
Lecture 5
DIY numerical algorithms

1

Mathematica built-in function to find roots

• Syntax: 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[]. 𝐍𝐬𝐨𝐥𝐯𝐞[].

● 𝐍𝐬𝐨𝐥𝐯𝐞[] find multiple solutions automatically, but may fail in certain
types of equations. Best used for algebraic equations and
polynomials.

● 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[] finds only one root at a time, and needs an initial guess
value. More robust than 𝐍𝐬𝐨𝐥𝐯𝐞[].

● Use 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[] and 𝐍𝐬𝐨𝐥𝐯𝐞[] to verify your codes developed in
previous exercises.

Exercise: Brute-force ‘auto-
detection’ of roots

Partition the interval 𝑎, 𝑏 = [2,10] of the given function

𝑓 𝑥 = 10 + 𝑥3 − sin 𝑥 sinh 𝑥

into 𝑁=25 sub intervals of equal length,
Δ𝑖 = 𝑥𝑖 , 𝑥𝑖+1 , 𝑖 = 0,1, … , 𝑁 − 1,

where 𝑥0 = 𝑎, 𝑥𝑁 = 𝑏. Use the command 𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭[] to scan all
subintervals Δ𝑖 for the roots of the function, which obey the
confidition 𝑓 𝑥 = 0, using an initial value in each Δ𝑖. Your code
should then automatically print out all distinct roots lying in the
interval 𝑎, 𝑏 . You may have to use the command 𝐔𝐧𝐢𝐨𝐧[] to
render repeated roots into distinct ones.

Root finding 1:
Bisectioning method

4

Root of a continuous function

● The roots of a function 𝑓(𝑥) are defined as
the values for which the value of the
function becomes equal to zero.

● Finding the roots of 𝑓(𝑥) means solving the
equation 𝑓(𝑥) = 0.

● The value of 𝑥 = 𝑟 such that 𝑓(𝑟) = 0 is the
root for the function 𝑓.

● Given a continuous function in an interval
[𝑎, 𝑏], how do we find it roots?

Bisection method

● We shall refer to the lecture note by Dr. Dana
Mackey, Dublin Institute of Technology:
http://www.maths.dit.ie/~dmackey/lectures/Ro
ots.pdf

http://www.maths.dit.ie/~dmackey/lectures/Roots.pdf

Bisection method

Figure credit: http://cse.unl.edu/~sincovec/Matlab/Lesson%2010/CS211%20Lesson%2010%20-%20Program%20Design.htm

http://cse.unl.edu/~sincovec/Matlab/Lesson 10/CS211 Lesson 10 - Program Design.htm

𝑎 𝑏𝑐 = (𝑎 + 𝑏)/2

𝑥𝑟(location of the real root)

𝑐𝑎

𝑎

𝑎

𝑏

𝑏

𝑏

𝑐

𝑐

𝑓 𝑎 ⋅ 𝑓 𝑐 > 0, 𝑎 → 𝑐.

𝑓 𝑎 ⋅ 𝑓 𝑐 < 0, 𝑏 → 𝑐.

𝑓 𝑎 ⋅ 𝑓 𝑐 < 0, 𝑏 → 𝑐.

𝑓 𝑎 ⋅ 𝑓 𝑐 > 0, 𝑎 → 𝑐.

𝑐𝑎 𝑏

Step 𝑛 = 1

Step 𝑛 =2

Step 𝑛 = 3

Step 𝑛 =4

Step 𝑛 =5

The algorithm of bisection method

Suppose we wish to find the root for 𝑓(𝑥), and
we have an error tolerance of 𝜀 (the absolute
error in calculating the root must be less that 𝜀).

● Step 1: Find two numbers 𝑎 and 𝑏 at which 𝑓
has different signs.

● Step 2: Define 𝑐 = (𝑎 + 𝑏)/2.

● Step 3: If |𝑓(𝑐)| ≤ 𝜖 then accept 𝑐 as the root
and stop.

● Step 4: If 𝑓 𝑎 ⋅ 𝑓 𝑐 ≤ 0 then set 𝑐 as the new
𝑏. Otherwise, set 𝑐 as the new 𝑎. Return to step
1.

Define 𝑓 𝑥 .
Set tolerance 𝜖.

𝑓 𝑎 ⋅ 𝑓 𝑏 < 0 And
𝑓(𝑥) continuous in

𝑎, 𝑏 ?

Assign 𝑎, 𝑏

𝑐 =
𝑎 + 𝑏

2

𝑓(𝑐) < 𝜖?

