
Lecture 5
DIY numerical algorithms
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Mathematica built-in function to find roots

• Syntax: 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[ ]. 𝐍𝐬𝐨𝐥𝐯𝐞[].

● 𝐍𝐬𝐨𝐥𝐯𝐞[] find multiple solutions automatically, but may fail in certain 
types of equations. Best used for algebraic equations and 
polynomials.

● 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[ ] finds only one root at a time, and needs an initial guess 
value. More robust than 𝐍𝐬𝐨𝐥𝐯𝐞[].

● Use 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[ ] and 𝐍𝐬𝐨𝐥𝐯𝐞[] to verify your codes developed in 
previous exercises.



Exercise: Brute-force ‘auto-
detection’ of roots

Partition the interval 𝑎, 𝑏 = [2,10] of the given function 

𝑓 𝑥 = 10 + 𝑥3 − sin 𝑥 sinh 𝑥

into 𝑁=25 sub intervals of equal length,
Δ𝑖 = 𝑥𝑖 , 𝑥𝑖+1 , 𝑖 = 0,1, … , 𝑁 − 1,

where 𝑥0 = 𝑎, 𝑥𝑁 = 𝑏. Use the command 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[ ] to scan all 
subintervals Δ𝑖 for the roots of the function, which obey the 
confidition 𝑓 𝑥 = 0, using an initial value in each Δ𝑖. Your code 
should then automatically print out all distinct roots lying in the 
interval 𝑎, 𝑏 . You may have to use the command 𝐔𝐧𝐢𝐨𝐧[ ] to 
render repeated roots into distinct ones. 



Root finding 1:
Bisectioning method
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Root of a continuous function

● The roots of a function 𝑓(𝑥) are defined as 
the values for which the value of the 
function becomes equal to zero. 

● Finding the roots of 𝑓(𝑥) means solving the 
equation 𝑓(𝑥) = 0.

● The value of 𝑥 = 𝑟 such that 𝑓(𝑟) = 0 is the 
root for the function 𝑓.

● Given a continuous function in an interval 
[𝑎, 𝑏], how do we find it roots?



Bisection method

● We shall refer to the lecture note by Dr. Dana 
Mackey, Dublin Institute of Technology: 
http://www.maths.dit.ie/~dmackey/lectures/Ro
ots.pdf

http://www.maths.dit.ie/~dmackey/lectures/Roots.pdf


Bisection method

Figure credit: http://cse.unl.edu/~sincovec/Matlab/Lesson%2010/CS211%20Lesson%2010%20-%20Program%20Design.htm

http://cse.unl.edu/~sincovec/Matlab/Lesson 10/CS211 Lesson 10 - Program Design.htm


𝑎 𝑏𝑐 = (𝑎 + 𝑏)/2

𝑥𝑟(location of the real root)

𝑐𝑎

𝑎

𝑎

𝑏

𝑏

𝑏

𝑐

𝑐

𝑓 𝑎 ⋅ 𝑓 𝑐 > 0, 𝑎 → 𝑐.

𝑓 𝑎 ⋅ 𝑓 𝑐 < 0, 𝑏 → 𝑐.

𝑓 𝑎 ⋅ 𝑓 𝑐 < 0, 𝑏 → 𝑐.

𝑓 𝑎 ⋅ 𝑓 𝑐 > 0, 𝑎 → 𝑐.

𝑐𝑎 𝑏

Step 𝑛 = 1

Step 𝑛 =2

Step 𝑛 = 3

Step 𝑛 =4

Step 𝑛 =5



The algorithm of bisection method

Suppose we wish to find the root for 𝑓(𝑥), and 
we have an error tolerance of 𝜀 (the absolute 
error in calculating the root must be less that 𝜀).

● Step 1: Find two numbers 𝑎 and 𝑏 at which 𝑓
has different signs.

● Step 2: Define 𝑐 = (𝑎 + 𝑏)/2.

● Step 3: If |𝑓(𝑐)| ≤ 𝜖 then accept 𝑐 as the root 
and stop.

● Step 4: If 𝑓 𝑎 ⋅ 𝑓 𝑐 ≤ 0 then set 𝑐 as the new 
𝑏. Otherwise, set 𝑐 as the new 𝑎. Return to step 
1.



Define 𝑓 𝑥 .
Set tolerance 𝜖.

𝑓 𝑎 ⋅ 𝑓 𝑏 < 0 And 
𝑓(𝑥) continuous in 

𝑎, 𝑏 ?

Assign 𝑎, 𝑏

𝑐 =
𝑎 + 𝑏

2

𝑓(𝑐) < 𝜖?

