Lecture 2 Mathematica for Series

Use Mathematica to find the convergence of a series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1(1+1)} + \frac{1}{2(2+1)} + \frac{1}{1(1+1)} + \dots$$

2.
$$\sum n^2 = 1 + 2 + 4 + 16 + \dots n^2 + \dots$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{16} + \dots$$

4.
$$\sum_{n=1}^{\infty} \frac{5}{5n-1} = \frac{5}{5-1} + \frac{5}{5(2)-1} + \frac{5}{5(3)-1} \dots$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{n!} = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} \dots$$

6. **(a)**
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$

7. (a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ (c) $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$

8.
$$\sum_{n=1}^{\infty} 1 \left(-\frac{1}{2} \right)^{n-1} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \cdots$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots$$

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{\sin 1}{1} + \frac{\sin 2}{4} + \frac{\sin 3}{9} + \cdots$$

Use Mathematica to generate a power series. Compare it to the function it converges to by plotting both on the same plot. Deduce the interval of convergence from the plot.

DEFINITIONS Power Series, Center, Coefficients

A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots$$
 (2)

in which the **center** a and the **coefficients** $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants.

EXAMPLE 1 A Geometric Series

Taking all the coefficients to be 1 in Equation (1) gives the geometric power series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

This is the geometric series with first term 1 and ratio x. It converges to 1/(1-x) for |x| < 1. We express this fact by writing

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, \qquad -1 < x < 1. \tag{3}$$

EXAMPLE 3 Testing for Convergence Using the Ratio Test

For what values of x do the following power series converge?

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

(d)
$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \cdots$$

Series representation of $tan^{-1}x$ (alternative approach)

- $= \tan^{-1} x = \int \frac{1}{1+x^2} dx$ (from integral table)
- Identify $\frac{1}{1+x^2} \equiv \frac{a}{1-r} \Rightarrow a \equiv 1, r \equiv -x^2$, |x| < 1.
- Construct the geometry series:

$$s = ar^{0} + ar^{1} + ar^{2} + ar^{3} + ar^{4} + \cdots$$
$$= 1 - x^{2} + x^{4} - x^{6} + x^{8} + \cdots$$

$$\Rightarrow \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 + \cdots$$

$$\Rightarrow \int \frac{1}{1+x^2} dx = \int dx (1 - x^2 + x^4 - x^6 + x^8 + \cdots)$$
$$\Rightarrow \tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} - \frac{x^9}{9} + \cdots$$

EXAMPLE 6 A Series for $\ln (1 + x)$, $-1 < x \le 1$

The series

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + \cdots$$

converges on the open interval -1 < t < 1. Therefore,

$$\ln\left(1+x\right) = \int_0^x \frac{1}{1+t} dt = t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots \Big]_0^x$$
Theorem 20
$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots, \qquad -1 < x < 1.$$

It can also be shown that the series converges at x = 1 to the number $\ln 2$, but that was not guaranteed by the theorem.

9

Use Mathematica to generate a Taylor series of a function f(x) at a center x = a. Compare it to the generating function f(x) by plotting both on the same plot. Deduce the interval of convergence from the plot.

DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by** f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The Maclaurin series generated by f is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots,$$

the Taylor series generated by f at x = 0.

Note: Maclaurin series is effectively a special case of Taylor series with a = 0.

