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Problem Statement

Consider N ions in vacuum, at locations 𝒓1, 𝒓2, 𝒓3, … , 𝒓𝑁, and 
possessing point charges 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑁, respectively. The total 
Coulomb interaction energy is

𝐸 =
1

4𝜋𝜀0
෍

(𝑖,𝑗)

𝑞𝑖𝑞𝑗

𝒓𝑖𝑗

where 𝒓𝑖𝑗 = 𝒓𝑗 − 𝒓𝑖 and the sum is over all 𝑁(𝑁 − 1)/2 ionic pairs 
(𝑖, 𝑗).



Under periodic boundary condition (PBC) and three transition lattice 
vectors 𝒄1, 𝒄2, 𝒄3,  there will be equivalent ions at

𝑟𝑖 + 𝑛1𝒄1 + 𝑛2𝒄2+𝑛3𝒄3

To simple notations, let 𝑛1𝒄1 + 𝑛2𝒄2+𝑛3𝒄3 be 𝒏𝐿, where 𝐿 represents 
the characteristic length of the supercell.

The total Coulomb interaction energy under PBC is

𝐸 =
1

4𝜋𝜀0
෍

𝒏

෍

(𝑖,𝑗)

𝑞𝑖𝑞𝑗

𝒓𝑖𝑗 + 𝒏𝐿



Rewriting the sum over pairs into sums over all ions, and with a factor 
of ½ to cancel the double counting:

𝐸 =
1

4𝜋𝜀0

1

2
෍

𝒏

෍

𝑖=1

𝑁

෍

𝑗=1

𝑁′

𝑞𝑖𝑞𝑗

𝒓𝑖𝑗 + 𝒏𝐿

where the ’ symbol means to exclude the term 𝑖 = 𝑗 if and only if 𝒏 =
0.

PROBLEM!

This expression not only converges very slowly but also is conditionally 
convergent, meaning that the result depends on the order of the 
summation.



The Ewald method evaluates 𝐸 by transforming it into summations that 
converges not only rapidly but also absolutely.

The potential field generated by all N ions together with their periodic 
images under PBC is 

𝜙(𝒓) =
1

4𝜋𝜀0
෍

𝒏

෍

𝑗=1

𝑁
𝑞𝑗

𝒓 − 𝒓𝑗 + 𝒏𝐿



Defining 𝜙 𝑖 (𝒓) as the potential field generated by all the ions plus 
their images, excluding ion 𝑖:

𝜙 𝑖 𝒓 = 𝜙 𝒓 − 𝜙𝑖(𝒓) =
1

4𝜋𝜀0
෍

𝒏

෍

𝑗=1

𝑁′

𝑞𝑗

𝒓 − 𝒓𝑗 + 𝒏𝐿

again the ’ symbol means to exclude the term 𝑖 = 𝑗 if and only if 𝒏 = 0.

Combing the equations, we find that

𝐸 =
1

2
෍

𝑖=1

𝑁

𝑞𝑖𝜙 𝑖 (𝒓𝑖)



Charge Distribution Function

The charge density distribution for the system of point charges are 
described by a collection of delta functions.

The charge density for point charge 𝑞𝑖 is

𝝆𝑖 𝒓 = 𝑞𝑖𝛿(𝒓 − 𝒓𝑖)

