Chapter 8

Solving Second order
differential equations
numerically



Online lecture materials

*The online lecture notes by Dr. Tai-Ran
Hsu of San José State University,

http://www.engr.sjsu.edu/trhsu/Chapt
er%204%20Second%20o0rder%20DEs.p
df

provides a very clear explanation of the
solutions and applications of some
typical second order differential
equations.



http://www.engr.sjsu.edu/trhsu/Chapter 4 Second order DEs.pdf

2"d Order Homogeneous DEs
d 2w(x) du(x)
dx’ dx
with TWO given conditions
The solutions
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Case 2:a2- 4b < 0:
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Case 3: a% - 4b = 0: — A special case

ax ax ax

u(x) = ¢ e 2 +c,xe 2 = (¢ +c,x)e 2 (4.12)

where c,, C,, A and B are arbitrary constants to be determined by given conditions



Example 4.1 Solve the following differential equation

d’ u(x) du(x)
x>

+ 6u(x) =

__—5x/2 x/2 -x/2) -2x —3x

where ¢, and c, are arbitrary constants to be determined by given conditions



Example 4.2

d’u(x) L6 du(x)

2 +9u(x) =0
X

u(0) = 2
du(x)

dx x=0

=0

u(x) =2(1+3x)e™



Typical second order, non-homogeneous
ordinary differential equations

du(x) = du(x) bu(x) = n(x) (4.25)

dx’ dx

Non-homogeneous term

Solution of Equation (4.25) consists TWO components:

Complementary| 4 Particular

Solution u(x)

solution uy(x) solution u(x)

U(X) = Up(X) + U (X)



Typical second order, non-homogeneous
ordinary differential equations

d’u(x) N du(x)

2 a ’ + bu(x) = n(x) (4.25)

Non-homogeneous term
U(X) = Uh(X) + Up()()
d’u, (x) du, (x)

3 + a i +bu,(x) =0

There is NO fixed rule for deriving u(x)



Example 4.6

d’ d _
dﬁgx) - J:i(:) —2y(x) = Sin2x

y(X) = Yn(X) + y,(x)
d’y,(x) dy,(x)

dx’ dx
y,(x)=ce" +c,e

-2y,(x) =0

2x

Guess: Yo(X) = A Sin 2x + B Cos 2x
\ After some algebra

. |
yx)=y,(x)+y,(x) =ce” +c e +£—230an2;£+20(2'0523¢}



Example 4.8

d u(x) )
dx”

-4u(x) = 28in2x

u(x) =u,(x)+u,(x) =c Cos2x+c, Sian—%COSzx



Simple Harmonic pendulum as a special
case of second order DE

Force on the pendulum Fy = — m g sinf

for small oscillation, sinf = 6.

Equation of motion (EoM)

Fg = mag

O\ ]
d d (d :
—mgsinf=m ;te ma(d—:;) dt2 (19) ;
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d?0 g0 "
az~ T -
d*u(x) du(x) The period of the SHO is
S ta + bu(x) =n(x) givenby |
dx dx - T =27n |—
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Simple Harmonic pendulum as a special
case of second order DE (cont.)

d’ u(x) du (x)
dx’ dx

X =1

u(x) =600
a=0
g

+ bu(x) = n(x)

[
nx)=0

d*o(t)  gb
de2 ]




Simple Harmonic pendulum as a special
case of second order DE (cont.)

d*o(t)  gb

dt? [

Analytical solution:

0 = 6y sin(Lt + ¢)

() = ,/g/! natural frequency of the pendulum;
6, and ¢ are constant determined by boundary conditions



Simple Harmonic pendulum with drag
force as a special case of second order DE

Drag force on a moving object, f; = - kv
For a pendulum, instantaneous velocity

v=onl=1(d0/dt)
Hence, f; = - kI (d&/dt).

Consider the net force on the forced pendulum
along the tangential direction, in the & — o limit:

_ do do
Fg = —mgsinf — kl— = —mgf — kla

dt
Cr 8 e
Mz~ Mg BT
o dzr:dze_ g k do
6 = M a2 = dr2 1Y T m dt




Simple Harmonic fpendulum with drag force
as a special case of second order DE (cont.)

d’u(x) du(x) )
o + a o + bu(x) = n(x)




Analytical solutions

1. Underdamped regime (small damping). Still oscillate,
but amplitude decay slowly over many period before
dying totally.

( q? |
6 (t)=6,e " sinl g+t QZ—T|

Q = ‘/i the natural frequency of the system
I



Analytical solutions

2. Overdamped regime (very large damping), decay
slowly over several period before dying totally. &is
dominated by exponential term.

—(th_rt\/qz—Q2 \|
(2 v




Analytical solutions

3. Critically damped regime, intermediate between
under- and overdamping case.

qt

0(t)=(0,+Ct)e °



Overdamped Crltlcally damped

Jan o g0 0 (1) = (0, +Ct)e 2
‘)

Underdamped

( qZ\
= 0,e "sinl o +ty]Q% - — |
\ ¢

- 0.1r

- 0.2¢



See C8 20DE Pendulum.nb
where Dsolve[] solves the three
cases of a damped pendulum
analytically.



http://comsics.usm.my/tlyoon/teaching/ZCE111_1516SEM2/notes/mathematicafiles/C8_2ODE_Pendulum.nb

