) \equiv \theta(t)$$

$$a \equiv q$$

$$b \equiv \frac{g}{l}$$

$$n(x) \equiv \frac{F_{D}\sin(\Omega_{D}t)}{ml}$$

$$\frac{d^{2}\theta}{dt^{2}} = -\frac{g}{l}\theta - q\frac{d\theta}{dt} + \frac{F_{D}\sin(\Omega_{D}t)}{ml}$$

Exercise: Forced oscillator

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta - q\frac{d\theta}{dt} + \frac{F_D\sin\left(\Omega_D t\right)}{ml}$$

Use **DSolve**[] to solve the forced oscillator. Plot on the same graph the analytical solutions of $\theta(t)$ for t from 0 to 10 T, where T= $2\pi/\Omega$, $\Omega = \sqrt{g/l}$, for $\Omega_{\rm D} = 0.01\Omega$, 0.5Ω , 0.99Ω , 1.5Ω , 4Ω .

Assume the boundary conditions $\theta(t=0)=0$; $d\theta/dt(t=0)=0$; $m=l=F_D=1$; q=0.

Sample code: <u>C8_2ODE_forcedPendulum.nb</u>

Second order Runge-Kutta (RK2) method

Consider a generic second order differential equation.

$$\frac{d^{2}u(x)}{dx^{2}} = G(u)$$

It can be numerically solved using second order Runge-Kutta method.

Split the second order DE into two first order parts:

$$v(x) = \frac{du(x)}{dx} \qquad \frac{dv(x)}{dx} = G(u)$$

Algorithm

Set boundary conditions: $u(x=x_o)=u_o$, $u'(x=x_o)=v(x=x_o)=v_o$.

calculate
$$\tilde{u} = u_i + \frac{1}{2}v_i \Delta x$$

calculate $\tilde{v} = v_i + \frac{1}{2}G(\tilde{u})\Delta x$

calculate $u_{i+1} = u_i + \tilde{v}\Delta x$

calculate
$$v_{i+1} = v_i + G(\tilde{u}) \Delta x$$

Translating the SK2 algorithm into the case of simple pendulum

$$\frac{d^{2}u(x)}{dx^{2}} = G(u)$$

$$v(x) = \frac{du(x)}{dx}$$

$$\frac{dv(x)}{dx} = G(u)$$

Set boundary conditions:

$$u(x=x_o)=u_o, u'(x=x_o)=v(x=x_o)=v_o$$

$$\tilde{u} = u_i + \frac{1}{2} v_i \Delta x$$

$$\tilde{v} = v_i + \frac{1}{2} G(\tilde{u}) \Delta x$$

$$u_{i+1} = u_i + \tilde{v} \Delta x$$

$$v_{i+1} = v_i + G(\tilde{u}) \Delta x$$

$$G(u) = -\frac{g}{l}\theta(t) \qquad \frac{d^2\theta(t)}{dt^2} = -\frac{g\theta}{l}$$

$$\omega(t) = \frac{d\theta(t)}{dt}$$

$$\frac{d\omega(t)}{dt} = -\frac{g\theta(t)}{l}$$

Set boundary conditions:

$$\theta(t=t_o) = \theta_o, \ \theta'(t=t_o) = \omega(t=t_o) = \omega_o$$

$$\tilde{\theta} = \theta_i + \frac{1}{2} \omega_i \Delta t$$

$$\tilde{\omega} = \omega_i + \frac{1}{2} \left(-\frac{g\theta}{l} \right) \Delta t$$

$$\theta_{i+1} = \theta_i + \tilde{\omega} \Delta t$$

$$\omega_{i+1} = \omega_i + \left(-\frac{g\theta}{l}\right) \Delta t$$

Exercise: Develop a code to implement SK2 for the case of the simple pendulum. Boundary conditions: $\omega(0) = \sqrt{\frac{g}{l}}; \theta(0) = 0$

