Lecture 5
DIY numerical algorithms

Mathematica built-in function to find roots

 Syntax: FindRoot| |. Nsolve[].

. Nsolve|] find multiple solutions automatically, but may fail in certain
types of equations. Best used for algebraic equations and
polynomials.

. FindRoot| | finds only one root at a time, and needs an initial guess
value. More robust than Nsolve(].

. Use FindRoot| | and Nsolve|] to verify your codes developed in
previous exercises.

Exercise: Brute-force ‘auto-
detection’ of roots

Partition the interval [a, b] = [2,10] of the given function

f(x) =10+ x3 — sinx sinh x

into N=25 sub intervals of equal length,

Ai = [xl-,xl-+1],i = 0,1, ,N — 1,
where xo = a,xy = b. Use the command FindRoot| | to scan all
subintervals A; for the roots of the function, which obey the
confidition f(x) = 0, using an initial value in each A;. Your code
should then automatically print out all distinct roots lying in the
interval [a, b]. You may have to use the command Union[] to
render repeated roots into distinct ones.

Root finding 1:
Bisectioning method

Root of a continuous function

. The roots of a function f(x) are defined as
the values for which the value of the
function becomes equal to zero.

. Finding the roots of f(x) means solving the
equation f(x) = 0.

. The value of x = r such that f () = O is the
root for the function f.

. Given a continuous function in an interval
|a, b], how do we find it roots?

Bisection method

. We shall refer to the lecture note by Dr. Dana
Mackey, Dublin Institute of Technology:

http://www.maths.dit.ie/~dmackey/lectures/Ro
ots.pdf

http://www.maths.dit.ie/~dmackey/lectures/Roots.pdf

Bisection method

_ root hes within
¥ AEls this interval
F 3 - -

tiz=) positive

ouess 1 i

- ! e 3 AS
! ouess 2

: |2

i root les wiathin

! thiz mnterval

tiz=) negative
¥

Figure credit: http://cse.unl.edu/~sincovec/Matlab/Lesson%2010/CS211%20Lesson%2010%20-%20Program%20Design.htm

http://cse.unl.edu/~sincovec/Matlab/Lesson 10/CS211 Lesson 10 - Program Design.htm

X, (location of the real root)

I C:(a+£)/2 H b f(a)-f(c) >0,a~ c. Stepn=1
s @ f@<0boe sepn=
¢ T r\C " b fla)-f(c) <0,b—c. Stepn = 3
I \:J PN
a/l’lfc\ll\éb fl@-flc)>0,a-c. Stepn =4
/\U\,;JH,/\
aéc

Stepn =5

The algorithm of bisection method

Suppose we wish to find the root for f(x), and
we have an error tolerance of € (the absolute
error in calculating the root must be less that €).

. Step 1: Find two numbers a and b at which f
has different signs.

.Step 2: Definec = (a + b)/2.

.Step 3:If |f(c)| < € then accept ¢ as the root
and stop

Step 4:1If f(a) - f(c) < 0then set c as the new
b. Otherwise, set ¢ as the new a. Return to step
1.

Define £ (x). Flowchart for
Set tolerance €. . . .
bisectioning root-
Assign a, b fl”d'ng

No
f(a)-f(b) <0And

f (x) continuous in
la,b]?

Yes

_a+b
€=

Yes
c is the root

fle) - fla) <0

Note

*The bisectioning method only
works if f (x)is continuous
between |a, b].

*The condition “<” as appear in
f(a) - f(c) < 0iscrucial.

Replacing it by " < " may upset
the robustness of the algorithm

Exercise

Search for the roots in the interval [2,10] for the
following equation:

10 + x3 — sinx sinhx = 0

up to an accuracy of e = 107°
. The function contains two roots

. Use bisectioning method to find both roots
manually.

. Implement your code in the form of a Module|]

Exercise: Brute-force ‘auto-detection’ of
roots via bisectioning Module

Write a code that can automatically obtain all roots of a continuous

function f(x) in any given interval [a, b] by making use of the DIY
bisectioning Module for root-finding that you have developed in
previous exercise. Test it out for the following case:

f(x) =10 + x3 — sinx sinh x
[a, b] = [2,10]

Exercises

Obtain all roots of a continuous function f(x) for the interval |a, b]
by making use of the DIY bisectioning Module for root-finding. Note
that for the case of i., ii., below, you have to manually determine
X, Xy first.

i. f(x) =x-Tanh x, for all x.

Root finding 2:
Newton-Raphson (NR)
method

Newton-Raphson Method

Recall that the equation of a straight line is given by the equation
y=mx+n (1)

where m is called the slope of the line. (This means that all points (x,y)
on the line satisfy the equation above.)

If we know the slope m and one point (xp, yp) on the line, equation (1)
becomes

Y — Yo = m(x—Xxo) (2)

ldea behind Newton's method

Assume we need to find a root of the equation f(x) =0. Consider the
graph of the function f(x) and an initial estimate of the root, xg. To
improve this estimate, take the tangent to the graph of f(x) through the

point (xp,f(xp) and let x; be the point where this line crosses the
horizontal axis.

