Lecture 3 Mathematica for Differential Equations

Use Mathematica to find the analytical solutions to first order ordinary differential equations

Example of first order differential equation commonly encountered in physics

$$
\frac{dv_y}{dt} = -g; \frac{dy}{dt} = v_y
$$

\n
$$
m\frac{dv}{dt} = -mg - \eta v
$$

\n
$$
\frac{dN}{dx} = -\lambda N; \frac{dN}{dt} = -\frac{N}{\tau}
$$

\n
$$
m\frac{dv}{dx} = -kx
$$

• Do you recognize these equations?

Analytical solution of $\overline{d v_y}$ dt $=-g$

- ZCA 101 mechanics, kinematic equation for a free fall object dv_y dt $=-g$
- What is the solution, i.e., $v_y = v_y(t)$?

$$
\frac{dv_y}{dt} = -g
$$

\n
$$
\Rightarrow \int \frac{dv_y}{dt} dt = -\int g dt
$$

\n
$$
\int dv_y = v_y = -\int g dt = -gt + c
$$

\n
$$
\Rightarrow v_y = v_y(t) = -gt + c
$$

Analytical solution of

$$
\frac{dv_y}{dt} = -g
$$

• To completely solve this first order differential equation, i.e., to determine v_y as a function of *t*, and the arbitrary constant *c*, a boundary value or initial value of v_y at a given time *t* is necessary. Usually (but not necessarily) *v^y* (0), i.e., the value of *v^y* at *t=*0 has to be assumed.

$$
\frac{dv_y}{dt} = -g
$$

$$
\int_{v_y(0)}^{v_y(t)} dv = -\int_g g dt = -gt
$$

$$
\Rightarrow v_y = v_y(t) = -gt + v_y(0)
$$

Analytical solution of

$$
\frac{dy}{dt} = v_y
$$

- Assume $v_y = v_y(t)$ a known function of *t*.
- To completely solve the equation so that we can know what is the function *y*(*t*), we need to know the value of *y*(0).

$$
y(t)
$$

$$
\int_{y(0)}^{t} dy = \int_{0}^{t} v_y dt
$$

$$
\Rightarrow y(t) - y(0) = \int_{0}^{t} v_y dt
$$

Analytical solution of $\frac{dy}{y}$ dt $= v_y$

- **•** In free fall without drag force, $v_y(t) = v_y(0) gt$.
- The complete solution takes the form

$$
y(t) - y(0) = \int_{0}^{t} v_y dt = \int_{0}^{t} (v_y(0) - gt) dt
$$

$$
y(t) = y(0) + v_y(0)t - \frac{1}{2}gt^2
$$

Boundary condition

- In general, to completely solve a first order differential equation for a function with single variable, a boundary condition value must be provided.
- Generalising such argument, two boundary condition values must be supplied in order to completely solve a second order differential equation.
- *n* boundary condition values must be supplied in order to completely solve a *n*-th order differential equation.
- Hence, supplying boundary condition values are necessary when numerically solving a differential equation.

Analytical solution of a free fall object in a viscous medium

$$
m\frac{dv}{dt} = -mg - \eta v
$$

• Boundary condition: $v=0$ at $t=0$.

Number of beta particles penetrating a medium (recall your first year lab experiments)

$$
\frac{dN}{dx} = -\lambda N
$$

$$
\int_{N_0}^{N} \frac{dN}{N} = -\int_{0}^{X} \lambda \, dx
$$

$$
N(x) = N_0 \exp[-\lambda x]
$$

Number of radioactive particle remained after time *t* (recall your first year lab experiments. τ : half-life)

$$
\frac{dN}{dt} = -\frac{N}{\tau}
$$

$$
\int_{N_0}^{N} \frac{dN}{N} = -\int_0^t \frac{1}{\tau} dt
$$

$$
N(t) = N_0 \exp\left[-\frac{t}{\tau}\right]
$$

Relation of speed vs. displacement in SHM

$$
E = K + P = \frac{1}{2}mv^2 + \frac{1}{2}kx^2
$$

$$
\Rightarrow \frac{dE}{dx} = \frac{d}{dx}\left(\frac{1}{2}mv^2 + \frac{1}{2}kx^2\right) = 0
$$

$$
\Rightarrow m\frac{dv}{dx} = -kx
$$

The solution is

$$
v(x) = v_0 + \frac{kx_0^2}{2}m - \frac{k}{2m}x^2
$$

boundary condition: $v = v_0$ at $x = x_0$

DSolve[]