See C8 pendulum RK2.nb

Translating the SK2 algorithm into the case of damped pendulum

$$\frac{d^{2}u(x)}{dx^{2}} = G(u)$$

$$v\left(x\right) = \frac{du\left(x\right)}{dx}$$

$$\frac{dv(x)}{dx} = G(u)$$

$$\frac{dv(x)}{dx} = G(u) \qquad G(u) \equiv -\frac{g}{l}\theta(t) - q\omega(t) \qquad \frac{d\omega(t)}{dt} = -\frac{g\theta}{l} - q\omega(t)$$

$$\frac{d^2\theta(t)}{dt^2} = -\frac{g\theta}{l} - q\frac{d\theta}{dt}$$

$$\omega(t) = \frac{d\theta(t)}{dt}$$

$$\frac{d\omega(t)}{dt} = -\frac{g\theta}{l} - q\omega(t)$$

Set boundary conditions:

$$u(x=x_{o})=u_{o}, u'(x=x_{o})=v(x=x_{o})=v_{o}$$

$$\tilde{u} = u_i + \frac{1}{2} v_i \Delta x$$

$$\tilde{v} = v_i + \frac{1}{2}G(\tilde{u})\Delta x$$

$$u_{i+1} = u_i + \tilde{v} \Delta x$$

$$v_{i+1} = v_i + G(\tilde{u}) \Delta x$$

Set boundary conditions:

$$\theta(t=t_o) = \theta_o, \ \theta'(t=t_o) = \omega(t=t_o) = \omega_o$$

$$\tilde{\theta} = \theta_i + \frac{1}{2}\omega_i \Delta t$$

$$\tilde{\omega} = \omega_{i} + \frac{1}{2} \left(-\frac{g}{l} \tilde{\theta}(t) - q \tilde{\omega} \right) \Delta t \Rightarrow \tilde{\omega} = \frac{\left(\omega_{i} - \frac{g}{2l} \tilde{\theta}(t) \Delta t \right)}{\left(1 + \frac{1}{2} q \Delta t \right)}$$

$$\theta_{i+1} = \theta_{i} + \tilde{\omega} \Delta t$$

$$\theta_{i+1} = \theta_i + \tilde{\omega} \Delta t$$

$$\omega_{i+1} = \omega_i + \left(-\frac{g\theta}{l} - q\tilde{\omega} \right) \Delta t$$

Exercise:

Develop a code to implement SK2 for the case of a pendulum experiencing a drag force, with damping coefficient q= 0.1* (4 Ω), Ω = $\sqrt{g/l}$, l = 1.0 m. Boundary conditions: $\theta(0) = 0.2$; $\omega(t = 0) = 0$;

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta - q\frac{d\theta}{dt}$$

Sample code: C8 dampedpendulum RK2.nb

Exercise:

Develop a code to implement SK2 for the case of a forced pendulum experiencing no drag force but a driving force $F_D\sin(\Omega_D t)$, $\Omega = \sqrt{g/l}$, l=1.0 m, m=1kg; $F_D=1$ N; $\Omega_D=0.99$ Ω ; Boundary conditions: $\theta(0)=0.0$; $\omega(t=0)=0$;

$$\frac{d^{2}\theta}{dt^{2}} = -\frac{g}{l}\theta - q\frac{d\theta}{dt} + \frac{F_{D}\sin(\Omega_{D}t)}{ml}$$

Exercise: Stability of the total energy a SHO in RK2.

$$\omega = \frac{d\theta}{dt}$$
, angular velocity. $m=1$ kg; $l=1$ m.

The total energy of the SHO in can be calculated as

$$\begin{split} E_{i+1} &= K_{i+1} + U_{i+1} = \frac{1}{2} m \left(l \omega_{i+1} \right)^2 + mgl \left(1 - \cos \theta_{i+1} \right) \\ &\approx \frac{1}{2} m l^2 \omega_{i+1}^2 + mgl \left[1 - \left(1 - \frac{\theta_{i+1}^2}{2} \right) \right] \\ &= \frac{1}{2} m l^2 \omega_{i+1}^2 + \frac{1}{2} mgl \theta_{i+1}^2 \end{split}$$

User your RK2 code to track the total energy for t running from t=0 till t=25T; T= $\sqrt{g/l}$. Boundary conditions: $\omega(0) = \sqrt{\frac{g}{l}}; \theta(0) = 0$ E_i should remain constant throughout all t_i .