Adding driving force to the damped
oscillator: forced oscillator

_ . : Qp, frequency of
Fy = —mgsiné -kl (d6/dt) + Fp sin(Qpt) the applied force
_ do _ do .
= -mgsind —kl—+ Fsin(Qt)~ -mgé —kl —+ F sin (Q t);
dt dt
2 d’ d°o
dt? dt dt
d’r |d29 PRILANSN (Q )
-m ~m ~-mgéd — kl — + sin
dt2  ar? T ’
0 g do Fpsin(Qpt) k
~—-—60 —-( + q=—
° I dt ml m



Analytical solution

6 (t)=0,sin(Qt+4¢)

Fo /(ml)

JleT-ad) (aay)

Resonance happenswhen Q, =Q =,/g /I



Forced oscillator: An example of
non homogeneous 2" order DE

d’ u(x) du (x)
dx’ dx

+ bu(x) =n(x)

x =1t
u(x) =600

a=q
g

[
Fpsin(2pt)

ml

n(x) =

d2o g do F, sin(QDt)
dt’ | dt m |




Exercise: Forced oscillator

d-o g do Fg sin(QDt)
=-—0-q +
dt’ | dt ml

Use DSolve|] to solve the forced oscillator. Plot on the
same graph the analytical solutions of é(t) for t from o to

10 T, where T=21/Q, Q =/g/l, for Qp = 0.010Q, 0.59,
0.990Q, 1.5Q, 4Q).

Assume the boundary conditions &t=0)=0; d6/dt(t=0)=o0;
m=I=F=1; g=o0.

Sample code: C8 2ODE forcedPendulum.nb


mathematicafiles/C8_2ODE_forcedPendulum.nb

Second order Runge-Kutta (RK2) method

Consider a generic second order differential
equation. 5
d“u(x)

;=6 (u)

d X
It can be numerically solved using second order
Runge-Kutta method.

Split the second order DE into two first order parts:

u( x dv ( X
PNIIE S

d x d x




Algorithm

Set boundary conditions: u(x=x,)=u,, u’(x=x_)=v(x=x_)=v,.

- 1
calculate U =U +—VAX
2
- 1 ~
calculate V=V +—G(u)Ax
2
calculate U.,, = U, + VAX

1+1

calculate V.

1+1

=vi+G(J)Ax



Translating the SK2 algorithm into the case of
simple pendulum

2
dzu(x) G(u)z—ge(t) d H(t):_ﬁ
— =G (u) I dt? l
d x
d d6
v(x) = u(x) o (1) — (t)
dx dt
d
) 6 ) do(t)  90(1)
I N dt |
Set boundar)j conditions: Set boundary conditions:
(=, )=ty 1 (x=x,)=V(x=x,)=, Hmt ) 8. O (ot )ttt )=,
i 1 - 1
U=u, +—V,AX 0 =0, +—w;At
2 2
1 _ - i( g_\
v:vi+;G(u)Ax L | J
ui+1:ui+\7AX 0,1 =0, + oAt

=V, + G (u)Ax a)i+l:a)i+{ g|_J



Exercise: Develop a code to implement SK2
for the case of the simple pendulum.

Boundary conditions: « (o)- \/?:;e(o)_ 0

See C8 pendulum RK2.nb



mathematicafiles/C8_pendulum_RK2.nb

Translating the SK2 algorithm into the case of

damped pendulum

du(x) d*o(t)y  go  db

;. — G (v) ez 1 Tat
dx
d do (t
NI A0
dx dt
dv () g do (t _ gé ~ t
-6 () G(u)=-T0M-gqo® —& — - ae(l)
Set boundary conditions: Set boundary conditions:
u(x=x,)=u,, u'(x=x,)=v(x=x,)=v, At=t )= 0,, & (t=t,)=aft=t,)=0,
~ 1
~ 1 0 =60 +—w At
u=u;, + —V;AX P, T
2 (a)i —iﬁ(t)At\
- 1 - 1/( g9 ) - 21
V=V, +— G (u)AX ® =, +— (t)—qa) At = o =
2 2( | J (1 )
L1+ ;thJ
U,., = U, +VAX 0., =0, + oAt
. (g0 )
Vi,g =V, + G (u)Ax a)i+1=a)i+L———qa)JAt



Exercise:
Develop a code to implement SK2 for the case of a
pendulum experiencing a drag force, with damping

coefficient g= 0.1* (4Q), Q=,/g/[,1 = 1.0 m.
Boundary conditions: 8(0) = 0.2; w(t = 0) = 0;

d & g do
dt’ I dt

Sample code: C8 dampedpendulum RK2.nb



mathematicafiles/C8_dampedpendulum_RK2.nb

Exercise:

Develop a code to implement SK2 for the case of a
forced pendulum experiencing no drag force but a
driving forceFpsin(Qpt), Q=./g/l,1 = 1.0 m,
m=1kg; Fp= 1N; Qp=0.99 Q;

Boundary conditions: 8(0) = 0.0; w(t = 0) = 0;

d2o g do Fpsin(Qt)
= —-—0-qQ—+
dt’ | dt ml




Exercise: Stability of the total
energy a SHO in RKa2.

de .
W =—, angular velocity. m=1 kg; [=1 m.

The total energy of the SHO 1n can be calculated as

{

1 5 5 e
zgmf ., | +mg{l—[l—7ﬂﬂ

I oo 1 2
=—ml ®, ,~ +—mglo-,

E. =K. +U., :%m(/a}f+1 )2 +mgf(l—cos 9,-“)

User your RK2 code to track the total energy for ¢t running
from t=o till t=25T; T=,/g/l. Boundary conditions: « (0) - ﬁ 10 (0) =0
E; should remain constant throughout all ¢;.



