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Lecture 3

Mathematica for Differential 

Equations
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Use Mathematica to find the 

analytical solutions to first 

order ordinary differential 

equations



Example of first order differential equation 

commonly encountered in physics

● Do you recognize these equations?

𝑑𝑣𝑦

𝑑𝑡
= −𝑔;

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣

𝑑𝑁

𝑑𝑥
= −λ𝑁;

𝑑𝑁

𝑑𝑡
= −

𝑁

τ

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥



Analytical solution of

● ZCA 101 mechanics, kinematic equation for 

a free fall object

● What is the solution, i.e., vy=vy(t)?

𝑑𝑣𝑦

𝑑𝑡
= −𝑔

𝑑𝑣𝑦

𝑑𝑡
= −𝑔

⇒ න
𝑑𝑣𝑦

𝑑𝑡
𝑑𝑡 = −න𝑔𝑑𝑡

න𝑑𝑣𝑦 = 𝑣𝑦 = −න𝑔𝑑𝑡 = −𝑔𝑡 + 𝑐

⇒ 𝑣𝑦 = 𝑣𝑦 𝑡 = −𝑔𝑡 + 𝑐

𝑑𝑣𝑦
𝑑𝑡

= −𝑔



● To completely solve this first order 

differential equation, i.e., to determine vy as 

a function of t, and the arbitrary constant c, a 

boundary value or initial value of vy at a 

given time t is necessary. Usually (but not 

necessarily) vy(0), i.e., the value of vy at t=0 

has to be assumed.
𝑑𝑣𝑦
𝑑𝑡

= −𝑔

න

𝑣𝑦 0

𝑣𝑦 𝑡

𝑑𝑣 = −න

0

𝑡

𝑔 𝑑𝑡 = −𝑔𝑡

⇒ 𝑣𝑦 = 𝑣𝑦 𝑡 = −𝑔𝑡 + 𝑣𝑦 0

Analytical solution of
𝑑𝑣𝑦
𝑑𝑡

= −𝑔



Analytical solution of  

● Assume vy=vy(t) a known function of t.

● To completely solve the equation so that we can 

know what is the function y(t), we need to know the 

value of y(0).

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

න

𝑦 0

𝑦 𝑡

𝑑𝑦 = න

0

𝑡

𝑣𝑦 𝑑𝑡

⇒ 𝑦 𝑡 − 𝑦 0 = න

0

𝑡

𝑣𝑦 𝑑𝑡



Analytical solution of

● In free fall without drag force, vy(t)=vy(0)-gt.

● The complete solution takes the form

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑦 𝑡 − 𝑦 0 = න

0

𝑡

𝑣𝑦 𝑑𝑡 = න

0

𝑡

𝑣𝑦 0 − 𝑔𝑡 𝑑𝑡

𝑦 𝑡 = 𝑦 0 + 𝑣𝑦 0 𝑡 −
1

2
𝑔𝑡2



Boundary condition
● In general, to completely solve a first order 

differential equation for a function with single 

variable, a boundary condition value must be 

provided.

● Generalising such argument, two boundary 

condition values must be supplied in order to 

completely solve a second order differential 

equation.

● n boundary condition values must be supplied in 

order to completely solve a n-th order differential 

equation.

● Hence, supplying boundary condition values are 

necessary when numerically solving a differential 

equation.



Analytical solution of a free fall object in a viscous medium

● Boundary condition: v=0 at t = 0.

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣

න

𝑣 0

𝑣 𝑡
𝑑𝑣

𝑑𝑡
𝑑𝑡 = න

𝑣 0

𝑣 𝑡

𝑑𝑣 = න

0

𝑡

−𝑔 −
η

𝑚
𝑣 𝑑𝑡

⇒ න

𝑣 0 =0

𝑣 𝑡
𝑑𝑣

−𝑔 −
η
𝑚𝑣

= න

0

𝑡

𝑑𝑡

⇒ 𝑣 𝑡 = −
𝑚𝑔

η
1 − exp

−η𝑡

𝑚



Number of beta particles penetrating a 

medium (recall your first year lab 

experiments)
𝑑𝑁

𝑑𝑥
= −λ𝑁

න

𝑁0

𝑁
𝑑𝑁

𝑁
= −න

0

𝑥

λ 𝑑𝑥

𝑁 𝑥 = 𝑁0exp −λ𝑥



Number of radioactive particle 

remained after time t (recall your first 

year lab experiments. t: half-life)



