l.ecture 2
Mathematica for Series




Use Mathematica to find the
convergence of a series
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Use Mathematica to generate
a power series. Compare it to
the function it converges to
by plotting both-on the same
plot. Deduce the interval of
convergence from the plot.




DEFINITIONS Power Series, Center, Coefficients
A power series about x = 0 is a series of the form

00

enx" =co+ ex +ext o+ opx e (1)
n=0

A power series about x = a is a series of the form

x—a)'=ctclx—a)+ax—al+ +cx—a)+- (2

n=0

in which the center a and the coefficients ¢y, ¢y, ¢», ..., ¢, ... are constants.

— EXAMPLE 1 A Geometric Series

Taking all the coefficients to be 1 in Equation (1) gives the geometric power series

00
EI"=1+I+I2+"‘+XH+"‘
n=0

This is the geometric series with first term 1 and ratio x. It converges to 1/(1 — x) for
|x| < 1. We express this fact by writing
1

i ——=1l+x+x+-+x"+--
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EXAMPLE 3  Testing for Convergence Using the Ratio Test

For what values of x do the following power series converge?

2 3
. x_ X X
(a) 2( D" = -5 g
2—1 3 5
n—1 — _ X X _ ...
(b)z( e Bk T
L SO S
(c);‘g,n S TRE]

(0. @)
(d) En!x” =14+ x4+ 2Ix% 4+ 3Ix3 +---
n=0




Series representation of tan™1x (alternative

approach)

tan lx = |

(from integral table)

|dentify 1+1x2 =2 5= 1,r=—x%,|x| < 1.

1-r
Construct the geometry series:
s = ar® + arl+ar?+ar3 + ar* + ---

=1 —x®4+x*—x® +x%+--
= 12=1 —x?+x*—x® +x%+ -
1+x
= [ +x2dx—fdx(1 +x*—x® +x8+4-)
) x3 x> x7 x°
>tan "'x=x——""F————1—"7-+"--




EXAMPLE6 ASeriesforln(1+x), -1 <x=1

The series

1
1 + ¢

=1—t+t2—£+--

converges on the open interval —1 < ¢ < 1. Therefore,

n + x) = t=t——+=—=-——=4+:-- Theorem 20
o 1+1 2737 4 0
2 3 4
X X X
=x - -+ —_ + -] < x<.
X 5 3 4 \ 1 <x <1

It can also be shown that the series converges at x = 1 to the number In 2, but that was not
guaranteed by the theorem.




Use Mathematica to generate

a Taylor series of a function
f(x) at a center X = a.
Compare 1t to the generating
function f(x) by plotting
both on the same plot.
Deduce the interval of
convergence from the plot.
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DEFINITIONS  Taylor Series, Maclaurin Series
Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by f atx = a is

(k) "
Ef D — 0 = fl@) + f@x - ) + 52

f"(a)
nl

(x — a)?

+ -+ (x —a)" +

The Maclaurin series generated by f is

E f””( 0) & _ f”(O) f“”( ) n

= (0) + f1(O) + x4
the Taylor series generated by fatx = 0.

Note: Maclaurin series is effectively a special case of Taylor

series with a = 0.
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Taylor series for f{x)=1/x expanded at

the center x = 2
f(x) = x1; f'(x) = -x2; f (x) = (-1)" n! x (D)
The Taylor series Is

o £ (k) w (_ kk. —(k+1)

Zf k!(z)(x—Z)k :Z( ) kl!x (x—2)

k=0

X=2

- Ya,(x-2)"

(—1)" ktx 0D
k!

X=2
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Taylor sertes tfor ¢ at x = (

f(x)=e*—> f™M(x)=¢"

f 9 (x e’ e’ e’ e’ e’
f(x)=> COF e _€ o & 1 & 2 & oy &t
= k! ) 0! 1! 2! 3! n!

x> X3 X"

=14+ X+—+—+...—
2 3 n!




’lﬂaylor series for cos xat x =0

Solution The cosine and 1ts derivatives are

flx) = COS X, f'(x) = —sin X,

ff(x) = —COos X, fOx) = sin x,

j(2n)(x) = (_l)n COS X, f(2n+l)(x) = (_])n+l gin x.

At x = 0, the cosines are | and the sines are 0, so
I(Zn)(o) - (_ | )n’ j(2n+ l)(o) = (.
The Taylor series generated by f at 0 is

” 1774 n)
f(0) + f'(0)x + fz(!o)x2 - f3—(!0)x3 + e+ f‘n(!O)x,, T
— X2 x“ . xZn
_l+00x—§'§'+00x3+_4_!_+...+(_1) (Zn)'+_
00 (_l)kak

=& @
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Taylor sertes for In xat x =1

f(x)=In x; f'(xX) = x1;

£ (0) = (-1) (X% £ (9) = (D2 R)(1) x2...

fM(x) = (-1) "(n-1)!x";

£ O (x)

(x-1)" =

x=1

1 5 D=

x=1 n=1 ) x=1

(x-1)"=0+ i (_1)<n:> O (x-1)"
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Binomial series
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Consider the Taylor series generated

by fx) = (1+x)”, where » is a constant:
f(x)=0Q+x)"
£/(x) = m(L+X)™, £7(x) =m(m ~1)(L+ X)™,
f7(x) = m(m —1)(m - 2)(L+ X)™,

£ 0 (x) = m(m —1)(m—=2)...(m —k + 1)1+ x)™™:
f(x)=> FO(0)x
>m(m-1)(m-2)....(m-k+1) ,
2 ! "
1+ mx+m(m-1x*+m(m-1)(m-2)x>+...

