Lecture 4 Visualization and Animation

Use Mathematica to visualize the motion of physical systems

Simple examples

Animate the following:

- A freely moving particle bounded to a finite line: 1D motion
- A freely moving particle bounded to a square box: 2D motion
- A freely moving particle bounded to a square rectangular box: 3D motion
- \blacksquare N freely moving particle bounded to a square rectangular box: 3D motion

Parametric equations

- Given a set of parametric equation describing the motion of a particle in space as a function of time, $x = f(t), y = g(t)$
- one can easily visualize the motion using the command **Manipulate**
- To this end you may have to also invoke a For loop for generating the time-dependent coordinate variables before visualizing them.
- **E** ParametricPlot^[] is another useful command for this purpose.

Examples of parametric equations **SHO** $\mathcal{L}_{\mathcal{A}}$

Derivation of the equation of motion for SHO

Examples of parametric equations: 2D projectile motion

■ The trajectory of a 2D projectile with initial location (x_0, y_0) , speed v_0 and launching angle θ are given by the equations:

$$
x(t) = x_0 + v_0 t \cos \theta;
$$

$$
y(t) = y_0 + v_0 t \sin \theta + \frac{g}{2} t^2
$$

for *t* from 0 till *T*, defined as the time of flight,

$$
T = -2(y_0 + v_0 \sin \theta)/g.
$$

 $g = -9.81$;

Animation of 2D projectile

Examples of parametric equations: 2-body Planetary motion

- Consider a planet orbiting the Sun which is located at one of the foci of the ellipse.
- The coordinates of the planet at time *t* can be expressed in parametrised form:

 $x(t) = h + a \cos(\omega_0 t), y(t) = k + b \sin(\omega_0 t)$

Animation of planetary orbital motion

Assignments

By using the corresponding parametric equations for the (x, y) coordinates,

- 1. Animate a SHO (w/o drag force and driving force)
- 2. Animate 2D projectile motion (w/o drag force and driving force)
- 3. Animate 2-body planetary motion

1D sinusoidal wave

- A sinusoidal wave is fundamentally characterized by two quantities: wave number (equivalent to wave length) and angular frequency (frequency)
- \blacksquare { k_x , ω } or { λ , f }.
- **N**ave number $k_x =$ 2π λ ; λ wave length
- Angular frequency $\omega = 2\pi f$; f frequency
- 1D sinusoidal wave
- $\psi(x,t) = A \sin \theta(x,t)$;

$$
\bullet \ \theta(x,t) = k_x x - \omega t + \phi
$$

 Phase velocity of the wave can be obtained by imposing the condition:

$$
\frac{\partial \theta(x,t)}{\partial t} = 0
$$

\n
$$
\Rightarrow k_x \frac{\partial x}{\partial t} - \omega = 0
$$

\n
$$
\Rightarrow v_x = \frac{\partial x}{\partial t} = \frac{\omega}{k_x} = f\lambda
$$

 $v_x =$ ω $\overline{k_{\chi}}$ implies the wave is moving to the $+x$ direction.

1D sinusoidal wave

\n- If
$$
\psi(x, t) = A \sin \theta(x, t)
$$
, with
\n- $\theta(x, t) = k_x x + \omega t + \phi$,
\n- $\Rightarrow v_x = -\frac{\omega}{k_x}$
\n

This wave is moving to the -x direction.

1D sinusoidal wave moving in $+x$ direction

Adding two 1D sinusoidal waves

- Same amplitude, same frequency; To ignore all phases ϕ (by setting $\phi = 0$).
- Same / opposite directions
- Same / different wavenumbers
- Same / different angular frequencies
- $\psi_0(x,t) = A \sin \theta_0(x,t)$; $\psi_1(x) = A \sin \theta_1(x,t)$;
- $\theta_0(x, t) = k_{x,0} x \pm \omega_0 t;$
- $\theta_1(x, t) = k_{x,1} x \pm \omega_1 t$ $=(k_{\chi,0}+\Delta k_{\chi,1})x \pm (\omega_0+\Delta \omega_1)t$
- $\Delta k_{x,i} = k_{x,i} k_{x,i-1}; k_{x,i} = k_{x,0} + i \Delta k_{x,i}$
- $\Delta \omega_i = \omega_i \omega_{i-1}; \omega_i = \omega_0 + i \Delta \omega_i;$
- Usually, $\Delta \omega_i = \Delta \omega$, $\Delta k_{x,i} = \Delta k_x$.

Animation exercises

1. Based on the simple equation of a 1D sinusoidal wave:

- i. Animate two 1D waves, one in the $+x$ and another in $-x$. Display both on the same graph, without interfering each other.
- ii. Repeat 1 with both in the same direction
- iii. Repeat 1 with both waves are added to interfere
- iv. Repeat 2 with both waves are added to interfere

Two sinusoidal waves, moving in the same direction, without interference, with a difference in wavenumber and angular frequency of $5\Delta k$ and $5\Delta \omega$; $k_0 = 1$; $\omega_0 = 1$; $\Delta k = \Delta \omega = 1/50;$

Superposition of two sinusoidal waves, moving in the same direction, with a difference in wavenumber and angular frequency of $5\Delta k$ and $5\Delta \omega$; $k_0 = 1$; $\omega_0 = 1$; $\Delta k = \Delta \omega = 1/50;$

Superpositioning N 1D sinusoidal waves

- Simulate the motion of the resultant wave form obtained from the superposition of N waves with the following conditions:
- All waves have the same amplitude A and moving in the same direction; Ignore all phases ϕ (set all $\phi = 0$);
- Each wave has a different wavenumber and angular frequency:
- $\psi_i(x) = A \sin \theta_i(x,t)$;
- $\theta_i(x, t) = k_{x,i} x \pm \omega t;$
- $k_{x,i} = k_{x,0} + i\Delta k_{x,i}; \omega_i = \omega_0 + i\Delta \omega_i;$
- Fix initial values: $A = 1, \omega_0 = 1, k_{x,0} = 1, N = 25, \Delta k_x = \frac{1}{75}$ 75 , $\Delta \omega =$ 1 75 .
- Simulate for a total duration of 500 $T(T = \frac{2\pi}{\sqrt{2}})$ ω_0 ; Width of the simulation box set to $[-100\lambda_0, +100\lambda_0]$

Animation exercises

1. Animate an outgoing 2D sinusoidal wave

2. Animate two outgoing 2D sinusoidal waves from two different origins that display interference.

More complicated examples

- Damped, forced SHO
- 2D projectile motion with drag force from the air
- **Three-body planetary motion**