Lecture 3
Mathematica for Differential
Equations




Use Mathematica to find the
analytical solutions to first
order ordinary differential

equations



Example of first order differential equation
commonly encountered in physics

dvy __ &
dt $ar =
dv_
mdt_ mg — nv
dN dN N
— = AN — = ——
dx dt T
dv_ .
mdx_ X

Do you recognize these equations?



dvy _

Analytical solution of d —g
t

ZCA 101 mechanics, kinematic equation for
a free fall object ,,
dr -4

What is the solution, I.e., v,=v,(t)7?



dv,,

dr —9

To completely solve this first order
differential equation, I.e., to determine v, as
a function of t, and the arbitrary constant c, a
boundary value or initial value of v, at a
given time t is necessary. Usually (but not

necessarily) v,(0), I.e., the value of v, at t=0
has to be assumed.

Analytical solution of

dv,

vy (t) dt t

j dvz—fgdt:—gt
vy(O) 0

= vy, = v,(t) = —gt +v,(0)



Analytical solution of d—y = v
dt 7

Assume v,=v,(t) a known function of t.

To completely solve the equation so that we can

know what is the function y(t), we need to know the
value of y(0).

= y(t) —y(0) = f vy, dt
0



dy

Analytical solution of — = ¢
g dt 7

In free fall without drag force, v,(t)=v,(0)-gt.
The complete solution takes the form

t

y(t) —y(0) = jvy dt = f(vy(O) — gt) dt
0

0

1
y(&) = y(0) + v, (0)t — Egtz



Boundary condition

In general, to completely solve a first order
differential equation for a function with single
variable, a boundary condition value must be
provided.

Generalising such argument, two boundary
condition values must be supplied in order to
completely solve a second order differential
equation.

n boundary condition values must be supplied in
order to completely solve a n-th order differential
equation.

Hence, supplying boundary condition values are
necessary when-numerically solving-a differential
equation.



Analytical solution of a free fall object in a viscous medium

dv_
mdt_ mg —nv

Boundary condition: v=0 att = 0.




‘ Number of beta particles penetrating a
medium (recall your first year lab

experiments)
dN _
dx
N X
dN j}\d
N X

N(x) = Nyexp|—Ax]




Number of radioactive particle
remained after time # (recall your first

year lab experiments. T: half-life)

dN_ N
dt_ T
N dN t1
o [0 = -dt
No N 0t




Relation of speed vs. displacement in SHM

1 1
E=K+P=Emv2+§kx2

dE.  d (1 1
= —mve+-kx*|=0

dx:de 2

= dv_ k
mdx_ X

The solution Is

kxg k
v(x) = v, +Tm X

bondary condition: v = v, at x = x

2



DSolve[ ]

Now, we would learn how to solve these first
order differential equations

DSolve[ ] (symbolically)



EXAMPLE 3  Solving a Separable Equation

Solve the differential equation

dy 2\, x
a—(l-l—y)e.

Solution Since 1 + y? is never zero, we can solve the equation by separating the variables.

dy

— = (1 + y?)e*

dx Treat dy/dx as a quotient of
dy — (1 + yZ)ex dx differentials and multiply

both sides by dx.
dy

l-I—y2

d
/ 4 5 = /ex dx Integrate both sides.
I +y

1 X C represents the combined
tan "y =e" + C constants of integration.

— o dx Divide by (1 + 7).

The equation tan 'y = e* + C gives y as an implicit function of x. When —/2

< e* + C < 7/2, we can solve for y as an explicit function of x by taking the tangent of
both sides:

tan (tan"' y) = tan (e* + C)
y = tan (e* + C). O



dy 2
E:y_xa y(O):§
Solution The equation
dy
ax V7
is a first-order differential equation with f(x, y) = y — x.
On the left:
d
d—izc%<x+ 1 —%ex> =1 —%ex.
On the right:
y—xZ(x+1)—lex—x=1—le
3 377

The function satisfies the initial condition because

y(O):|:(X+1)—%ex]O:1_%:

X

2
T






EXAMPLE 5  Draining a Tank

A right circular cylindrical tank with radius 5 ft and height 16 ft that was initially full of
water is being drained at the rate of 0.5 Vi e /min. Find a formula for the depth and the
amount of water in the tank at any time 7. How long will it take to empty the tank?

Solution The volume of a right circular cylinder with radius » and height 4 is V' = @r2h,

so the volume of water in the tank (Figure 9.4) 1s

V= mr’h = 7w(5)*x = 25mx.

Diffentiation leads to

dV .. dx
ar = BTy
~05Vx = 257X
' dr

Thus we have the initial value problem

dc  Vx

dt ~ 50w’
x(0) = 16

S t o\ t o\
S I A

Negative because V' is decreasing
and dx/dt < 0

Torricelli’s Law

The water 1s 16 ft deep when 7 = 0.

1007
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|
EXAMPLE 2  Solving a First-Order Linear Differential Equation

Solve the equation

dy 5
X o =X + 3y, x> 0.