— m(m=1)(m —k2|)...(m —Kk +1) S




The Taylor series of f{x) = (1+x)7, 1s

called the binomial series

f(x)=0+x)"

m(m-1)(m-2)...(m—-k +1) N
_Z O

This series Is called the binomial series,

converges absolutely for |x| < 1.
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‘The Taylor sertes of f{x) = (1+x)”, 1s
called the binomial seties

The Binomial Series
For—1 <x <1,

(1+x)"=1+ § (m)xk,
=1 \k

m\ m\ m(m— 1)
(1)_’"’ (2)_ 21

(m) ~m(m — 1)(m —2)--(m—k+1)
k) k!

where we define

and

fork = 3.




EXAMPLE 2  Using the Binomial Series

We know from Section 3.8, Example 1, that V1 + x & 1 + (x/2) for |x| small. With
m = 1/2, the binomial series gives quadratic and higher-order approximations as well,
along with error estimates that come from the Alternating Series Estimation Theorem:

L B), B0

(l+x)1ﬁ=1+§+ o x° + 3
Ly (Z3)(=2
RACTANEZANE JANE YV
4! x & o8 @
2 3 4
SR S SR S

Substitution for x gives still other approximations. For example,
2 4

VI—xzi‘ﬂl—‘%—% for |x?| small

1—%-%1—21)6—8; for |+

small, that is, |x| large.
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 Generate the coefficients of the
binomial series for (1+x)” using
Mathematica.

Compare it to the generating function
(14+x)” by plotting both on the same
plot.

Deduce the interval of convergence
from the plot.




Fourier series
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y A function f{x) defined on [0, 2] can

N—oo

N—o0

0<x< 2.

be represented by a Fourier series
lim f (X)—|Ime (x)_IlmZa coskx + b, sinkx

=a, +lim Zak coskx +b, sinkx,«—— Fourier series

representation of f(x)

= 1(X)
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n
lim ) "a, coskx + b, sinkx,o < x < 0

N—o0 k=0

REE T
~ a \
- . .
. ~
\ R ~.

[ ! s

1 [

- \

- e e e

| | | | |
27 0 27T 4|7z 671 8|7z

n n
If -o<x < 00, the Fourier series lim " f,(x) =lim > a, coskx+b, sinkx
7% k=0 7% k=0

acutally represents a periodic function f (x) of a period of L =27,
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Fourier series representation of a function
defined on the general interval [a,4]

For a function defined on the interval of [a,b] the

Fourier series representation on [a,b] is actually
4 2 rkX . 27kX

3, + Y ,a, CoS +b, sin

k=1
a, :ij‘: f (x)dx

L
"t (x)cos 27mX

X

dx

° § (x)sin 27mX

dx, m positive integer

Ja

2
=),

2

L
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Example:

f(x)=mx,0<x<L

................... \_ B | i
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1 b 1 eb mL
a, =—| f(x)dx==| mxdx=—(b*-a°)=—
N (x) L Ja ( ) 9
2 27kx . 2m b 2zkx  2m L*(cos2kz 1)
a, =—| mxcos dx=—| xcos dx = — =0;
L Ja L L “a L L 4k
b, _20 (x)sin andeZZ_m " xsin 2ﬂkxdx
LJa L Jo
_2m . (—Zkﬂcos(zm) +sin 2k7zj _—mL.
L 4k*r? kz
£ (x) = mx = mL mLZsm27zkx

T =21 K
(1 sin2zx  sindzXx sin6xX sin 2Nz x j
=mL| —— — — — — +...
2 T 27T 3T NsT
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Saw-tooth function

Consider the function f(x) = mx, where m is the
slope of the function, defined for x € {0,L},L > 0.

The Fourier coefficients are given by

mL mL
Aoy = T’ak = O,bk = _E
Plot the Fourier series with n = 20 terms for x €
{—2L, 2L}, and overlap it with the function f(x)

on the same plot. Assume L = m = 1.



Fourier series of a step function

> <

| |
0 T 27T

> X

(a)

FIGURE 11.16 (a) The step function

I, 0=x=x

f(x)={2, T<XxX=2mw

29



So

3
G =75, a1 = a = = 0,
and
2 2 2
by =—=, by=0, b3x—§, by = 0, bsx—'s_w, be = 0,...

The Fourier series 1s

%_ % (sinx + sar;fix N smSSx " )

Plot the Fourier series of the step function using
Mathematica
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Plot the Fourier series of the step function
using Mathematica
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Taylor series revisited

Taylor series representation for an arbitrary
function f(x) at the center x = a up to n-th
order

P (x)= Y a, (x—a),

1d™f(x)
k! dx"

A




Examples i
P.(x)=> a(x-a)",

1 d™f(x)
d, = -
kt dx® |
f(x)=ea=0-P () =lixs s X X
I e 2 31 'n
f(x):lnx,a:1—>Pn(x)=(x—1)—%(x—1)2+%(x—1)3—...+(—1)n%(x—l)n+...

S m(m-1)(m-2)...(m—-k +1) N
0 k!

f(x)=1+x)",a=0—P,(x) =
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A generic question to be solved

Given any arbitrary function f(x), what is the
analytical expression of the i-th coefficient in
the Taylor series B,(x) for f(x) at x = a?

Use Mathematica to for the explicit
expression of B,(x) for f(x) at x = a.

Plot P,(x) and f(x) for a few selected values
of n, covering a range of x that includes x =
a

Check the correctness of your answer using
the command Series|].
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Try on these few functions

f(x) =tan"tx atx = 1.

f(x) =sinh™*xatx =0

1
f(x) — atx = 0.
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