𝑎 = 𝑐𝑏 = 𝑐 𝑓 𝑐 ⋅ 𝑓 𝑎 ≤ 0

𝑐 is the root

No

Yes

Yes

No

Yes

Flowchart for
bisectioning root-
finding

Note

•The bisectioning method only
works if 𝑓 𝑥 is continuous
between [𝑎, 𝑏].
•The condition “≤” as appear in
𝑓 𝑎 ⋅ 𝑓(𝑐) ≤ 0 is crucial.
Replacing it by " < " may upset
the robustness of the algorithm

Exercise

Search for the roots in the interval [2,10] for the
following equation:

10 + 𝑥3 − sin 𝑥 sinh 𝑥 = 0

up to an accuracy of 𝜖 = 10−6

● The function contains two roots
● Use bisectioning method to find both roots

manually.
● Implement your code in the form of a Module[]

Write a code that can automatically obtain all roots of a continuous
function 𝑓(𝑥) in any given interval 𝑎, 𝑏 by making use of the DIY
bisectioning Module for root-finding that you have developed in
previous exercise. Test it out for the following case:

𝑓 𝑥 = 10 + 𝑥3 − sin 𝑥 sinh 𝑥

𝑎, 𝑏 = [2,10].

Exercise: Brute-force ‘auto-detection’ of
roots via bisectioning Module

Exercises

Obtain all roots of a continuous function 𝑓(𝑥) for the interval 𝑎, 𝑏
by making use of the DIY bisectioning Module for root-finding. Note
that for the case of 𝑖. , 𝑖𝑖., below, you have to manually determine
𝑥0, 𝑥𝑁 first.

i. f(x) = x − Tanh x, for all x.

ii. f(x) = x3 + 2x2 − 3x − 1, for all x

iii. f(x) = (1/x) sin x, for -3π ≤ x ≤ 3π.

iv. f(x) = tan(πx) − x − 6, for -3π ≤ x ≤ 3π.

Root finding 2:
Newton-Raphson (NR)

method

15

Newton-Raphson Method

Define 𝑓 𝑥 .
Set tolerance 𝜖.

Assign initial guess
𝑥𝑛=0

𝑛 = 𝑛 + 1

𝑓 𝑥𝑛 < 𝜖?

𝑥𝑛 = 𝑥𝑛−1 −
𝑓 𝑥𝑛−1
𝑓′(𝑥𝑛−1)

𝑥𝑛 is the root

Yes

Yes

No

Flowchart for
Newton-Ralpson
root-finding

Exercise

Search for the roots in the interval [2,10] for the
following equation:

10 + 𝑥3 − sin 𝑥 sinh 𝑥 = 0

up to an accuracy of 𝜖 = 10−6

● The function contains two roots

● Use NR method to find both roots manually.

● Implement your code in the form of a Module[]

Write a code that can automatically obtain all roots of a continuous
function 𝑓(𝑥) in any given interval 𝑎, 𝑏 by making use of the DIY NR
Module for root-finding that you have developed in previous
exercise. Test it out for the following case:

𝑓 𝑥 = 10 + 𝑥3 − sin 𝑥 sinh 𝑥

𝑎, 𝑏 = [2,10].

Exercise: Brute-force ‘auto-detection’ of
roots via NR Module

Exercises

Obtain all roots of a continuous function 𝑓(𝑥) for the interval 𝑎, 𝑏
by making use of the DIY NR Module for root-finding. Note that for
the case of 𝑖. , 𝑖𝑖., below, you have to manually determine 𝑥0, 𝑥𝑁 first.

i. f(x) = x − Tanh x, for all x.

ii. f(x) = x3 + 2x2 − 3x − 1, for all x

iii. f(x) = (1/x) sin x, for -3π ≤ x ≤ 3π.

iv. f(x) = tan(πx) − x − 6, for -3π ≤ x ≤ 3π.

You are now a powerful root finder

After all these exercises, now you should be
confident to proclaim to the whole word that:

Give me any single variable continuous
function, and I'll find you their roots at a

click. =)

Assignment 14

Q1. Develop a code that could auto detect all the roots for the following
function in the given interval by using built-in root finding command
𝐅𝐢𝐧𝐝𝐑𝐨𝐨𝐭 :

𝑓 𝑥 = 𝑃𝑛=4 𝑥

• 𝑃𝑛=4(𝑥) is the Legrendre polynomial with order 𝑛 = 4.

• Interval = [-1,1].

• You can use the command 𝐋𝐞𝐠𝐞𝐧𝐝𝐫𝐞[𝐧, 𝐱] to generate the function.

Q2. Repeat Q1, but use instead the DIY Module package you have coded
yourself using the bisectioning method.

Q3. Repeat Q1, but use instead the DIY Module package you have coded
yourself using the Newton-Raphson metod.