𝑎 = 𝑐𝑏 = 𝑐 𝑓 𝑐 ⋅ 𝑓 𝑎 ≤ 0

𝑐 is the root

No

Yes

Yes

No

Yes

Flowchart for 
bisectioning root-
finding



Note

•The bisectioning method only 
works if 𝑓 𝑥 is continuous 
between [𝑎, 𝑏].
•The condition “≤” as appear in 
𝑓 𝑎 ⋅ 𝑓(𝑐) ≤ 0 is crucial. 
Replacing it by " < " may upset 
the robustness of the algorithm



Exercise

Search for the roots in the interval [2,10] for the 
following equation:

10 + 𝑥3 − sin 𝑥 sinh 𝑥 = 0

up to an accuracy of 𝜖 = 10−6

● The function contains two roots
● Use bisectioning method to find both roots 

manually.
● Implement your code in the form of a Module[ ]



Write a code that can automatically obtain all roots of a continuous 
function 𝑓(𝑥) in any given interval 𝑎, 𝑏 by making use of the DIY 
bisectioning Module for root-finding that you have developed in 
previous exercise. Test it out for the following case:

𝑓 𝑥 = 10 + 𝑥3 − sin 𝑥 sinh 𝑥

𝑎, 𝑏 = [2,10].

Exercise: Brute-force ‘auto-detection’ of 
roots via bisectioning Module



Exercises

Obtain all roots of a continuous function 𝑓(𝑥) for the interval 𝑎, 𝑏
by making use of the DIY bisectioning Module for root-finding. Note 
that for the case of 𝑖. , 𝑖𝑖., below, you have to manually determine 
𝑥0, 𝑥𝑁 first. 

i. f(x) = x − Tanh x, for all x.

ii. f(x) = x3 + 2x2 − 3x − 1, for all x

iii. f(x) = (1/x) sin x, for -3π ≤ x ≤ 3π.

iv. f(x) = tan(πx) − x − 6, for -3π ≤ x ≤ 3π.



Root finding 2:
Newton-Raphson (NR) 

method
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Newton-Raphson Method







Define 𝑓 𝑥 .
Set tolerance 𝜖.

Assign initial guess 
𝑥𝑛=0

𝑛 = 𝑛 + 1

𝑓 𝑥𝑛 < 𝜖?

𝑥𝑛 = 𝑥𝑛−1 −
𝑓 𝑥𝑛−1
𝑓′(𝑥𝑛−1)

𝑥𝑛 is the root

Yes

Yes

No

Flowchart for 
Newton-Ralpson
root-finding



Exercise

Search for the roots in the interval [2,10] for the 
following equation:

10 + 𝑥3 − sin 𝑥 sinh 𝑥 = 0

up to an accuracy of 𝜖 = 10−6

● The function contains two roots

● Use NR method to find both roots manually.

● Implement your code in the form of a Module[ ]



Write a code that can automatically obtain all roots of a continuous 
function 𝑓(𝑥) in any given interval 𝑎, 𝑏 by making use of the DIY NR 
Module for root-finding that you have developed in previous 
exercise. Test it out for the following case:

𝑓 𝑥 = 10 + 𝑥3 − sin 𝑥 sinh 𝑥

𝑎, 𝑏 = [2,10].

Exercise: Brute-force ‘auto-detection’ of 
roots via NR Module



Exercises

Obtain all roots of a continuous function 𝑓(𝑥) for the interval 𝑎, 𝑏
by making use of the DIY NR Module for root-finding. Note that for 
the case of 𝑖. , 𝑖𝑖., below, you have to manually determine 𝑥0, 𝑥𝑁 first. 

i. f(x) = x − Tanh x, for all x.

ii. f(x) = x3 + 2x2 − 3x − 1, for all x

iii. f(x) = (1/x) sin x, for -3π ≤ x ≤ 3π.

iv. f(x) = tan(πx) − x − 6, for -3π ≤ x ≤ 3π.



You are now a powerful root finder

After all these exercises, now you should be 
confident to proclaim to the whole word that:

Give me any single variable continuous 
function, and I'll find you their roots at a 

click. =)



Assignment 14

Q1. Develop a code that could auto detect all the roots for the following 
function in the given interval by using built-in root finding command 
𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭 :

𝑓 𝑥 = 𝑃𝑛=4 𝑥

• 𝑃𝑛=4(𝑥) is the Legrendre polynomial with order 𝑛 = 4.

• Interval = [-1,1]. 

• You can use the command 𝐋𝐞𝐠𝐞𝐧𝐝𝐫𝐞[𝐧, 𝐱] to generate the function.

Q2. Repeat Q1, but use instead the DIY Module package you have coded 
yourself using the bisectioning method.