Solution First we put the equation in standard form (Example 1):

dy 3

so P(x) = —3/x is identified.
The integrating factor is

U()C) _ efP(x) dx _ ef(—3/x) dx

_ _—3In|x] Constant of integration is 0,
- € so v 1s as simple as possible.
— 8_3 Inx x > 0

— elnx_3 — L
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Next we multiply both sides of the standard form by v(x) and integrate:

(3 \_ 1.,
o2 \ax XY I

143 1
x3 dx x4 x2
i L — L cqa e A
dx x3y o x2 Left sideis - (v*y).
| 1 |
3V = F dx Integrate both sides.
X
1 1
;y = -5 1t C.

Solving this last equation for y gives the general solution:

y=x3(—%+C)=—x2+Cx3, x> 0.



RL Circuits

The diagram in Figure 9.5 represents an electrical circuit whose total resistance 1s a con-
stant R ohms and whose self-inductance, shown as a coil, 1s L henries, also a constant.
There 1s a switch whose terminals at @ and 5 can be closed to connect a constant electrical
source of V' volts.
Ohm’s Law, V' = RI, has to be modified for such a circuit. The modified form is
di

LS +Ri=V, (5)

where i 1s the intensity of the current in amperes and ¢ is the time in seconds. By solving
this equation, we can predict how the current will flow after the switch is closed.

L

R L

FIGURE 9.5 The RL circuit in
Example 5.
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EXAMPLE 5  Electric Current Flow

The switch in the RL circuit in Figure 9.5 is closed at time # = 0. How will the current
flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of z.
Its standard form is

@iz (6)

and the corresponding solution, given that i = 0 when# = 0, is

V_ ¥V ~wur (7)

I = — —

R R

(Exercise 32). Since R and L are positive, —(R/L) is negative and e~ */") — 0 as r — 0,
Thus,

o _ e (VY _V wuu\_V _ V. _V
hmz—hm( e =7 RO_R'

{—>00 [—>00 R R
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FIGURE 9.6 The growth of the current in
the RL circuit in Example 5. I is the
current’s steady-state value. The number

t = L/R is the time constant of the circuit.
The current gets to within 5% of its
steady-state value in 3 time constants
(Exercise 31).
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Second order differential
equations




2"d Order Homogeneous DEs
d 2u(Jc) du(x)
dx’ dx
with TWO given conditions
The solutions

+ bu(x) =

Case 1:a2—-4b > 0:

ax

ey Jal —4b x/2
(cle TS 4

u(x) =e ?

e—«,#az - 4b JHZJ

¢

Case 2:a2- 4b < 0:

u(x) = e_2{A Sin[%\/ﬂrb—az ]x + BCOS[%\MZ) —-a’ )x}




Case 3: a% - 4b = 0: — A special case

ax ax ax

u(x) = ¢ e 2 +c,xe 2 = (¢ + czx)e_E (4.12)

where c,, c,, A and B are arbitrary constants to be determined by given conditions




Example 4.1 Solve the following differential equation

dzu(jx) L g du()
dx’ dx

+6u(x) =0

__—5x/2 x/2 -x/2) -2x —3x

where ¢, and c, are arbitrary constants to be determined by given conditions



Example 4.2

d’u(x)
dx*

p du(x)

+9u(x) =0

u(0) = 2
du(x)
dx |,

=0

u(x) =2(1+3x)e™




‘ Typical second order, non-
homogeneous ordinary differential

d’u(x) g du(x)

dx2

+ bu(x) =X

dx

(4.25)

Non-homogeneous term

Solution of Equation (4.25) consists TWO components:

Solution u(x)

Complementary
solution u,(x)

=

U(X) = up(x) + u,(x)

Particular
solution u(x)




‘ Typical second order, non-
homogeneous ordinary differential

2
4 ulx) | 4D 4 py(xy = n(X) (4.25)
dx dx

Non-homogeneous term
U(x) = Up(x) + u,(x)

d u,(x) s du,, (x)
dx* dx

+bu,(x) =0

There is NO fixed rule for deriving u(x)




Example 4.6

d’ d :
di(;:) - J:i(:) —2y(x) = Sin2x

Y(X) = Yn(X) + Y,(X)
d’y,(x) _ dy,(x)

dx”’ dx
y,(x) =c e +c,e

~2y,(x) = 0

2x

Guess:  Yp(X) =A Sin 2x + B Cos 2x

After some algebra

- 3 1
yx)=y,(x)+y,(x) =ce” +c,e” +£—2OS.in2x+2oCos2xJ



Example 4.8

d u(x) )
dx’

-4u(x) = 2Sin2x

u(x) =u,(x)+u,(x) =c Cos2x+c, Sian—%Cost



Use Dsolve| | to solve examples 4.1, 4.2, 4.6
and 4.8 discussed In previous slides.

Print out the analytical expression of the
general solutions.

For those examples without specified
boundary conditions, impose your own choice
of boundary conditions, and then plot the
solutions.
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SIMPLE HARMONIC PENDULUM AS A
SPECIAL CASE OF SECOND ORDER DE

Force on the pendulum Fg = — m g siné

for small oscillation, sinf = 8.