Taylor series for f(x)=1/x expanded at the center x=2

- $f(x) = x^{-1}; f'(x) = -x^{-2}; f^{(n)}(x) = (-1)^n n! x^{-(n+1)}$
- The Taylor series is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(2)}{k!} (x-2)^k = \sum_{k=0}^{\infty} \frac{(-1)^k k! x^{-(k+1)}}{k!} \bigg|_{x=2} (x-2)^k$$

$$= \sum_{k=0}^{\infty} a_k (x-2)^k,$$

$$a_k = \frac{(-1)^k k! x^{-(k+1)}}{k!} \bigg|_{x=2}$$

Taylor series for e^x at x = 0

$$f(x) = e^{x} \to f^{(n)}(x) = e^{x}$$

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} \Big|_{x=0} x^{k} = \frac{e^{0}}{0!} x^{0} + \frac{e^{0}}{1!} x^{1} + \frac{e^{0}}{2!} x^{2} + \frac{e^{0}}{3!} x^{3} + \dots + \frac{e^{0}}{n!} x^{n} + \dots$$

$$= 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

Taylor series for $\cos x$ at x = 0

Solution The cosine and its derivatives are

$$f(x) = \cos x,$$
 $f'(x) = -\sin x,$
 $f''(x) = -\cos x,$ $f^{(3)}(x) = \sin x,$
 \vdots \vdots \vdots
 $f^{(2n)}(x) = (-1)^n \cos x,$ $f^{(2n+1)}(x) = (-1)^{n+1} \sin x.$

At x = 0, the cosines are 1 and the sines are 0, so

$$f^{(2n)}(0) = (-1)^n, f^{(2n+1)}(0) = 0.$$

The Taylor series generated by f at 0 is

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$= 1 + 0 \cdot x - \frac{x^2}{2!} + 0 \cdot x^3 + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}.$$

Taylor series for $\ln x$ at x = 1

- $f(x)=\ln x$; $f'(x)=x^{-1}$;
- $f''(x) = (-1)(1)x^{-2}; f'''(x) = (-1)^{2}(2)(1)x^{-3}...$
- $f^{(n)}(x) = (-1)^{n-1}(n-1)!x^{-n};$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} \bigg|_{x=1} (x-1)^n = \frac{f^{(0)}(x)}{0!} \bigg|_{x=1} (x-1)^0 + \sum_{n=1}^{\infty} \frac{f^{(n)}(x)}{n!} \bigg|_{x=1} (x-1)^n$$

$$= \frac{\ln 1}{0!} + \sum_{n=1}^{\infty} \frac{(-1)^{(n-1)}(n-1)!x^{-n}}{n!} \bigg|_{x=1} (x-1)^n = 0 + \sum_{n=1}^{\infty} \frac{(-1)^{(n-1)}(1)^{-n}}{n} (x-1)^n$$

$$= \frac{(-1)^0}{1} (x-1)^1 + \frac{(-1)^1}{2} (x-1)^2 + \frac{(-1)^2}{3} (x-1)^3 + \dots$$

$$= (x-1) - \frac{1}{2} (x-1)^2 + \frac{1}{3} (x-1)^3 - \dots + (-1)^n \frac{1}{n} (x-1)^n + \dots$$

Binomial series

Consider the Taylor series generated by $f(x) = (1+x)^m$, where m is a constant: $f(x) = (1+x)^m$ $f'(x) = m(1+x)^{m-1}, f''(x) = m(m-1)(1+x)^{m-2},$ $f'''(x) = m(m-1)(m-2)(1+x)^{m-3}$ $f^{(k)}(x) = m(m-1)(m-2)...(m-k+1)(1+x)^{m-k};$ $f(x) = \sum_{k=0}^{\infty} f^{(k)}(0)x^k$ $=\sum_{k=0}^{\infty} \frac{m(m-1)(m-2)...(m-k+1)}{k!} x^{k}$ $= 1 + mx + m(m-1)x^{2} + m(m-1)(m-2)x^{3} + \dots$ $+\frac{m(m-1)(m-2)...(m-k+1)}{x^k+...}$

The Taylor series of $f(x) = (1+x)^m$, is called the binomial series

$$f(x) = (1+x)^{m}$$

$$= \sum_{k=0}^{\infty} \frac{m(m-1)(m-2)...(m-k+1)}{k!} x^{k}$$

This series is called the binomial series, converges absolutely for |x| < 1.