Q3. Repeat Q1, but use instead the DIY Module package you have coded 
yourself using the Newton-Raphson metod.



Numerical integration:
Stochastic method
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Numerical integration with stochastic method

● Assume f(x) >= 0 for xinit<=x<=xlast.

● Set totalcountmax.

● Set inboxcount = 0, totalcount=0.

● Find Max f(x), and call it fmax.

● Define an area A = fmax*L, where L = xlast-xinit.

● 1. Generate a pair of random numbers (xrand,yrand), with the condition

● xinit<=xrand<=xlast, 0<=yrand<= fmax.

● 2. totalcount=totalcount+1.

● 3. If 0 <=yrand <= f(x=rand), inboxcount = inboxcount + 1

● 4. Stop if totalcount = totalcountmax.

● 5. Repeat step 1.

● The area of the curve f(x) in the interval for [xinit,xlast] is given by

● Area = A*inboxcount/totalcountmax.



z=1
A=L*fmax=1.9245
L=5-0=5.0
fmax0.3849
at x=0.707107

𝑓 𝑥 =
𝑥

𝑧2 + 𝑥2 Τ3 2

න

𝑥0

𝑥1

𝑓 𝑥 𝑑𝑥 =?



Exercise
• Write a code to evaluate the following integral using stochastic method. z 

is a  constant set to 1.

• Let the integration limits be from x0=0 to x1=+5.0.

.
.

𝑓 𝑥 =
𝑥

𝑧2 + 𝑥2 Τ3 2

න

𝑥0

𝑥1

𝑓 𝑥 𝑑𝑥 =?

















Numerical solutions for 
first order differential 
equation: Euler’s method

Refer to http://www.cse.salford.ac.uk/physics/gsmcdonald/pp/PPLATOResources/h-
flap/M6_2t.pdf
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Examples of first order differential equation commonly 
encountered in physics

𝑑𝑣𝑦

𝑑𝑡
= −𝑔;

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − 𝜂𝑣

𝑑𝑁

𝑑𝑥
= −λ𝑁;

𝑑𝑁

𝑑𝑡
= −

𝑁

𝜏

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

General form of first order 
differential equations



Now, how would you write your own algorithm 
to solve first order differential equations 
numerically?



Euler’s method for discreteising a first order 
differential equation into a difference equation



Discretising the differential equation

In Euler method, where the differentiation of a function at 
time t is approximated as



Essentially, Euler's method says

Boundary condition: The numerical value at 𝑓(𝑡0) has to 
be supplied.

Differential equation

Discretise

Difference equation



Discretising the differential equation

•
𝑑𝑁 𝑡

𝑑𝑡
= −

𝑁 𝑡

𝜏
is discretised into a difference equation,

•

which is suitable for numerical manipulation using 
computer.
•There are many different way to discretise a differential 
equation.
•Euler's method is just among the easiest of them.

𝑁 𝑡 + Δ𝑡 ≈ 𝑁 𝑡 −
𝑁 𝑡

τ
Δ𝑡

⇒ 𝑁 𝑡𝑖+1 ≈ 𝑁 𝑡𝑖 −
𝑁 𝑡𝑖
τ

Δ𝑡
c.f

c.f

𝑑𝑁 𝑡

𝑑𝑡
= −

𝑁 𝑡

𝜏

+



The code’s structure
• Initialisation:

• Assign (i) N (t=0), , (ii) Number of steps, Nstep, (iii) Time when to 
stop, say tfinal= 10.

● The global error is of the order O ~ t

● t = tfinal/Nstep

● In principle, the finer the time interval t is, the numerical solution 
becomes more accurate.

● ti=t0+it ; i=0,1,2,...,tfinal

● Calculate N (t1)= N (t0)- t N (t0)/.

● Then calculate N (t2)= N (t1)- t N (t1)/

● N (t3)= N (t2)- t N (t2)/,

● Stop when t = tfinal.

● Plot the output: N (t ) as function of t.



Exercise

● A freely falling object through a fluid medium can 
alternatively be modeled such that the drag force is 
proportional to its speed. The first order differential 
equation for such an object is given by

● Let k=0.01, m=1;g=9.81 m/s2; and the boundary condition 
is v(0) = 0 m/s.

● Use 𝐍𝐃𝐒𝐨𝐥𝐯𝐞[ ] to obtain and plot the numerical solution 
for v(t) until it enters a terminal velocity.

● Develop a code that implements Euler's method to 
numerically solve the equation.

● Overlap your numerical solution on top of the analytically 
obtained plot. Both should agree to each other.