According to eq. (2) above, this point is given by

f(xo
f'(x0)
where f'(xp) is the derivative of f at xg. Then take x; as the next

approximation and continue the procedure. The general iteration will be
given by

X1 = X0 —

f(xn)
f'(xn)

Xn+l = Xp —

and so on.

Flowchart for
Define f(x). NeWton-RaIpson
Set tolerance €. root_ﬁnding

Assign initial guess
Xn=0

Yes

Yes

Exercise

Search for the roots in the interval [2,10] for the
following equation:

10 + x3 — sinx sinhx = 0

up to an accuracy of e = 107°
. The function contains two roots
. Use NR method to find both roots manually.
. Implement your code in the form of a Module|]

Exercise: Brute-force ‘auto-detection’ of
roots via NR Module

Write a code that can automatically obtain all roots of a continuous

function f(x) in any given interval |a, b] by making use of the DIY NR
Module for root-finding that you have developed in previous
exercise. Test it out for the following case:

f(x) =10 + x3 — sinx sinh x
[a, b] = [2,10]

Exercises

Obtain all roots of a continuous function f(x) for the interval |a, b]
by making use of the DIY NR Module for root-finding. Note that for
the case of i., ii., below, you have to manually determine x,, x) first.

i. f(x) =x-Tanh x, for all x.

You are now a powerful root finder

After all these exercises, now you should be
confident to proclaim to the whole word that:

Give me any single variable continuous

function, and I'll find you their roots at a
click. =)

Assignment 14

Q1. Develop a code that could auto detect all the roots for the following
function in the given interval by using built-in root finding command

FindRoot| |:
fx) = Ppoy(x)
* P,_,(x) is the Legrendre polynomial with order n = 4.
* Interval = [-1,1].
* You can use the command Legendre|n, x| to generate the function.

Q2. Repeat Q1, but use instead the DIY Module package you have coded
yourself using the bisectioning method.

Q3. Repeat Q1, but use instead the DIY Module package you have coded
yourself using the Newton-Raphson metod.

Numerical integration:
Stochastic method

Numerical integration with stochastic method

. Assume f(x) >= 0 for xinit<=x<=xlast.

. Set totalcountmax.

. Set inboxcount = 0, totalcount=0.

. Find Max f(x), and call it fmax.

. Define an area A = fmax*L, where L = xlast-xinit.

. 1. Generate a pair of random numbers (xrand,yrand), with the condition
. Xinit<=xrand<=xlast, 0<=yrand<= fmakx.

. 2. totalcount=totalcount+1.

. 3. If 0 <=yrand <= f(x=rand), inboxcount = inboxcount + 1

. 4. Stop if totalcount = totalcountmax.

. 5. Repeat step 1.

. The area of the curve f(x) in the interval for [xinit,xlast] is given by
. Area = A*inboxcount/totalcountmax.

130, 23,7}

7=1
A=L*fmax=1.9245
L=5-0=5.0
fmaxo.3849

at Xx=0.707107

X
f(.X') - (ZZ + x2)3/2

Exercise

» Write a code to evaluate the following integral using stochastic method. z
ISa constant set to 1.

* Let the integration limits be from x,=0 to x,=+5.0.

X
flx) = (22 + x2)3/2

Trapezoid rule for integration
[flx)dx
Many methods can be used to numerically evaluate the integral

Basically the integral 1s the area represented between the curve and
the vertical axis.

-Ilr L] L L
Trapezoid rule for integration
Basically the integral 1s the area represented between the
curve and the x-axis.
A= (U2)[Ax) t/x -)]Ax;
=02, N
s/x) :II
/ S N
-"Jlr ./f - i
; - < T » :I,L
O X, =a X, x_=at X, X=h
+ o (i+ DAx
Thereis a total of Vsubintervals. [x x]. [x x| [x .x][x ox Llx . x]

A represents the area under the curve in subinterval 7, A =[x.x_ |

Trapezoidal rule

i=N-1 i=N-1

|

If -3 A= % Al
=Ax{§mxﬂ_+ ey o [4 (s e+)4 ()]
= B [£ (g f (e | J#AX L 3,)4)+ 4 vy) 7 ()]
=22 [4 ()] +A;£ lx)

The error. is of the order O(Ax)”

Simpson’s rule for integration

* The numerical imntegration can be improved by
treating the curve connecting the points
x., JSf(x.). {x.f(x)}as a section of a parabola

instead of a straight line (as was assumed 1n
trapezoid rule).

« Thisresults inA4+A4. . = (Ax/3)[f(x)+ 4/(x.,)+
Sl

* For details of the derivation, see the lecture notes

by Gilles Cazelais of Camosun College, Cadana,

* http://pages.pacificcoast.net/~cazelais/187/simpson.pdi

Simpson’s rule for integration (cont.)