𝑑𝑁

𝑑𝑡
= −

𝑁

τ


𝑁0

𝑁 𝑑𝑁

𝑁
= −

0

𝑡 1

τ
𝑑𝑡

𝑁 𝑡 = 𝑁0exp −
𝑡

τ



Relation of speed vs. displacement in SHM

𝐸 = 𝐾 + 𝑃 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2

⇒
𝑑𝐸

𝑑𝑥
=

𝑑

𝑑𝑥

1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 = 0

⇒ 𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

𝑣 𝑥 = 𝑣0 +
𝑘𝑥0

2

2
𝑚−

𝑘

2𝑚
𝑥2

bondary condition: 𝑣 = 𝑣0 𝑎𝑡 𝑥 = 𝑥0

The solution is



DSolve[ ]

 Now, we would learn how to solve these first 

order differential equations

 DSolve[ ] (symbolically)
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Second order differential 
equations











Typical second order, non-

homogeneous ordinary differential 

equations
n(x)



Typical second order, non-

homogeneous ordinary differential 

equations
n(x)



Guess:

After some algebra





 Use 𝐃𝐬𝐨𝐥𝐯𝐞 to solve examples 4.1, 4.2, 4.6 

and 4.8 discussed in previous slides. 

 Print out the analytical expression of the 

general solutions. 

 For those examples without specified 

boundary conditions, impose your own choice 

of boundary conditions, and then plot the 

solutions.
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SIMPLE HARMONIC PENDULUM AS A 
SPECIAL CASE OF SECOND ORDER DE

Equation of motion (EoM)

Force on the pendulum

The period of the SHO is 
given by

g

l
T 2

for small oscillation,

𝐹𝜃 = 𝑚𝑎𝜃

−𝑚𝑔𝑠𝑖𝑛𝜃=𝑚
𝑑𝑣𝜃

𝑑𝑡
= 𝑚

𝑑

𝑑𝑡

𝑑𝑟

𝑑𝑡
≈ 𝑚

𝑑2

𝑑𝑡2
𝑙𝜃

𝑑2𝜃

𝑑𝑡2
≈ −

𝑔𝜃

𝑙

r

l

n(x)



𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 0

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0

n(x)

SIMPLE HARMONIC PENDULUM AS A 
SPECIAL CASE OF SECOND ORDER DE



SIMPLE HARMONIC PENDULUM AS A 
SPECIAL CASE OF SECOND ORDER DE 
(CONT.)

Analytical solution:

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

Ω = 𝑔/𝑙 natural frequency of the pendulum; 

𝜃0 and 𝜙 are constant determined by boundary conditions



Drag force on a moving object, fd = - kv

Simple Harmonic pendulum with drag 
force as a special case of second order DE

𝑚
𝑑2𝑟

𝑑𝑡2
≈ 𝑚

𝑑2

𝑑𝑡2
𝑙𝜃 = 𝑚𝑙

𝑑2𝜃

𝑑𝑡2

𝐹𝜃 = 𝑚
𝑑2𝑟

𝑑𝑡2
⇒

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝑙
𝜃 −

𝑘

𝑚

𝑑𝜃

𝑑𝑡
≡ −

𝑔

𝑙
𝜃 − 𝑞

𝑑𝜃

𝑑𝑡
; 𝑞 ≡

𝑘

𝑚

fd

l

r
v

mg

For a pendulum, instantaneous velocity 

v = wl = l (dq/dt)

Hence, fd = - kl (dq/dt). 

Consider the net force on the forced pendulum 
along the tangential direction, in the q  0 limit:

𝐹𝜃 = −𝑚𝑔sin𝜃 − 𝑘𝑙
𝑑𝜃

𝑑𝑡
≈ −𝑚𝑔𝜃 − 𝑘𝑙

𝑑𝜃

𝑑𝑡



2

2
;

d g d k
q q

l dt mdt

q q
q   

Simple Harmonic pendulum with drag force 
as a special case of second order DE (cont.)

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0

l

r

n(x)

fd

l

r
v

mg



Analytical solutions

 
2

/2 2
0 sin

4

 the natural frequency of the system

qt q
t e t

g

l

q q 
 
    
 
 

 

1. Underdamped regime (small damping). Still 

oscillate, but amplitude decay slowly over many 

period before dying totally.



Analytical solutions

 

2
2

2 4

0

qt q
t

t eq q

 
   
 
 

2. Overdamped regime (very large damping), 

decay slowly over several period before dying 

totally. q is dominated by exponential term.