where the associated potential field is described by the Poisson’s 
equation

𝛻2𝜙𝑖 𝒓 = −
𝜌𝑖 𝒓

𝜀0



The general solution of Poisson’s equation is

𝜙𝑖 𝒓 =
1

4𝜋𝜀0
න

𝜌𝑖 𝒓
′

𝒓 − 𝒓′
ⅆ3𝒓′

The total Coulomb interaction energy can be written as,

𝐸 =
1

4𝜋𝜀0

1

2
෍

𝒏

෍

𝑖=1

𝑁

෍

𝑗=1

𝑁′

ඵ
𝜌𝑖 𝒓 𝜌𝑗 𝒓′

𝒓 − 𝒓′ + 𝒏𝐿
ⅆ3𝒓 ⅆ3𝒓′

and the potential field generated by all ions excluding ion 𝑖 is

𝜙[𝑖] 𝒓 =
1

4𝜋𝜀0
෍

𝑁

෍

𝑗=1

𝑁′

න
𝜌𝑗 𝒓′

𝒓 − 𝒓′ + 𝒏𝐿
ⅆ3𝒓′



Splitting the Charge Distribution

The solution is to split up the potential in two well-behaved parts, one 
being represented in r-space and the other in k-space by rapidly 
converging series.

𝜌𝑖 𝒓 = 𝜌𝑖
𝑆 𝒓 + 𝜌𝑖

𝐿(𝒓)

𝜌𝑖
𝑆 𝒓 = 𝑞𝑖𝛿 𝒓 − 𝒓𝑖 − 𝑞𝑖𝐺𝜎 𝒓 − 𝒓𝑖 )

𝜌𝑖
𝐿 𝒓 = 𝑞𝑖𝐺𝜎(𝒓 − 𝒓𝑖)



The original charge densities are split into two terms by adding and 
subtracting a Gaussian distribution, where

𝐺𝜎 𝒓 =
1

2𝜋𝜎2 3/2
exp −

𝒓 2

2𝜎2

Similarly, the potential can also be split:

𝜙𝑖 𝒓 = 𝜙𝑖
𝑆 𝒓 + 𝜙𝑖

𝐿 𝒓

𝜙𝑖
𝑆 𝒓 =

𝑞𝑖
4𝜋𝜀0

න
𝛿 𝒓′ − 𝒓𝑖 − 𝐺𝜎(𝒓

′ − 𝒓𝑖)

𝒓 − 𝒓′
ⅆ3𝒓′

𝜙𝑖
𝐿 𝒓 =

𝑞𝑖
4𝜋𝜀0

න
𝐺𝜎(𝒓

′ − 𝒓𝑖)

𝒓 − 𝒓′
ⅆ3𝒓′



And also
𝜙[𝑖] 𝒓 = 𝜙[𝑖]

𝑆 𝒓 + 𝜙[𝑖]
𝐿 𝒓

This leads to the splitting of the Coulomb interaction energy

𝐸 =
1

2
෍

𝑖=1

𝑁

𝑞𝑖𝜙 𝑖
𝑆 (𝒓𝑖) +

1

2
෍

𝑖=1

𝑁

𝑞𝑖𝜙
𝐿(𝒓𝑖) −

1

2
෍

𝑖=1

𝑁

𝑞𝑖𝜙𝑖
𝐿 𝒓𝑖

𝐸 = 𝐸𝑆 + 𝐸𝐿 − 𝐸𝑠𝑒𝑙𝑓

The self-interaction terms is extracted from the long range part.

Note that in 𝐸𝐿 the potential generated by ion i itself is no longer 
excluded.



Potential Field of a Gaussian Charge 
Distribution
By the solving the Poisson’s equation for a charge distribution of the 
Gaussian form, we get

𝜙𝜎 =
1

4𝜋𝜀0𝑟
erf

𝑟

2𝜎

where erf 𝑧 =
2

𝜋
0׬
𝑧
𝑒−𝑡

2
ⅆ𝑡.



Then we can get

𝜙𝑖
𝑆 𝒓 =

1

4𝜋𝜀0

𝑞𝑖
𝒓 − 𝒓𝑖

erfc
𝒓 − 𝒓𝑖

2𝜎

𝜙𝑖
𝐿 𝒓 =

1

4𝜋𝜀0

𝑞𝑖
𝒓 − 𝒓𝑖

erf
𝒓 − 𝒓𝑖

2𝜎

where erfc 𝑧 ≡ 1 − erf(𝑧).

Since lim
𝑛→∞

erf(𝑧) = 1, we find that

• 𝜙𝑖
𝑆(𝒓) is a short-range singular potential.