Now, we would learn how to solve these first order differential equations **DSolve[]** (symbolically)

EXAMPLE 3 Solving a Separable Equation

Solve the differential equation

$$
\frac{dy}{dx} = (1 + y^2)e^x.
$$

Solution

Since $1 + y^2$ is never zero, we can solve the equation by separating the variables.

$$
\frac{dy}{dx} = (1 + y^2)e^x
$$

$$
dy = (1 + y^2)e^x dx
$$

$$
\frac{dy}{1 + y^2} = e^x dx
$$

$$
\int \frac{dy}{1 + y^2} = \int e^x dx
$$

$$
\tan^{-1} y = e^x + C
$$

Treat dy/dx as a quotient of differentials and multiply both sides by dx .

Divide by $(1 + y^2)$.

Integrate both sides.

C represents the combined constants of integration.

The equation $\tan^{-1} y = e^x + C$ gives y as an implicit function of x. When $-\pi/2$ $\langle e^x + C \langle \pi/2 \rangle$, we can solve for y as an explicit function of x by taking the tangent of both sides:

$$
\tan (\tan^{-1} y) = \tan (e^x + C)
$$

$$
y = \tan (e^x + C).
$$

$$
\frac{dy}{dx} = y - x, \qquad y(0) = \frac{2}{3}.
$$

The equation **Solution**

$$
\frac{dy}{dx} = y - x
$$

is a first-order differential equation with $f(x, y) = y - x$. On the left:

$$
\frac{dy}{dx} = \frac{d}{dx}\left(x + 1 - \frac{1}{3}e^{x}\right) = 1 - \frac{1}{3}e^{x}.
$$

On the right:

$$
y - x = (x + 1) - \frac{1}{3}e^x - x = 1 - \frac{1}{3}e^x.
$$

The function satisfies the initial condition because

$$
y(0) = \left[(x + 1) - \frac{1}{3} e^x \right]_{x=0} = 1 - \frac{1}{3} = \frac{2}{3}.
$$

Draining a Tank **EXAMPLE 5**

A right circular cylindrical tank with radius 5 ft and height 16 ft that was initially full of water is being drained at the rate of $0.5\sqrt{x}$ ft³/min. Find a formula for the depth and the amount of water in the tank at any time t . How long will it take to empty the tank?

The volume of a right circular cylinder with radius r and height h is $V = \pi r^2 h$, **Solution** so the volume of water in the tank (Figure 9.4) is

$$
V = \pi r^2 h = \pi (5)^2 x = 25 \pi x.
$$

Diffentiation leads to

$$
\frac{dV}{dt} = 25\pi \frac{dx}{dt}
$$
\nNegative because *V* is decreasing
\nand $dx/dt < 0$
\n $-0.5\sqrt{x} = 25\pi \frac{dx}{dt}$ Torricelli's Law

Thus we have the initial value problem

$$
\frac{dx}{dt} = -\frac{\sqrt{x}}{50\pi},
$$

$$
x(0) = 16
$$

The water is 16 ft deep when $t = 0$.

$$
-x = \left(4 - \frac{t}{100\pi}\right)^2 \quad \text{and} \quad V = 25\pi x = 25\pi \left(4 - \frac{t}{100\pi}\right)^2.
$$

EXAMPLE 2 Solving a First-Order Linear Differential Equation Solve the equation

$$
x\frac{dy}{dx} = x^2 + 3y, \qquad x > 0.
$$

Solution First we put the equation in standard form (Example 1):

$$
\frac{dy}{dx} - \frac{3}{x}y = x,
$$

so $P(x) = -3/x$ is identified. The integrating factor is

$$
v(x) = e^{\int P(x) dx} = e^{\int (-3/x) dx}
$$

= $e^{-3} \ln|x|$
= $e^{-3} \ln x$
= $e^{\ln x^{-3}} = \frac{1}{x^3}$.