Analytical solutions

3. Critically damped regime, intermediate between 

under- and overdamping case. 

    2
0

qt

t Ct eq q


 



2 4 6 8 10

0.2

0.1

0.1

0.2

Underdamped

Critically dampedOverdamped

 
2

/2 2
0 sin

4

qt q
t e tq q 

 
    
 
 

    2
0

qt

t Ct eq q


 

 

2
2

2 4

0

qt q
t

t eq q

 
   
 
 



Assignment

 Reproduce the overdamped, underdamed

and critically damped oscillators. To thid

end, you need to impose your own choice 

of boundary conditions. 

2 4 6 8 10

0.2

0.1

0.1

0.2



ADDING DRIVING FORCE TO THE DAMPED 

OSCILLATOR: FORCED OSCILLATOR

- kl (dq/dt) + FD sin(Dt)
D frequency of 

the applied 

force

   

 

 

 

2 2 2

2 2 2

2 2

2 2

2

2

sin sin sin ;

;

sin

sin
;

D D D D

D D

D D

d d
F mg kl F t mg kl F t

dt dt

d r d d
F m m l ml

d t dt dt

d r d d
F m ml mg kl F t

dtd t dt

F td g d k
q q

l dt ml mdt

q

q

q

q q
q q

q
q

q q
q

q q
q

         

  

      


    

𝑚
𝑑2𝑟

𝑑𝑡2

≈𝑚
𝑑2𝑟

𝑑𝑡2



FORCED OSCILLATOR: AN EXAMPLE OF 

NON HOMOGENEOUS 2ND ORDER DE

 2

2

sinD DF td g d
q

l dt mldt

q q
q


   

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙

𝑛 𝑥 ≡
𝐹𝐷sin 𝛺𝐷𝑡

𝑚𝑙

n(x)



 2

2

sinD DF td g d
q

l dt mldt

q q
q


   

 2
02

0 02

2
0 0

0

sin
2 ;

, ,
2

D

D

F td d

dt mdt

g q F
F

l l

q q
w q w

w 
w


   

  

𝜉 is known as the damping ratio



SOLUTION TO FORCED OSCILLATOR

https://en.wikipedia.org/wiki/Harmonic_oscillator

𝜃 𝑡 =
𝐹0

𝑚𝑍𝑚Ω𝐷
sin(𝜔𝑡 + 𝜙) ,

𝑍𝑚 = 2𝜔0𝜉 2 +
1

𝜔𝐷
2 𝜔0

2 − Ω𝐷
2 2,

𝜙 = tan−1
2Ω𝐷𝜔0𝜉

Ω𝐷
2 −𝜔0

2 + 𝑛𝜋 .

 2
02

0 02

sin
2

DF td d

dt mdt

q q
w q w


   

Resonance occurs at Ω𝐷 = 𝜔𝑟 = 𝜔0 1 − 2𝜉2

https://en.wikipedia.org/wiki/Harmonic_oscillator


Assignment

Assume the following conditions:

𝜃 𝑡 = 0 = 0,
𝑑𝜃

𝑑𝑡
𝑡 = 0 = 0, 𝐹0 = 𝑚 = 𝑙 = 1. 𝑔 = 9.81,

𝜉 = 0

(i) Plot the solutions 𝜃(𝑡) for a forced, damped oscillator 

on the same graph for 𝑡 running from 0 to 10𝑇,

where 𝑇 = 2𝜋𝜔0, for ΩD = 0.01𝜔0, 0.5𝜔0, 0.99𝜔0, 

1.5𝜔0, 4𝜔0.

(ii) Repeat (i) for 𝜉 = 1/ 2



Assignment

For a freely falling object subjected to a frictional 

coefficient 𝜂, the equation of motion is 

𝑚
𝑑2𝑦

𝑑𝑡2
= −𝑚𝑔 − 𝜂

𝑑𝑦

𝑑𝑡
.

Solve this second order DE using 𝐃𝐒𝐨𝐥𝐯𝐞 , assume

𝑦 𝑡 = 0 = 0, 𝑣𝑦 𝑡 = 0 = 0,𝑚 = 1, 𝑔 = 9.81.

Plot the solutions 𝑦 𝑡 for 𝜂 = 0.1, 0.2, 0.5 on the same 

graph. Your plots should be adjusted such that terminal 

velocities in the solutions can be clearly displayed.