Numerical integration:
Stochastic method

25

Numerical integration with stochastic method

● Assume f(x) >= 0 for xinit<=x<=xlast.

● Set totalcountmax.

● Set inboxcount = 0, totalcount=0.

● Find Max f(x), and call it fmax.

● Define an area A = fmax*L, where L = xlast-xinit.

● 1. Generate a pair of random numbers (xrand,yrand), with the condition

● xinit<=xrand<=xlast, 0<=yrand<= fmax.

● 2. totalcount=totalcount+1.

● 3. If 0 <=yrand <= f(x=rand), inboxcount = inboxcount + 1

● 4. Stop if totalcount = totalcountmax.

● 5. Repeat step 1.

● The area of the curve f(x) in the interval for [xinit,xlast] is given by

● Area = A*inboxcount/totalcountmax.

z=1
A=L*fmax=1.9245
L=5-0=5.0
fmax0.3849
at x=0.707107

𝑓 𝑥 =
𝑥

𝑧2 + 𝑥2 Τ3 2

න

𝑥0

𝑥1

𝑓 𝑥 𝑑𝑥 =?

Exercise
• Write a code to evaluate the following integral using stochastic method. z

is a constant set to 1.

• Let the integration limits be from x0=0 to x1=+5.0.

.
.

𝑓 𝑥 =
𝑥

𝑧2 + 𝑥2 Τ3 2

න

𝑥0

𝑥1

𝑓 𝑥 𝑑𝑥 =?

Numerical solutions for
first order differential
equation: Euler’s method

Refer to http://www.cse.salford.ac.uk/physics/gsmcdonald/pp/PPLATOResources/h-
flap/M6_2t.pdf

36

http://www.cse.salford.ac.uk/physics/gsmcdonald/pp/PPLATOResources/h-flap/M6_2t.pdf

Examples of first order differential equation commonly
encountered in physics

𝑑𝑣𝑦

𝑑𝑡
= −𝑔;

𝑑𝑦

𝑑𝑡
= 𝑣𝑦

𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 − 𝜂𝑣

𝑑𝑁

𝑑𝑥
= −λ𝑁;

𝑑𝑁

𝑑𝑡
= −

𝑁

𝜏

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

General form of first order
differential equations

Now, how would you write your own algorithm
to solve first order differential equations
numerically?

Euler’s method for discreteising a first order
differential equation into a difference equation

Discretising the differential equation

In Euler method, where the differentiation of a function at
time t is approximated as

Essentially, Euler's method says

Boundary condition: The numerical value at 𝑓(𝑡0) has to
be supplied.

Differential equation

Discretise

Difference equation

Discretising the differential equation

•
𝑑𝑁 𝑡

𝑑𝑡
= −

𝑁 𝑡

𝜏
is discretised into a difference equation,

•

which is suitable for numerical manipulation using
computer.
•There are many different way to discretise a differential
equation.
•Euler's method is just among the easiest of them.

𝑁 𝑡 + Δ𝑡 ≈ 𝑁 𝑡 −
𝑁 𝑡

τ
Δ𝑡

⇒ 𝑁 𝑡𝑖+1 ≈ 𝑁 𝑡𝑖 −
𝑁 𝑡𝑖
τ

Δ𝑡
c.f

c.f

𝑑𝑁 𝑡

𝑑𝑡
= −

𝑁 𝑡

𝜏

+

The code’s structure
• Initialisation:

• Assign (i) N (t=0), , (ii) Number of steps, Nstep, (iii) Time when to
stop, say tfinal= 10.

● The global error is of the order O ~ t

● t = tfinal/Nstep

● In principle, the finer the time interval t is, the numerical solution
becomes more accurate.

● ti=t0+it ; i=0,1,2,...,tfinal

● Calculate N (t1)= N (t0)- t N (t0)/.

● Then calculate N (t2)= N (t1)- t N (t1)/

● N (t3)= N (t2)- t N (t2)/,

● Stop when t = tfinal.

● Plot the output: N (t) as function of t.

Exercise

● A freely falling object through a fluid medium can
alternatively be modeled such that the drag force is
proportional to its speed. The first order differential
equation for such an object is given by

● Let k=0.01, m=1;g=9.81 m/s2; and the boundary condition
is v(0) = 0 m/s.

● Use 𝐍𝐃𝐒𝐨𝐥𝐯𝐞[] to obtain and plot the numerical solution
for v(t) until it enters a terminal velocity.

● Develop a code that implements Euler's method to
numerically solve the equation.

● Overlap your numerical solution on top of the analytically
obtained plot. Both should agree to each other.

