A review of classical
Ewald method

GOH EONG SHENG
SCHOOL OF PHYSICS USM



Problem Statement

Consider N ions in vacuum, at locations ry, 75,73, ..., Ty, and

possessing point charges q4, 9-, q3, ..., Qy, respectively. The total
Coulomb interaction energy is
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where r;; = r; — r; and the sum is over all N(N — 1) /2 ionic pairs

(L, )).



Under periodic boundary condition (PBC) and three transition lattice
vectors ¢4, C,, €3, there will be equivalent ions at

r; +nyCcqy + Ny,Co+N3Cy

To simple notations, let nyc; + n,c,+n;c3 be nL, where L represents
the characteristic length of the supercell.

The total Coulomb interaction energy under PBC is
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Rewriting the sum over pairs into sums over all ions, and with a factor
of %2 to cancel the double counting:
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where the ’ symbol means to exclude theterm i = j if and only if n =
0.

PROBLEM!

This expression not only converges very slowly but also is conditionally
convergent, meaning that the result depends on the order of the
summation.



The Ewald method evaluates E by transforming it into summations that
converges not only rapidly but also absolutely.

The potential field generated by all N ions together with their periodic
images under PBC is

p(r) = 47‘[8022 r—7r; + nL

n j=1




Defining ¢;;() as the potential field generated by all the ions plus
their images, excluding ion i:
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again the ’ symbol means to exclude the term i = j if and only if n = 0.

Combing the equations, we find that
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Charge Distribution Function

The charge density distribution for the system of point charges are
described by a collection of delta functions.

The charge density for point charge q; is
pi(r) = q;6(r—r1;)

where the associated potential field is described by the Poisson’s
equation
pi(T)
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The general solution of Poisson’s equation is
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The total Coulomb |nteract|on energy can be written as,

i(r)p;(r’) ,
4-7'[80 2 Z Z Z Jf |1I? —rrl’oil— ;Ll ardr

n i=1j=

and the potential field generated Icl)\y all ions excluding ion i is
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Splitting the Charge Distribution

The solution is to split up the potential in two well-behaved parts, one
being represented in r-space and the other in k-space by rapidly
converging series.

pi(r) = p;(r) + p; (1)
p;(r) = q;i6(r —ry) — qiG,(r —1y))

pi (r) = q;G,(r — 1)




The original charge densities are split into two terms by adding and
subtracting a Gaussian distribution, where
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Similarly, the potential can also be split:

pi(r) = 97 (1) + ¢; (1)
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And also

B (1) = B () + pliy (1)

This leads to the splitting of the Coulomb interaction energy
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E =ES+E"—EseY
The self-interaction terms is extracted from the long range part.

Note that in E; the potential generated by ion i itself is no longer
excluded.



Potential Field of a Gaussian Charge
Distribution

By the solving the Poisson’s equation for a charge distribution of the
Gaussian form, we get
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where erf(z) = \/%foze_tzdt.



Then we can get

b7 (r) = RN (Ir—ril)
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where erfc(z) = 1 — erf(2).

Since lim erf(z) = 1, we find that
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. gbf(r) is a short-range singular potential.

. qbiL(r) is a is a long-range non-singular potential.



Given this result,
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And given that E° = —Zl 1 qlqﬁﬂ] (1),
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The erfc term that truncates the potential function at large distances.

Due to the erfc truncation, E® can be directly computed from a sum in
real space.



A spurious contribution to the potential energy from

Se H: ene rgy Term theinteractions of Gaussian charge clouds with

themselves.

Since analytic expression for the long- range potential is obtained, we can

easily get the self energy term ES¢Y ==Y . g, (1)).
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Long Range Potential in Reciprocal Space

The long-range interaction EX cannot be directly computed by a sum in
real space.

Given that this potential is no longer singular, it can be transformed
into a sum in the reciprocal space.

Since the total charge densities

ph(r) = Zipfmnm

n i=1
is a periodic function, so is ¢ (r), which warrants the use of Fourier
transform technique.



Let p% (k) and p* (k) be the Fourier transform of ¢L () and p (1)
respectively.
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The integral is over the volume V of the supercell. The inverse Fourier
transformis

BH(r) = %Z BL (ke

pH(r) = %Z pH(k)eter



Transforming the Poisson’s equation

L
T
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into reciprocal space will result in
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Steps:
1. Firstly obtain the Fourier transform of the charge density

2. Dividing the result by k? we obtain the Fourier transform of the
long range potential

3. The long-range potential in real space is then obtained by inverse
Fourier transform
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where k = |k| and fRB means integration over the entire 3-dimensional
space



Then the potential field in reciprocal space is
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Applying inverse Fourier transform,
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The contribution to the k = 0 term is zero if the supercell is charge neutral.



The long-range interaction energy is
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For convenience, the structure factor S(k) of the charge distribution is

defined
N
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Then the long-range interaction energy can be simply expressed as
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The Ewald energy expression

Combing all terms, the total Coulomb interaction energy can be finally
written as
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The E® sum is short-ranged in real space (truncated by the erfc function)

The E* sum is short-ranged in reciprocal space (truncated by e‘“zkz/z).



