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Lecture 3

Mathematica for Differential 

Equations
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Use Mathematica to find the 

analytical solutions to first 

order ordinary differential 

equations



Example of first order differential equation 

commonly encountered in physics

● Do you recognize these equations?

𝑑𝑣𝑦

𝑑𝑡
= −𝑔;

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣

𝑑𝑁

𝑑𝑥
= −λ𝑁;

𝑑𝑁

𝑑𝑡
= −

𝑁

τ

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥



Analytical solution of

● ZCA 101 mechanics, kinematic equation for 

a free fall object

● What is the solution, i.e., vy=vy(t)?

𝑑𝑣𝑦

𝑑𝑡
= −𝑔

𝑑𝑣𝑦

𝑑𝑡
= −𝑔

⇒ න
𝑑𝑣𝑦

𝑑𝑡
𝑑𝑡 = −න𝑔𝑑𝑡

න𝑑𝑣𝑦 = 𝑣𝑦 = −න𝑔𝑑𝑡 = −𝑔𝑡 + 𝑐

⇒ 𝑣𝑦 = 𝑣𝑦 𝑡 = −𝑔𝑡 + 𝑐

𝑑𝑣𝑦
𝑑𝑡

= −𝑔



● To completely solve this first order 

differential equation, i.e., to determine vy as 

a function of t, and the arbitrary constant c, a 

boundary value or initial value of vy at a 

given time t is necessary. Usually (but not 

necessarily) vy(0), i.e., the value of vy at t=0 

has to be assumed.
𝑑𝑣𝑦
𝑑𝑡

= −𝑔

න

𝑣𝑦 0

𝑣𝑦 𝑡

𝑑𝑣 = −න

0

𝑡

𝑔 𝑑𝑡 = −𝑔𝑡

⇒ 𝑣𝑦 = 𝑣𝑦 𝑡 = −𝑔𝑡 + 𝑣𝑦 0

Analytical solution of
𝑑𝑣𝑦
𝑑𝑡

= −𝑔



Analytical solution of  

● Assume vy=vy(t) a known function of t.

● To completely solve the equation so that we can 

know what is the function y(t), we need to know the 

value of y(0).

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

න

𝑦 0

𝑦 𝑡

𝑑𝑦 = න

0

𝑡

𝑣𝑦 𝑑𝑡

⇒ 𝑦 𝑡 − 𝑦 0 = න

0

𝑡

𝑣𝑦 𝑑𝑡



Analytical solution of

● In free fall without drag force, vy(t)=vy(0)-gt.

● The complete solution takes the form

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑦 𝑡 − 𝑦 0 = න

0

𝑡

𝑣𝑦 𝑑𝑡 = න

0

𝑡

𝑣𝑦 0 − 𝑔𝑡 𝑑𝑡

𝑦 𝑡 = 𝑦 0 + 𝑣𝑦 0 𝑡 −
1

2
𝑔𝑡2



Boundary condition
● In general, to completely solve a first order 

differential equation for a function with single 

variable, a boundary condition value must be 

provided.

● Generalising such argument, two boundary 

condition values must be supplied in order to 

completely solve a second order differential 

equation.

● n boundary condition values must be supplied in 

order to completely solve a n-th order differential 

equation.

● Hence, supplying boundary condition values are 

necessary when numerically solving a differential 

equation.



Analytical solution of a free fall object in a viscous medium

● Boundary condition: v=0 at t = 0.

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − η𝑣

න

𝑣 0

𝑣 𝑡
𝑑𝑣

𝑑𝑡
𝑑𝑡 = න

𝑣 0

𝑣 𝑡

𝑑𝑣 = න

0

𝑡

−𝑔 −
η

𝑚
𝑣 𝑑𝑡

⇒ න

𝑣 0 =0

𝑣 𝑡
𝑑𝑣

−𝑔 −
η
𝑚𝑣

= න

0

𝑡

𝑑𝑡

⇒ 𝑣 𝑡 = −
𝑚𝑔

η
1 − exp

−η𝑡

𝑚



Number of beta particles penetrating a 

medium (recall your first year lab 

experiments)
𝑑𝑁

𝑑𝑥
= −λ𝑁

න

𝑁0

𝑁
𝑑𝑁

𝑁
= −න

0

𝑥

λ 𝑑𝑥

𝑁 𝑥 = 𝑁0exp −λ𝑥



Number of radioactive particle 

remained after time t (recall your first 

year lab experiments. t: half-life)