Constant of integration is 0, so v is as simple as possible. $x > 0$

Next we multiply both sides of the standard form by $v(x)$ and integrate:

$$
\frac{1}{x^3} \cdot \left(\frac{dy}{dx} - \frac{3}{x}y\right) = \frac{1}{x^3} \cdot x
$$

$$
\frac{1}{x^3} \frac{dy}{dx} - \frac{3}{x^4}y = \frac{1}{x^2}
$$

$$
\frac{d}{dx} \left(\frac{1}{x^3}y\right) = \frac{1}{x^2}
$$

$$
\frac{1}{x^3}y = \int \frac{1}{x^2} dx
$$

$$
\frac{1}{x^3}y = -\frac{1}{x} + C.
$$

Left side is $\frac{d}{dx}(v \cdot y)$.

Integrate both sides.

Solving this last equation for y gives the general solution:

$$
y = x^3 \left(-\frac{1}{x} + C \right) = -x^2 + Cx^3, \qquad x > 0.
$$

RL Circuits

The diagram in Figure 9.5 represents an electrical circuit whose total resistance is a constant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant. There is a switch whose terminals at a and b can be closed to connect a constant electrical source of V volts.

Ohm's Law, $V = RI$, has to be modified for such a circuit. The modified form is

$$
L\frac{di}{dt} + Ri = V,\t\t(5)
$$

where i is the intensity of the current in amperes and t is the time in seconds. By solving this equation, we can predict how the current will flow after the switch is closed.

EXAMPLE 5 Electric Current Flow

The switch in the RL circuit in Figure 9.5 is closed at time $t = 0$. How will the current flow as a function of time?

Equation (5) is a first-order linear differential equation for i as a function of t . **Solution** Its standard form is

$$
\frac{di}{dt} + \frac{R}{L}i = \frac{V}{L},\tag{6}
$$

and the corresponding solution, given that $i = 0$ when $t = 0$, is

$$
i = \frac{V}{R} - \frac{V}{R}e^{-(R/L)t}
$$
\n⁽⁷⁾

(Exercise 32). Since R and L are positive, $-(R/L)$ is negative and $e^{-(R/L)t} \rightarrow 0$ as $t \rightarrow \infty$. Thus,

$$
\lim_{t\to\infty} i = \lim_{t\to\infty} \left(\frac{V}{R} - \frac{V}{R} e^{-(R/L)t} \right) = \frac{V}{R} - \frac{V}{R} \cdot 0 = \frac{V}{R}.
$$

The growth of the current in **FIGURE 9.6** the RL circuit in Example 5. I is the current's steady-state value. The number $t = L/R$ is the time constant of the circuit. The current gets to within 5% of its steady-state value in 3 time constants (Exercise 31).

Second order differential equations

2nd Order Homogeneous DEs

$$
\frac{d^2u(x)}{dx^2} + a\frac{du(x)}{dx} + bu(x) = 0
$$

with **TWO** given conditions **The solutions**

Case 1:
$$
a^2 - 4b > 0
$$
:
\n
$$
u(x) = e^{-\frac{ax}{2}} \left(c_1 e^{\sqrt{a^2 - 4b} x/2} + c_2 e^{-\sqrt{a^2 - 4b} x/2} \right)
$$

Case 2: $a^2 - 4b < 0$:

$$
u(x) = e^{-\frac{ax}{2}} \left[A \sin\left(\frac{1}{2}\sqrt{4b-a^2}\right) x + B \cos\left(\frac{1}{2}\sqrt{4b-a^2}\right) x \right]
$$

Case 3: $a^2 - 4b = 0$: - A special case

$$
u(x) = c_1 e^{-\frac{ax}{2}} + c_2 x e^{-\frac{ax}{2}} = (c_1 + c_2 x) e^{-\frac{ax}{2}}
$$
(4.12)

where c_1 , c_2 , A and B are arbitrary constants to be determined by given conditions

Example 4.1 Solve the following differential equation.

$$
\frac{d^2u(x)}{dx^2} + 5\frac{du(x)}{dx} + 6u(x) = 0
$$

$$
u(x) = e^{-5x/2} \left(c_1 e^{x/2} + c_2 e^{-x/2} \right) = c_1 e^{-2x} + c_2 e^{-3x}
$$

where c_1 and c_2 are arbitrary constants to be determined by given conditions

Example 4.2

$$
\frac{d^2u(x)}{dx^2} + 6\frac{du(x)}{dx} + 9u(x) = 0
$$

$$
\frac{d(u(x))}{dx}\bigg|_{x=0} = 0
$$

$$
u(x) = 2(1+3x)e^{-3x}
$$

Solution of Equation (4.25) consists **TWO** components:

Solution u(x) =
$$
\begin{bmatrix} \text{Complementary} \\ \text{solution } u_{h}(x) \end{bmatrix} + \begin{bmatrix} \text{Particular} \\ \text{solution } u_{p}(x) \end{bmatrix}
$$

u(x) = u_h(x) + u_p(x)

There is **NO** fixed rule for deriving $u_p(x)$

Example 4.6

$$
\frac{d^2y(x)}{dx^2} - \frac{dy(x)}{dx} - 2y(x) = \sin 2x
$$

 $y(x) = y_h(x) + y_p(x)$

$$
\frac{d^2 y_h(x)}{dx^2} - \frac{dy_h(x)}{dx} - 2y_h(x) = 0
$$

$$
y_h(x) = c_1 e^{-x} + c_2 e^{2x}
$$

 \cdot

 $y(x)$

$$
y_p(x) = A \sin 2x + B \cos 2x
$$

After some algebra

$$
= y_h(x) + y_p(x) = c_1 e^{-x} + c_2 e^{2x} + \left(-\frac{3}{20} \sin 2x + \frac{1}{20} \cos 2x\right)
$$

Example 4.8

$$
\frac{d^2u(x)}{dx^2} + 4u(x) = 2\sin 2x
$$

$$
u(x) = u_h(x) + u_p(x) = c_1 \cos 2x + c_2 \sin 2x - \frac{x}{2} \cos 2x
$$

- Use Dsolve | \vert to solve examples 4.1, 4.2, 4.6 and 4.8 discussed in previous slides.
- **Print out the analytical expression of the** general solutions.
- **For those examples without specified** boundary conditions, impose your own choice of boundary conditions, and then plot the solutions.

SIMPLE HARMONIC PENDULUM AS A SPECIAL CASE OF SECOND ORDER DE

Force on the pendulum $F_{\theta} = -m g \sin \theta$

for small oscillation, $\sin \theta \approx \theta$.

Equation of motion (EoM)

$$
F_{\theta} = ma_{\theta}
$$

$$
-mg\sin\theta = m\frac{dv_{\theta}}{dt} = m\frac{d}{dt}\left(\frac{dr}{dt}\right) \approx m\frac{d^{2}}{dt^{2}}\left(l\theta\right)
$$

$$
\frac{d^{2}\theta}{dt^{2}} \approx -\frac{g\theta}{l}
$$

The period of the SHO is *n*(*x*) given by *g l* $T = 2\pi$

r

 θ

l

SIMPLE HARMONIC PENDULUM AS A SPECIAL CASE OF SECOND ORDER DE

$$
\frac{d^{2}u(x)}{dx^{2}} + a \frac{du(x)}{dx} + bu(x) = n(x)
$$
\n
$$
x = t
$$
\n
$$
u(x) = \theta(t)
$$
\n
$$
a = 0
$$
\n
$$
b = \frac{g}{l}
$$
\n
$$
n(x) = 0
$$
\n
$$
\frac{d^{2}\theta(t)}{dt^{2}} = -\frac{g\theta}{l}
$$

SIMPLE HARMONIC PENDULUM AS A SPECIAL CASE OF SECOND ORDER DE (CONT.)

$$
\frac{d^2\theta(t)}{dt^2} = -\frac{g\theta}{l}
$$

Analytical solution:

$$
\theta = \theta_0 \sin(\Omega t + \phi)
$$

 $\Omega = \sqrt{g/l}$ natural frequency of the pendulum; θ_0 and ϕ are constant determined by boundary conditions

Simple Harmonic pendulum with drag force as a special case of second order DE

Drag force on a moving object, $f_d = -kv$ For a pendulum, instantaneous velocity

 $v = \omega l = l (d\theta/dt)$

Hence, $f_d = -kl$ ($d\theta/dt$).