The Taylor series of $f(x) = (1+x)^m$, is called the binomial series

The Binomial Series

For -1 < x < 1,

$$(1 + x)^m = 1 + \sum_{k=1}^{\infty} {m \choose k} x^k,$$

where we define

$$\binom{m}{1}=m,\qquad \binom{m}{2}=\frac{m(m-1)}{2!},$$

and

$$\binom{m}{k} = \frac{m(m-1)(m-2)\cdots(m-k+1)}{k!} \quad \text{for } k \ge 3.$$

EXAMPLE 2 Using the Binomial Series

We know from Section 3.8, Example 1, that $\sqrt{1+x} \approx 1 + (x/2)$ for |x| small. With m=1/2, the binomial series gives quadratic and higher-order approximations as well, along with error estimates that come from the Alternating Series Estimation Theorem:

$$(1+x)^{1/2} = 1 + \frac{x}{2} + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}x^3 + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{4!}x^4 + \cdots$$

$$= 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \cdots$$

Substitution for x gives still other approximations. For example,

$$\sqrt{1-x^2} \approx 1 - \frac{x^2}{2} - \frac{x^4}{8} \quad \text{for } |x^2| \text{ small}$$

$$\sqrt{1-\frac{1}{x}} \approx 1 - \frac{1}{2x} - \frac{1}{8x^2} \quad \text{for } \left|\frac{1}{x}\right| \text{ small, that is, } |x| \text{ large.}$$

Generate the coefficients of the binomial series for $(1+x)^m$ using Mathematica.

Compare it to the generating function $(1+x)^m$ by plotting both on the same plot.

Deduce the interval of convergence from the plot.

Fourier series

A function f(x) defined on [0, 2π] can be represented by a Fourier series $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \sum_{k=0}^n f_k(x) = \lim_{n\to\infty} \sum_{k=0}^n a_k \cos kx + b_k \sin kx$

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \sum_{k=0}^n f_k(x) = \lim_{n\to\infty} \sum_{k=0}^n a_k \cos kx + b_k \sin kx$$

$$= a_0 + \lim_{n \to \infty} \sum_{k=1}^n a_k \cos kx + b_k \sin kx,$$

Fourier series representation of f(x)

$$0 \le x \le 2\pi.$$

$$y = f(x)$$

If $-\infty < x < \infty$, the Fourier series $\lim_{n \to \infty} \sum_{k=0}^{n} f_k(x) = \lim_{n \to \infty} \sum_{k=0}^{n} a_k \cos kx + b_k \sin kx$ acutally represents a periodic function f(x) of a period of $L = 2\pi$,

Fourier series representation of a function defined on the general interval [a,b]

For a function defined on the interval of [a,b] the Fourier series representation on [a,b] is actually

$$a_0 + \sum_{k=1}^n a_k \cos \frac{2\pi kx}{L} + b_k \sin \frac{2\pi kx}{L} x$$

$$a_0 = \frac{1}{L} \int_a^b f(x) dx$$

$$a_m = \frac{2}{L} \int_a^b f(x) \cos \frac{2\pi mx}{L} dx$$

$$b_m = \frac{2}{L} \int_a^b f(x) \sin \frac{2\pi mx}{L} dx, m \text{ positive integer}$$

L=b - a

Example:

$$a_{0} = \frac{1}{L} \int_{a}^{b} f(x) dx = \frac{1}{L} \int_{a}^{b} mx dx = \frac{m}{2L} (b^{2} - a^{2}) = \frac{mL}{2}$$

$$a_{k} = \frac{2}{L} \int_{a}^{b} mx \cos \frac{2\pi kx}{L} dx = \frac{2m}{L} \int_{a}^{b} x \cos \frac{2\pi kx}{L} dx = \frac{2m}{L} \frac{L^{2} (\cos 2k\pi - 1)}{4k^{2}\pi^{2}} = 0;$$