𝑑𝑁

𝑑𝑡
= −

𝑁

τ

׬
𝑁0

𝑁 𝑑𝑁

𝑁
= ׬−

0

𝑡 1

τ
𝑑𝑡

𝑁 𝑡 = 𝑁0exp −
𝑡

τ



Relation of speed vs. displacement in SHM

𝐸 = 𝐾 + 𝑃 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2

⇒
𝑑𝐸

𝑑𝑥
=

𝑑

𝑑𝑥

1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 = 0

⇒ 𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

𝑣 𝑥 = 𝑣0 +
𝑘𝑥0

2

2
𝑚−

𝑘

2𝑚
𝑥2

bondary condition: 𝑣 = 𝑣0 𝑎𝑡 𝑥 = 𝑥0

The solution is



DSolve[ ]

 Now, we would learn how to solve these first 

order differential equations

 DSolve[ ] (symbolically)
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Second order differential 
equations











Typical second order, non-

homogeneous ordinary differential 

equations
n(x)



Typical second order, non-

homogeneous ordinary differential 

equations
n(x)



Guess:

After some algebra





 Use 𝐃𝐬𝐨𝐥𝐯𝐞 to solve examples 4.1, 4.2, 4.6 

and 4.8 discussed in previous slides. 

 Print out the analytical expression of the 

general solutions. 

 For those examples without specified 

boundary conditions, impose your own choice 

of boundary conditions, and then plot the 

solutions.
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SIMPLE HARMONIC PENDULUM AS A 
SPECIAL CASE OF SECOND ORDER DE

Equation of motion (EoM)

Force on the pendulum

The period of the SHO is 
given by

g

l
T 2

for small oscillation,

𝐹𝜃 = 𝑚𝑎𝜃

−𝑚𝑔𝑠𝑖𝑛𝜃=𝑚
𝑑𝑣𝜃

𝑑𝑡
= 𝑚

𝑑

𝑑𝑡

𝑑𝑟

𝑑𝑡
≈ 𝑚

𝑑2

𝑑𝑡2
𝑙𝜃

𝑑2𝜃

𝑑𝑡2
≈ −

𝑔𝜃

𝑙

r

l

n(x)



𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 0

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0

n(x)

SIMPLE HARMONIC PENDULUM AS A 
SPECIAL CASE OF SECOND ORDER DE



SIMPLE HARMONIC PENDULUM AS A 
SPECIAL CASE OF SECOND ORDER DE 
(CONT.)

Analytical solution:

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

Ω = 𝑔/𝑙 natural frequency of the pendulum; 

𝜃0 and 𝜙 are constant determined by boundary conditions



Drag force on a moving object, fd = - kv

Simple Harmonic pendulum with drag 
force as a special case of second order DE

𝑚
𝑑2𝑟

𝑑𝑡2
≈ 𝑚

𝑑2

𝑑𝑡2
𝑙𝜃 = 𝑚𝑙

𝑑2𝜃

𝑑𝑡2

𝐹𝜃 = 𝑚
𝑑2𝑟

𝑑𝑡2
⇒

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝑙
𝜃 −

𝑘

𝑚

𝑑𝜃

𝑑𝑡
≡ −

𝑔

𝑙
𝜃 − 𝑞

𝑑𝜃

𝑑𝑡
; 𝑞 ≡

𝑘

𝑚

fd

l

r
v

mg

For a pendulum, instantaneous velocity 

v = wl = l (dq/dt)

Hence, fd = - kl (dq/dt). 

Consider the net force on the forced pendulum 
along the tangential direction, in the q  0 limit:

𝐹𝜃 = −𝑚𝑔sin𝜃 − 𝑘𝑙
𝑑𝜃

𝑑𝑡
≈ −𝑚𝑔𝜃 − 𝑘𝑙

𝑑𝜃

𝑑𝑡



2

2
;

d g d k
q q

l dt mdt

q q
q   

Simple Harmonic pendulum with drag force 
as a special case of second order DE (cont.)

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0

l

r

n(x)

fd

l

r
v

mg



Analytical solutions

 
2

/2 2
0 sin

4

 the natural frequency of the system

qt q
t e t

g

l

q q 
 
    
 
 

 

1. Underdamped regime (small damping). Still 

oscillate, but amplitude decay slowly over many 

period before dying totally.



Analytical solutions

 

2
2

2 4

0

qt q
t

t eq q

 
   
 
 

2. Overdamped regime (very large damping), 

decay slowly over several period before dying 

totally. q is dominated by exponential term.