𝑑𝑣

𝑑𝑡
= −𝑔 −

𝑘

𝑚
𝑣

Exercise

● A freely falling object through a fluid medium can
alternatively be modeled such that the drag force is
proportional to the square of its speed. The first order
differential equation for such an object is given by

● Let k=0.01, m=1;g=9.81 m/s2; and the boundary condition
is v(0) = 0 m/s.

● Use 𝐍𝐃𝐒𝐨𝐥𝐯𝐞[] to obtain and plot the numerical solution
for v(t) until it enters a terminal velocity.

● Develop a code that implements Euler's method to
numerically solve the equation.

● Overlap your numerical solution on top of the analytically
obtained plot. Both should agree to each other.

𝑑𝑣

𝑑𝑡
= −𝑔 +

𝑘

𝑚
𝑣2

𝑑𝑣

𝑑𝑡
= −𝑔 +

𝑘

𝑚
𝑣2

𝑑𝑣

𝑑𝑡
= −𝑔 −

𝑘

𝑚
𝑣

Exercise

1D pendulum is governed by the equation

𝑚
𝑑𝑣

𝑑𝑥
= −𝑘𝑥

● Use Euler method to plot the solution for
this 1D first order differential equation.

● Set 𝑚 = 𝑘 = 1.

Numerical solutions for
second order differential equation:
Second order Runge-Kutta method

(RK2)

48

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙
− 𝑞

𝑑𝜃

𝑑𝑡

𝑑2𝑦(𝑡)

𝑑𝑡2
= −𝑔 −

𝑘

𝑚

𝑑𝑦

𝑑𝑡

𝑑2𝑦(𝑡)

𝑑𝑡2
= −𝑔 +

𝑘

𝑚

𝑑𝑦

𝑑𝑡

2

EXAMPLES

Second order Runge-Kutta (RK2) method

Consider a generic second order differential
equation.

 
 du x

v x
dx


 

 
dv x

G u
dx



 
 

2

2

d u x
G u

dx


It can be numerically solved using second order Runge-
Kutta method.

Split the second order DE into two first order parts:

Algorithm

1

2
i iu u v x  

1
()

2
iv v G u x  

1i iu u v x   

 1i iv v G u x   

Set boundary conditions: u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0.

calculate

calculate

calculate

calculate

Translating the SK2 algorithm into the case of
simple pendulum

1

2
i iu u v x  

1
()

2
iv v G u x  

1i iu u v x   

 1i iv v G u x   

Set boundary conditions:
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0

 
 

2

2

d u x
G u

dx


𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

 
 du x

v x
dx


 

()
d t

t
dt


 

 
 

dv x
G u

dx
    d t g t

dt l

 
 

Set boundary conditions:
(t=t0)= 0, ’ (t=t0)=(t=t0)=0

1

2
i i t    

1i i t     

1

2
i

g
t

l


 

 
     

 

1i i

g
t

l


 

 
     

 

  ()
g

G u t
l
 

Exercise: Develop a code to implement SK2
for the case of the simple pendulum.
Boundary conditions:    0 ; 0 0

g

l
  

Exercise:
Develop a code to implement SK2 for the case of a
pendulum experiencing a drag force, with damping

coefficient q= 0.1* (4W), W 𝑔/𝑙, 𝑙 = 1.0 m.
Boundary conditions: 𝜃 0 = 0.2; 𝜔 𝑡 = 0 = 0;

2

2

d g d
q

l dtdt

 
  

Translating the SK2 algorithm into the case of
damped pendulum

1

2
i iu u v x  

1
()

2
iv v G u x  

1i iu u v x   

 1i iv v G u x   

Set boundary conditions:
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0

 
 

2

2

d u x
G u

dx


𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙
− 𝑞

𝑑𝜃

𝑑𝑡

 
 du x

v x
dx


 

()
d t

t
dt


 

 
 

dv x
G u

dx


 
 

d t g
q t

dt l

 
  

Set boundary conditions:
(t=t0)= 0, ’ (t=t0)=(t=t0)=0

1

2
i i t    

1i i t     

()
1 2

()
12

1
2

i

i

g
t t

g l
t q t

l
q t

 

    

 
  

   
       

  
  

 

1i i

g
q t

l


  

 
      

 

  () ()
g

G u t q t
l
   

Exercise: Stability of the total
energy a SHO in RK2.
𝜔 =

𝑑𝜃

𝑑𝑡
, angular velocity. m=1 kg; l=1 m.

User your RK2 code to track the total energy for t running from

t=0 till t=25T; T=2𝜋 𝑙/𝑔. Boundary conditions:

𝐸𝑖 should remain constant throughout all 𝑡𝑖.

   0 ; 0 0
g

l
  