• 𝜙𝑖
𝐿(𝒓) is a is a long-range non-singular potential.



Given this result,

𝜙 𝑖
𝑆 𝒓 =

1

4𝜋𝜀0
෍

𝒏

෍

𝑗=1

𝑁′
𝑞𝑗

𝒓 − 𝒓𝑗 + 𝒏𝐿
erfc

𝒓 − 𝒓𝑗 + 𝒏𝐿

2𝜎

And given that 𝐸𝑆 =
1

2
σ𝑖=1
𝑁 𝑞𝑖𝜙 𝑖

𝑆 (𝒓𝑖),

𝐸𝑆 =
1

4𝜋𝜀0

1

2
෍

𝒏

෍

𝑖=1

𝑁

෍

𝑗=1

𝑁′
𝑞𝑖𝑞𝑗

𝒓𝑖 − 𝒓𝑗 + 𝒏𝐿
erfc

𝒓𝑖 − 𝒓𝑗 + 𝒏𝐿

2𝜎

The erfc term that truncates the potential function at large distances.

Due to the erfc truncation, 𝐸𝑆 can be directly computed from a sum in 
real space.



Self energy term

Since analytic expression for the long-range potential is obtained, we can 

easily get the self energy term 𝐸𝑠𝑒𝑙𝑓 =
1

2
σ𝑖=1
𝑁 𝑞𝑖𝜙𝑖

𝐿 𝒓𝑖 .

lim
𝑧→∞

erf(𝑧) =
2

𝜋
𝑧

𝜙𝑖
𝐿 𝒓𝑖 =

𝑞𝑖
4𝜋𝜀0

2

𝜋

1

𝜎

𝐸𝑠𝑒𝑙𝑓 =
1

4𝜋𝜀0

1

2𝜋𝜎
෍

𝑖=1

𝑁

𝑞𝑖
2

A spurious contribution to the potential energy from 
the interactions of Gaussian charge clouds with 
themselves.



Long Range Potential in Reciprocal Space

The long-range interaction 𝐸𝐿 cannot be directly computed by a sum in 
real space.

Given that this potential is no longer singular, it can be transformed 
into a sum in the reciprocal space.

Since the total charge densities

𝜌𝐿 𝒓 =෍

𝒏

෍

𝑖=1

𝑁

𝜌𝑖
𝐿(𝒓 + 𝒏𝐿)

is a periodic function, so is 𝜙𝐿 𝒓 , which warrants the use of Fourier 
transform technique.



Let ෠𝜙𝐿(𝒌) and ො𝜌𝐿(𝒌) be the Fourier transform of 𝜙𝐿(𝒓) and 𝜌𝐿(𝒓)
respectively.

෠𝜙𝐿 𝒌 = න
𝑉

𝜙𝐿 𝒓 𝑒−𝑖𝒌∙𝒓ⅆ3𝒓

ො𝜌𝐿(𝒌) = න
𝑉

𝜌𝐿 𝒓 𝑒−𝑖𝒌∙𝒓ⅆ3𝒓

The integral is over the volume V of the supercell. The inverse Fourier 
transform is

𝜙𝐿 𝒓 =
1

𝑉
෍

𝒌

෠𝜙𝐿 𝒌 𝒆𝑖𝒌∙𝒓

𝜌𝐿 𝒓 =
1

𝑉
෍

𝒌

ො𝜌𝐿 𝒌 𝒆𝑖𝒌∙𝒓



Transforming the Poisson’s equation

𝛻2𝜙𝐿 𝒓 = −
𝜌𝐿 𝒓

𝜀0

into reciprocal space will result in 

𝑘2 ෠𝜙𝐿 𝒌 =
ො𝜌𝐿 𝒌

𝜀0

Steps:

1. Firstly obtain the Fourier transform of the charge density

2. Dividing the result by 𝑘2 we obtain the Fourier transform of the 
long range potential

3. The long-range potential in real space is then obtained by inverse 
Fourier transform



𝜌𝐿 𝒓 =෍

𝒏

෍

𝑗=1

𝑁

𝑞𝑗𝐺𝜎(𝒓 − 𝒓𝑗 + 𝒏𝐿)

ො𝜌𝐿 𝒌 = න
𝑉

෍

𝑗=1

𝑁

𝑞𝑗𝐺𝜎(𝒓 − 𝒓𝑗 + 𝒏𝐿)𝑒−𝑖𝒌∙𝒓 ⅆ3𝒓

=෍

𝑗=1

𝑁

𝑞𝑗න
𝑹3
𝐺𝜎 𝒓 − 𝒓𝑗 𝑒−𝑖𝒌∙𝒓 ⅆ3𝒓

=෍

𝑗=1

𝑁

𝑞𝑗𝑒
−𝑖𝒌∙𝒓𝑗𝑒−𝜎

2𝑘2/2

where 𝑘 = 𝒌 and ׬𝑹3 means integration over the entire 3-dimensional 
space



Then the potential field in reciprocal space is

෠𝜙𝐿 𝒌 =
1

𝜀0
෍

𝑗=1

𝑁

𝑞𝑗𝑒
−𝑖𝒌∙𝒓𝑗

𝑒−𝜎
2𝑘2/2

𝑘2

Applying inverse Fourier transform,

𝜙𝐿 𝒓 =
1

𝑉
෍

𝒌≠𝟎

෠𝜙𝐿 𝒌 𝒆𝑖𝒌∙𝒓

=
1

𝑉𝜀0
෍

𝑘≠0

෍

𝑗=1

𝑁
𝑞𝑗

𝑘2
𝑒𝑖𝒌∙(𝒓−𝒓𝑗)𝑒−𝜎

2𝑘2/2

The contribution to the 𝒌 = 0 term is zero if the supercell is charge neutral.



The long-range interaction energy is

𝐸𝐿 =
1

2
෍

𝑖=1

𝑁

𝑞𝑖𝜙
𝐿(𝒓𝑖)

=
1

2𝑉𝜀0
෍

𝑘≠0

෍

𝑖=1

𝑁

෍

𝑗=1

𝑁
𝑞𝑖𝑞𝑗

𝑘2
𝑒𝑖𝒌∙(𝒓𝒊−𝒓𝑗)𝑒−𝜎

2𝑘2/2

For convenience, the structure factor 𝑆(𝒌) of the charge distribution is 
defined

𝑆 𝒌 =෍

𝑖=1

𝑁

𝑞𝑖𝑒
𝑖𝒌∙𝒓𝑖



Then the long-range interaction energy can be simply expressed as 

𝐸𝐿 =
1

2𝑉𝜀0
෍

𝑘≠0

𝑒−𝜎
2𝑘2/2

𝑘2
𝑆 𝒌 2



The Ewald energy expression

Combing all terms, the total Coulomb interaction energy can be finally 
written as

𝐸 = 𝐸𝑆 + 𝐸𝐿 − 𝐸𝑠𝑒𝑙𝑓

=
1

4𝜋𝜀0

1

2
෍

𝒏

෍

𝑖=1

𝑁

෍

𝑗=1

𝑁′
𝑞𝑖𝑞𝑗

𝒓𝑖 − 𝒓𝑗 + 𝒏𝐿
erfc

𝒓𝑖 − 𝒓𝑗 + 𝒏𝐿

2𝜎

+
1

2𝑉𝜀0
෍

𝑘≠0

𝑒−𝜎
2𝑘2/2

𝑘2
𝑆 𝒌 2 −

1

4𝜋𝜀0

1

2𝜋𝜎
෍

𝑖=1

𝑁

𝑞𝑖
2

The 𝐸𝑆 sum is short-ranged in real space (truncated by the erfc function)

The 𝐸𝐿 sum is short-ranged in reciprocal space (truncated by 𝑒−𝜎
2𝑘2/2). 