Analytical solutions

3. Critically damped regime, intermediate between 

under- and overdamping case. 

    2
0

qt

t Ct eq q


 



2 4 6 8 10

0.2

0.1

0.1

0.2

Underdamped

Critically dampedOverdamped

 
2

/2 2
0 sin

4

qt q
t e tq q 

 
    
 
 

    2
0

qt

t Ct eq q


 

 

2
2

2 4

0

qt q
t

t eq q

 
   
 
 



Assignment

 Reproduce the overdamped, underdamed

and critically damped oscillators. To thid

end, you need to impose your own choice 

of boundary conditions. 

2 4 6 8 10

0.2

0.1

0.1

0.2



ADDING DRIVING FORCE TO THE DAMPED 

OSCILLATOR: FORCED OSCILLATOR

- kl (dq/dt) + FD sin(Dt)
D frequency of 

the applied 

force

   

 

 

 

2 2 2

2 2 2

2 2

2 2

2

2

sin sin sin ;

;

sin

sin
;

D D D D

D D

D D

d d
F mg kl F t mg kl F t

dt dt

d r d d
F m m l ml

d t dt dt

d r d d
F m ml mg kl F t

dtd t dt

F td g d k
q q

l dt ml mdt

q

q

q

q q
q q

q
q

q q
q

q q
q

         

  

      


    

𝑚
𝑑2𝑟

𝑑𝑡2

≈𝑚
𝑑2𝑟

𝑑𝑡2



FORCED OSCILLATOR: AN EXAMPLE OF 

NON HOMOGENEOUS 2ND ORDER DE

 2

2

sinD DF td g d
q

l dt mldt

q q
q


   

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙

𝑛 𝑥 ≡
𝐹𝐷sin 𝛺𝐷𝑡

𝑚𝑙

n(x)



 2

2

sinD DF td g d
q

l dt mldt

q q
q


   

 2
02

0 02

2
0 0

0

sin
2 ;

, ,
2

D

D

F td d

dt mdt

g q F
F

l l

q q
w q w

w 
w


   

  

𝜉 is known as the damping ratio



SOLUTION TO FORCED OSCILLATOR

https://en.wikipedia.org/wiki/Harmonic_oscillator

𝜃 𝑡 =
𝐹0

𝑚𝑍𝑚Ω𝐷
sin(𝜔𝑡 + 𝜙) ,

𝑍𝑚 = 2𝜔0𝜉 2 +
1

𝜔𝐷
2 𝜔0

2 − Ω𝐷
2 2,

𝜙 = tan−1
2Ω𝐷𝜔0𝜉

Ω𝐷
2 −𝜔0

2 + 𝑛𝜋 .

 2
02

0 02

sin
2

DF td d

dt mdt

q q
w q w


   

Resonance occurs at Ω𝐷 = 𝜔𝑟 = 𝜔0 1 − 2𝜉2

https://en.wikipedia.org/wiki/Harmonic_oscillator


Assignment

Assume the following conditions:

𝜃 𝑡 = 0 = 0,
𝑑𝜃

𝑑𝑡
𝑡 = 0 = 0, 𝐹0 = 𝑚 = 𝑙 = 1. 𝑔 = 9.81,

𝜉 = 0

(i) Plot the solutions 𝜃(𝑡) for a forced, damped oscillator 

on the same graph for 𝑡 running from 0 to 10𝑇,

where 𝑇 = 2𝜋𝜔0, for ΩD = 0.01𝜔0, 0.5𝜔0, 0.99𝜔0, 

1.5𝜔0, 4𝜔0.

(ii) Repeat (i) for 𝜉 = 1/ 2



Assignment

For a freely falling object subjected to a frictional 

coefficient 𝜂, the equation of motion is 

𝑚
𝑑2𝑦

𝑑𝑡2
= −𝑚𝑔 − 𝜂

𝑑𝑦

𝑑𝑡
.

Solve this second order DE using 𝐃𝐒𝐨𝐥𝐯𝐞 , assume

𝑦 𝑡 = 0 = 0, 𝑣𝑦 𝑡 = 0 = 0,𝑚 = 1, 𝑔 = 9.81.

Plot the solutions 𝑦 𝑡 for 𝜂 = 0.1, 0.2, 0.5 on the same 

graph. Your plots should be adjusted such that terminal 

velocities in the solutions can be clearly displayed.