$$b_{k} = \frac{2}{L} \int_{a}^{b} f(x) \sin \frac{2\pi kx}{L} dx = \frac{2m}{L} \int_{0}^{L} x \sin \frac{2\pi kx}{L} dx$$

$$= \frac{2m}{L} \cdot L^{2} \left(\frac{-2k\pi \cos(2k\pi) + \sin 2k\pi}{4k^{2}\pi^{2}} \right) = \frac{-mL}{k\pi};$$

$$f(x) = mx = \frac{mL}{2} - \frac{mL}{\pi} \sum_{k=1}^{n} \frac{\sin 2\pi kx}{k}$$

$$= mL \left(\frac{1}{2} - \frac{\sin 2\pi x}{\pi} - \frac{\sin 4\pi x}{2\pi} - \frac{\sin 6\pi x}{3\pi} - \dots - \frac{\sin 2n\pi x}{n\pi} + \dots \right)$$

Saw-tooth function

Consider the function f(x) = mx, where m is the slope of the function, defined for $x \in \{0, L\}, L > 0$. The Fourier coefficients are given by

$$a_0 = \frac{mL}{2}$$
 , $a_k = 0$, $b_k = -\frac{mL}{k\pi}$

Plot the Fourier series with n = 20 terms for $x \in \{-2L, 2L\}$, and overlap it with the function f(x) on the same plot. Assume L = m = 1.

Fourier series of a step function

FIGURE 11.16 (a) The step function

$$f(x) = \begin{cases} 1, & 0 \le x \le \pi \\ 2, & \pi < x \le 2\pi \end{cases}$$

Sc

$$a_0=\frac{3}{2}, \quad a_1=a_2=\cdots=0,$$

and

$$b_1 = -\frac{2}{\pi}$$
, $b_2 = 0$, $b_3 = -\frac{2}{3\pi}$, $b_4 = 0$, $b_5 = -\frac{2}{5\pi}$, $b_6 = 0$,...

The Fourier series is

$$\frac{3}{2} - \frac{2}{\pi} \left(\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots \right).$$

Plot the Fourier series of the step function using Mathematica

Plot the Fourier series of the step function using Mathematica

Taylor series revisited

■ Taylor series representation for an arbitrary function f(x) at the center x = a up to n-th order

$$P_n(x) = \sum_{k=0}^n a_k (x-a)^k,$$

$$a_k = \frac{1}{k!} \frac{d^{(n)} f(x)}{dx^n} \bigg|_{x=a}$$

Examples

$$P_{n}(x) = \sum_{k=0}^{n} a_{k}(x - a)^{k},$$

$$a_{k} = \frac{1}{k!} \frac{d^{(n)} f(x)}{dx^{n}}$$

$$f(x) = e^{x}, a = 0 \to P_{n}(x) = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

$$f(x) = \ln x, a = 1 \to P_{n}(x) = (x - 1) - \frac{1}{2}(x - 1)^{2} + \frac{1}{3}(x - 1)^{3} - \dots + (-1)^{n} \frac{1}{n}(x - 1)^{n} + \dots$$

$$f(x) = (1 + x)^{m}, a = 0 \to P_{n}(x) = \sum_{i=0}^{n} \frac{m(m - 1)(m - 2)\dots(m - k + 1)}{k!} x^{k}$$

A generic question to be solved

- Given any arbitrary function f(x), what is the analytical expression of the i-th coefficient in the Taylor series $P_n(x)$ for f(x) at x = a?
- Use Mathematica to for the explicit expression of $P_n(x)$ for f(x) at x = a.
- Plot $P_n(x)$ and f(x) for a few selected values of n, covering a range of x that includes x = a
- Check the correctness of your answer using the command Series □.

Try on these few functions

- 1. $f(x) = \tan^{-1} x$ at x = 1.
- 2. $f(x) = \sinh^{-1} x$ at x = 0
- 3. $f(x) = \frac{1}{\sqrt{1-x^2}}$ at x = 0.