Consider the net force on the forced pendulum along the tangential direction, in the $\theta \rightarrow o$ limit:

$$
F_{\theta} = -mg\sin\theta - kl\frac{d\theta}{dt} \approx -mg\theta - kl\frac{d\theta}{dt}
$$

$$
m\frac{d^2r}{dt^2}\approx m\frac{d^2}{dt^2}(l\theta)=ml\frac{d^2\theta}{dt^2}
$$

$$
F_{\theta} = m \frac{d^2 r}{dt^2} \Rightarrow \frac{d^2 \theta}{dt^2} = -\frac{g}{l} \theta - \frac{k}{m} \frac{d\theta}{dt} \equiv -\frac{g}{l} \theta - q \frac{d\theta}{dt}; q \equiv \frac{k}{m}
$$

 $f_{\rm d}$

v

mg

l

r

 θ

Simple Harmonic pendulum with drag force as a special case of second order DE (cont.)

Analytical solutions

alytical solutions

Jnderdamped regime (small damping). Still

illate, but amplitude decay slowly over many

iod before dying totally.
 $\theta(t) = \theta_0 e^{-qt/2} \sin\left(\varphi + t\sqrt{\Omega^2 - \frac{q^2}{4}}\right)$
 $\Omega = \sqrt{\frac{g}{l}}$ the natural frequency o utions

sime (small damping). Still

de decay slowly over many

totally.
 $\left(\varphi + t \sqrt{\Omega^2 - \frac{q^2}{4}}\right)$

al frequency of the system tical solutions

rdamped regime (small damping). Still

i, but amplitude decay slowly over many

efore dying totally.
 $= \theta_0 e^{-qt/2} \sin \left(\varphi + t \sqrt{\Omega^2 - \frac{q^2}{4}} \right)$
 $\sqrt{\frac{g}{l}}$ the natural frequency of the system utions

gime (small damping). Still

de decay slowly over many

totally.
 $\left(\varphi + t\sqrt{\Omega^2 - \frac{q^2}{4}}\right)$

al frequency of the system alytical solutions

Jnderdamped regime (small damping). Still

illate, but amplitude decay slowly over many

iod before dying totally.
 $\theta(t) = \theta_0 e^{-qt/2} \sin\left(\varphi + t\sqrt{\Omega^2 - \frac{q^2}{4}}\right)$
 $\Omega = \sqrt{\frac{g}{l}}$ the natural frequency o 1. Underdamped regime (small damping). Still oscillate, but amplitude decay slowly over many period before dying totally.

 2 /2 2 ⁰ sin 4 *qt q t e t*

 the natural frequency of the system *g l*

Analytical solutions

ical solutions

mped regime (very large damping),

dy over several period before dying

dominated by exponential term.
 $\theta(t) = \theta_0 e^{-\left(\frac{qt}{2} \pm t \sqrt{\frac{q^2}{4} - \Omega^2}\right)}$ **Itions**

(very large damping),

ral period before dying

by exponential term.
 $\left(\frac{qt}{2} \pm t \sqrt{\frac{q^2}{4} - \Omega^2}\right)$ utions

e (very large damping),

real period before dying

by exponential term.
 $-\left(\frac{qt}{2} \pm t \sqrt{\frac{q^2}{4} - \Omega^2}\right)$ **Solutions**
regime (very large damping),
er several period before dying
nated by exponential term.
 $= \theta_0 e^{-\left(\frac{qt}{2} \pm t \sqrt{\frac{q^2}{4} - \Omega^2}\right)}$ 2. Overdamped regime (very large damping), decay slowly over several period before dying totally. θ is dominated by exponential term.

tical solutions
\n\n speed regime (very large data
\n vly over several period before
\n dominated by exponential to
\n
$$
\theta(t) = \theta_0 e^{-\left(\frac{qt}{2} \pm t \sqrt{\frac{q^2}{4} - \Omega^2}\right)}
$$

Analytical solutions

3. Critically damped regime, intermediate between under- and overdamping case. ^q ^q *t Ct e* **I**
l regime, intermediate between
ping case.
= $(\theta_0 + Ct)e^{-\frac{qt}{2}}$

$$
\theta(t) = (\theta_0 + Ct)e^{-\frac{qt}{2}}
$$

Assignment

 Reproduce the overdamped, underdamed and critically damped oscillators. To thid end, you need to impose your own choice of boundary conditions.