𝑑𝑣

𝑑𝑡
= −𝑔 −

𝑘

𝑚
𝑣



Exercise

● A freely falling object through a fluid medium can 
alternatively be modeled such that the drag force is 
proportional to the square of its speed. The first order 
differential equation for such an object is given by

● Let k=0.01, m=1;g=9.81 m/s2; and the boundary condition 
is v(0) = 0 m/s.

● Use 𝐍𝐃𝐒𝐨𝐥𝐯𝐞[ ] to obtain and plot the numerical solution 
for v(t) until it enters a terminal velocity.

● Develop a code that implements Euler's method to 
numerically solve the equation.

● Overlap your numerical solution on top of the analytically 
obtained plot. Both should agree to each other.

𝑑𝑣

𝑑𝑡
= −𝑔 +

𝑘

𝑚
𝑣2



𝑑𝑣

𝑑𝑡
= −𝑔 +

𝑘

𝑚
𝑣2

𝑑𝑣

𝑑𝑡
= −𝑔 −

𝑘

𝑚
𝑣



Exercise

1D pendulum is governed by the equation

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

● Use Euler method to plot the solution for 
this 1D first order differential equation.

● Set 𝑚 = 𝑘 = 1.



Numerical solutions for 
second order differential equation: 
Second order Runge-Kutta method 

(RK2)
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𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙
− 𝑞

𝑑𝜃

𝑑𝑡

𝑑2𝑦(𝑡)

𝑑𝑡2
= −𝑔 −

𝑘

𝑚

𝑑𝑦

𝑑𝑡

𝑑2𝑦(𝑡)

𝑑𝑡2
= −𝑔 +

𝑘

𝑚

𝑑𝑦

𝑑𝑡

2

EXAMPLES



Second order Runge-Kutta (RK2) method

Consider a generic second order differential 
equation. 

 
 du x

v x
dx


 

 
dv x

G u
dx



 
 

2

2

d u x
G u

dx


It can be numerically solved using second order Runge-
Kutta method. 

Split the second order DE into two first order parts: 



Algorithm

1

2
i iu u v x  

1
( )

2
iv v G u x  

1i iu u v x   

 1i iv v G u x   

Set  boundary conditions: u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0. 

calculate

calculate

calculate

calculate



Translating the SK2 algorithm into the case of 
simple pendulum

1

2
i iu u v x  

1
( )

2
iv v G u x  

1i iu u v x   

 1i iv v G u x   

Set  boundary conditions: 
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0

 
 

2

2

d u x
G u

dx


𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

 
 du x

v x
dx


 

( )
d t

t
dt


 

 
 

dv x
G u

dx
    d t g t

dt l

 
 

Set  boundary conditions: 
(t=t0)= 0, ’ (t=t0)=(t=t0)=0

1

2
i i t    

1i i t     

1

2
i

g
t

l


 

 
     

 

1i i

g
t

l


 

 
     

 

  ( )
g

G u t
l
 



Exercise: Develop a code to implement SK2 
for the case of the simple pendulum. 
Boundary conditions:    0 ; 0 0

g

l
  



Exercise:
Develop a code to implement SK2 for the case of a 
pendulum experiencing a drag force, with damping 

coefficient q= 0.1* (4W), W 𝑔/𝑙, 𝑙 = 1.0 m. 
Boundary conditions: 𝜃 0 = 0.2; 𝜔 𝑡 = 0 = 0;

2

2

d g d
q

l dtdt

 
  



Translating the SK2 algorithm into the case of 
damped pendulum

1

2
i iu u v x  

1
( )

2
iv v G u x  

1i iu u v x   

 1i iv v G u x   

Set  boundary conditions: 
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0

 
 

2

2

d u x
G u

dx


𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙
− 𝑞

𝑑𝜃

𝑑𝑡

 
 du x

v x
dx


 

( )
d t

t
dt


 

 
 

dv x
G u

dx


 
 

d t g
q t

dt l

 
  

Set  boundary conditions: 
(t=t0)= 0, ’ (t=t0)=(t=t0)=0

1

2
i i t    

1i i t     

( )
1 2

( )
12

1
2

i

i

g
t t

g l
t q t

l
q t

 

    

 
  

   
       

  
  

 

1i i

g
q t

l


  

 
      

 

  ( ) ( )
g

G u t q t
l
   



Exercise: Stability of the total 
energy a SHO in RK2.
𝜔 =

𝑑𝜃

𝑑𝑡
, angular velocity. m=1 kg; l=1 m. 

User your RK2 code to track the total energy for t running from 

t=0 till t=25T; T=2𝜋 𝑙/𝑔. Boundary conditions: 

𝐸𝑖 should remain constant throughout all 𝑡𝑖. 

   0 ; 0 0
g

l
  