Equation of motion (EoM)

Fg = ma :
0 0 B\ |
: d d (d d? |
—mgsmé?:m% =m— (d—:) ~m—(10) E
LI
A2 go / ,
dez = 1 — = F,
The period of the SHO is

2
d u(2X) L g d”(x) 4 bu(x) = n(x) given by |
9



SIMPLE HARMONIC PENDULUM AS A
SPECIAL CASE OF SECOND ORDER DE

d 2u(x) du(x)
dx’ dx

xX=t

u(x) = 6(H
a=0
b E%
n(x) =0

+ bu(x) = n(x)

d?e(t) g
de2




SIMPLE HARMONIC PENDULUM AS A
SPECIAL CASE OF SECOND ORDER DE

(CONT.)
d*(t) g6

a2

Analytical solution:

0 = 6y sin(2t + ¢)

Q = ,/g/l natural frequency of the pendulum;
0, and ¢ are constant determined by boundary conditions




Simple Harmonic pendulum with drag
force as a special case of second order DE

Drag force on a moving object, f; = - kv
For a pendulum, instantaneous velocity

v=ownl=1(d0/dt)
Hence, f; = - kl (d6/dt).

|
|
. 0
Consider the net force on the forced pendulum i
along the tangential direction, in the 8 — o limit: : fa
_ de de :
Fg = —mgsinf — klE ~ —mgl — klE E '
| ’ v
r 4 ey & ' ,/ﬁek/
ez T a7 T T g
mg




Simple Harmonic pendulum with drag force
as a special case of second order DE (cont.)

2
d“u(x) y du(x)
dx’ dx

+ bu(x) =n(x)




Analytical solutions

1. Underdamped regime (small damping). Still
oscillate, but amplitude decay slowly over many
period before dying totally.

( > )
6(t)= 6,6 "% sin go+t\/£22 _qT
\ J

Q= \/%7 the natural frequency of the system



Analytical solutions

2. Overdamped regime (very large damping),
decay slowly over several period before dying
totally. &i1s dominated by exponential term.

2
th_rt\/qQZJ
2 4

0(t) = Hoe[



Analytical solutions

3. Critically damped regime, intermediate between
under- and overdamping case.



o(t) = Hoe(

0.2

0.1+

Overdamped Crltlcally dampEd

_qt
at,, i_QZ] o(t)=(6, +Ct)e 2
2 \4

Underdamped

2
0(t) = G,e™ " sin(go+t1 [o% q4J

- 0.1r

- 0.2¢




Assignment

Reproduce the overdamped, underdamed
and critically damped oscillators. To thid
end, you need to impose your own choice
of boundary conditions.

0.2

0.1

- 01

- 0.2¢

| . 1 . | | . n /\\\‘ | | |
, \/2 4 8 10




ADDING DRIVING FORCE TO THE DAMPED
OSCILLATOR: FORCED OSCILLATOR

Qp frequency of
the applied
force

Fo = —mg sin6 -kl (dddt) + Fy sin(Qpt)

F, =—mgsin&—Kkl d—6)+ Fo sin(QDt) ~—-mgo -kl d—9+ Fp sin (QDt);

dt dt
d*r d? d‘e
F,o= "aez ~m——(10)=ml—;
o= @ dt2( ) dt>
F mfz_zr zmldze mgd kld9+F sin(Qpt)
= t2 _— — — _
0 dtz dt D D
2 Fnsin(Qpt
40 9, ,90, Fosin() - Kk

dt? I dt ml m



FORCED OSCILLATOR: AN EXAMPLE OF
NON HOMOGENEOUS 2"° ORDER DE

d’ u(x) du(x)
dx’ dx

x =1t

u(x) = 6(F

+ bu(x) = n(x)

do Fpsin(Qpt)
_I_
dt? I dt ml




t2 I dt ml

¢ 1s known as the damping ratio



SOLUTION TO FORCED OSCILLATOR

d20 do Fosm(QDt)
P L et e

https.//en.wikipedia.org/wiki/Harmonic_oscillator

Fy
6(t) = ] t
(t) mZ sin(wt + ¢),

1
Zm = |Qweé)? + w_lz)(wcz) - 07)?,
N
2Q0pw
b = tan‘l( D Oé) + nr.

2 2
0y — wg

Resonance occurs at Qp = w, = wo\/l — 2&2


https://en.wikipedia.org/wiki/Harmonic_oscillator

Assignment

Assume the following conditions:
a(t = 0) =o,2—f(t=0) —0,F,=m=1=1.g =981,
§=0

() Plot the solutions 6(t) for a forced, damped oscillator
on the same graph for t running from O to 10T,
where T = 2nwy, for Qp = 0.01w,, 0.5wg, 0.99w,,
1.5wg, 4wy.

(i) Repeat (i) for & = 1/4/2



Assignment

For a freely falling object subjected to a frictional
coefficient n, the equation of motion is
d’y dy
Maez — T T g

Solve this second order DE using DSolve| |, assume
y(t=0)=0,v(t=0=0m=1,g =9.81.

Plot the solutions y(t) forn = 0.1,0.2,0.5 on the same
graph. Your plots should be adjusted such that terminal
velocities in the solutions can be clearly displayed.