ADDING DRIVING FORCE TO THE DAMPED OSCILLATOR: FORCED OSCILLATOR

$$
F_{\theta} = -m g \sin \theta - kl (d\theta/dt) + F_D \sin(\Omega_D t)
$$

 $Ω_D$ *frequency of the applied force*

ADDING DRIVING FORCE TO THE DAMPED
\n**OSCILLATOR:** FORCED **OSCILLATOR**
\n
$$
F_{\theta} = -m g \sin \theta - kl (d\theta/dt) + F_D \sin(\Omega_D t) \quad \frac{\Omega_D \text{ frequency of the applied force}}{\text{force}}
$$
\n
$$
F_{\theta} = -mg \sin \theta - kl \frac{d\theta}{dt} + F_D \sin (\Omega_D t) \approx -mg\theta - kl \frac{d\theta}{dt} + F_D \sin (\Omega_D t);
$$
\n
$$
F_{\theta} = \frac{m \frac{d^2r}{dt^2}}{dt^2} \approx m \frac{d^2\theta}{dt^2} (l\theta) = ml \frac{d^2\theta}{dt^2};
$$
\n
$$
F_{\theta} = \frac{m \frac{d^2r}{dt^2}}{dt^2} \approx ml \frac{d^2\theta}{dt^2} \approx -mg\theta - kl \frac{d\theta}{dt} + F_D \sin (\Omega_D t)
$$
\n
$$
\frac{d^2\theta}{dt^2} \approx -\frac{g}{l} \theta - q \frac{d\theta}{dt} + \frac{F_D \sin (\Omega_D t)}{ml}; q = \frac{k}{m}
$$

$$
F_{\theta} = m \frac{d^2 r}{dt^2} \approx m \frac{d^2}{dt^2} (l\theta) = ml \frac{d^2 \theta}{dt^2};
$$

ADDING DRIVING FORCE TO THE DAMPED
\n**OSCILLATOR:** FORCED **OSCILLATOR**
\n
$$
F_{\theta} = -m g \sin \theta - kl (d\theta/dt) + F_D \sin(\Omega_D t) \quad \frac{\Omega_D \text{ frequency of the applied force}}{\text{force}}
$$
\n
$$
F_{\theta} = -mg \sin \theta - kl \frac{d\theta}{dt} + F_D \sin (\Omega_D t) \approx -mg \theta - kl \frac{d\theta}{dt} + F_D \sin \theta
$$
\n
$$
F_{\theta} = m \frac{d^2r}{dt^2} \approx m \frac{d^2}{dt^2} (l\theta) = ml \frac{d^2\theta}{dt^2};
$$
\n
$$
F_{\theta} = m \frac{d^2r}{dt^2} \approx ml \frac{d^2\theta}{dt^2} \approx -mg \theta - kl \frac{d\theta}{dt} + F_D \sin (\Omega_D t)
$$
\n
$$
\frac{d^2\theta}{dt^2} \approx -\frac{g}{l} \theta - q \frac{d\theta}{dt} + \frac{F_D \sin (\Omega_D t)}{ml}; q = \frac{k}{m}
$$

ADDING DRIVING FORCE TO THE DA
\n**OSCILLATOR: FORCED OSCILLATOR**
\n
$$
F_{\theta} = -m g \sin \theta - kl (d\theta/dt) + F_D \sin(\Omega_D t) \frac{\Omega}{t} f_C
$$
\n
$$
F_{\theta} = -mg \sin \theta - kl \frac{d\theta}{dt} + F_D \sin(\Omega_D t) \approx -mg
$$
\n
$$
F_{\theta} = m \frac{d^2r}{dt^2} \approx m \frac{d^2}{dt^2} (l\theta) = ml \frac{d^2\theta}{dt^2};
$$
\n
$$
F_{\theta} = m \frac{d^2r}{dt^2} \approx ml \frac{d^2\theta}{dt^2} \approx -mg\theta - kl \frac{d\theta}{dt} + F_D \sin \frac{d^2\theta}{dt} \approx -\frac{g}{l} \theta - q \frac{d\theta}{dt} + \frac{F_D \sin(\Omega_D t)}{ml}; q = \frac{k}{m}
$$

FORCED OSCILLATOR: AN EXAMPLE OF NON HOMOGENEOUS 2ND ORDER DE

CED OSCILLATOR: AN EXAMPLE OF

\n**HOMOGENEOUS 2ND ORDER DE**

\n
$$
\frac{d^{2}u(x)}{dx^{2}} + a\frac{du(x)}{dx} + bu(x) = n(x)
$$
\n
$$
x \equiv t
$$
\n
$$
u(x) \equiv \theta(t)
$$
\n
$$
a \equiv q
$$
\n
$$
b \equiv \frac{g}{l}
$$
\n
$$
n(x) \equiv \frac{F_{D}\sin(\Omega_{D}t)}{ml}
$$
\n
$$
\frac{d^{2}\theta}{dt^{2}} = -\frac{g}{l}\theta - q\frac{d\theta}{dt} + \frac{F_{D}\sin(\Omega_{D}t)}{ml}
$$

$$
\frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta - q\frac{d\theta}{dt} + \frac{F_D \sin(\Omega_D t)}{ml}
$$

$$
\frac{d^2\theta}{dt^2} = -\omega_0^2 \theta - 2\xi\omega_0 \frac{d\theta}{dt} + \frac{F_0 \sin(\Omega_D t)}{m};
$$

$$
\omega_0^2 = \frac{g}{l}, \xi = \frac{q}{2\omega_0}, F_0 = \frac{F_D}{l}
$$

is known as the damping ratio

 ξ is known as the damping ratio

SOLUTION TO FORCED OSCILLATOR

TION TO FORCED OSCILLATOR

\n
$$
\frac{d^2\theta}{dt^2} = -\omega_0^2 \theta - 2\xi\omega_0 \frac{d\theta}{dt} + \frac{F_0 \sin(\Omega_D t)}{m}
$$
\n//en.wikipedia.org/wiki/Harmonic oscillator

\n
$$
\theta(t) = \frac{F_0}{mZ_m\Omega_D} \sin(\omega t + \phi),
$$

https://en.wikipedia.org/wiki/Harmonic_oscillator

TION TO FORCED OSCILLATOR

\n
$$
\frac{d^2\theta}{dt^2} = -\omega_0^2 \theta - 2\xi\omega_0 \frac{d\theta}{dt} + \frac{F_0 \sin(\Omega_D t)}{m}
$$
\n//en.wikipedia.org/wiki/Harmonic oscillator

\n
$$
\theta(t) = \frac{F_0}{mZ_m\Omega_D} \sin(\omega t + \phi),
$$
\n
$$
Z_m = \sqrt{(2\omega_0 \xi)^2 + \frac{1}{\omega_D^2} (\omega_0^2 - \Omega_D^2)^2},
$$
\n
$$
\phi = \tan^{-1} \left(\frac{2\Omega_D \omega_0 \xi}{\Omega_D^2 - \omega_0^2}\right) + n\pi.
$$

Resonance occurs at $\Omega_D = \omega_r = \omega_0 \sqrt{1 - 2 \xi^2}$

Assignment

Assume the following conditions:

$$
\theta(t=0) = 0, \frac{d\theta}{dt}(t=0) = 0, F_0 = m = l = 1, g = 9.81,
$$

$$
\xi = 0
$$

- (i) Plot the solutions $\theta(t)$ for a forced, damped oscillator on the same graph for t running from 0 to 10T, where $T = 2\pi\omega_0$, for $\Omega_D = 0.01\omega_0$, $0.5\omega_0$, $0.99\omega_0$, $1.5\omega_0$, $4\omega_0$.
- (ii) Repeat (i) for $\xi = 1/\sqrt{2}$

Assignment

For a freely falling object subjected to a frictional coefficient η , the equation of motion is

$$
m\frac{d^2y}{dt^2} = -mg - \eta\frac{dy}{dt}.
$$

Solve this second order DE using **DSolve** |, assume $y(t = 0) = 0, v_v(t = 0) = 0, m = 1, g = 9.81.$

Plot the solutions $y(t)$ for $\eta = 0.1, 0.2, 0.5$ on the same graph. Your plots should be adjusted such that terminal velocities in the solutions can be clearly displayed.