L’;J |' . ﬂI { [{ ' f '
_[Hf"- Y] dI:Z ,-r:|:|__f-__4_.6_......r-:Ai_A 4 3 Z ,-r:|:|_:_.4_.6__...._r-:fl'-l-'? A L)

[f1|||—4f Yo 4 (x) A)H e 4)
—fl |+ 41“14 A e et gy 1+ ey 14 ey)]
[fw H e 42 x|+ f L, 121 (x)
—4;” xR f x4+ 2 L [+ ey 4)]

Assume N a large even number.

Simpson’s rule for integration

jfmm_—[|f[4l)]+ ““[flj‘ 4+)+
7&1
[flx 4+ [,)4 x4 x,]

The number of interval, N, matters: if 1t 1s too small,
large error occurs. The error in Simpson's rule 1s of the

order O(Ax)’

Exercise

Write a code to evalate the following integral using both Trapezoid and
Simpson's rule. z1s a constant setto 1.

Let the mtegration limits be from x =-1.5 to x=*5.0.

(z;—l—x'}“'

Numerical solutions for
first order differential
equation: Euler’s method

http://www.cse.salford.ac.uk/physics/gsmcdonald/pp/PPLATOResources /h-
flap/M6 2t.pdf

http://www.cse.salford.ac.uk/physics/gsmcdonald/pp/PPLATOResources/h-flap/M6_2t.pdf

Examples of first order differential equation commonly
encountered in physics

dvy
— = _g; |
dt General form of first order
@y _ - differential equations
dt Y
dv B
mo = —mg —nv df(t)
i -G (1
— = —AN;
dx dt
dN B N
dt T
dv
= —kx

M ix

Now, how would you write your own algorithm
to solve first order differential equations
numerically?

df (1)
dt

-6 (1

Euler’s method for discreteising a first order
differential equation into a difference equation

Discretising the differential equation

In Euler method, where the differentiation of a function at
time t is approximated as

df(t)zf(t+Al‘)—f(f):f(ti+l)—f(ri) t. =IAL. t
- e T s i o ¥ige]

dfi\,) flta)- S5 : df (1,
d(t)z (I)At ();ti_—_lAt:>f(f,~+1):f(ti)+ d(t)Afzf(f,-)-i'G(l‘i)At

Essentially, Euler's method says

Differential equation dfd(t) el G(t)
t

Discretise

v

ftia)=f(4)+G(t) A

Difference equation

Boundary condition: The numerical value at f(t,) has to
be supplied.

Discretising the differential equation

df (t
dN@) N | d£)=G(f)
dt T c.f
.d’;if“) = — %t) is discretised into a difference equation,
. N(t+At)~N(t)—¥At
N(t 1) c.f
:)N(tl_l_l)va(t)*— < < > f(tH_l):f(tl)'l'G(tl)At
l l'
74 (E‘)"’G(ti)

which is suitable for numerical manipulation using
computer.

*There are many different way to discretise a differential
equation.

‘Euler's method is just among the easiest of them.

The code’s structure

e Initialisation:

* Assign (i) N (t=0), 1, (ii) Number of steps, Nstep, (iii) Time when to
stop, say tfinal=107.

. The global error is of the order O ~ At
. At = tfinal/Nstep

. In principle, the finer the time interval At is, the numerical solution
becomes more accurate.

. t=t_+iAt ; i=0,1,2,...,tfinal

. Calculate N (t,)= N (t,)- At N (¢t,)/x.

. Then calculate N (t,)= N (t,)- At N (t,)/t
. N (t;)= N (t,)- At N (t,)/, ...

. Stop when t = tfinal.

. Plot the output: N (¢) as function of t.

Exercise

. A freely falling object through a fluid medium can
alternatively be modeled such that the drag force is
proportional to its speed. The first order differential
equation for such an object is given by

dv_ k

dt
. Let k=0.01, m=1;g=9.81 m/s?; and the boundary condition
is v(0) =0 m/s.

. Use NDSolve| | to obtain and plot the numerical solution
for v(t) until it enters a terminal velocity.

. Develop a code that implements Euler's method to
numerically solve the equation.

. Overlap your numerical solution on top of the analytically
obtained plot. Both should agree to each other.

Exercise

. A freely falling object through a fluid medium can
alternatively be modeled such that the drag force is
proportional to the square of its speed. The first order
differential equation for such an object is given by

dv_ +k 5

dt
. Let k=0.01, m=1;g=9.81 m/s?; and the boundary condition
is v(0) =0 m/s.

. Use NDSolve| | to obtain and plot the numerical solution
for v(t) until it enters a terminal velocity.

. Develop a code that implements Euler's method to
numerically solve the equation.

. Overlap your numerical solution on top of the analytically
obtained plot. Both should agree to each other.

-200

-400

-600

-800

dv

200

400

600

800

" |
1000

Exercise

1D pendulum is governed by the equation

dv

=k
m—- X

. Use Euler method to plot the solution for
this 1D first order differential equation.

Numerical solutions for
second order differential equation:
Second order Runge-Kutta method

(RK2)
EXAMPLES
d%6(t) _ L d2y(t) k dy
dt? [a2z - YT ar

Second order Runge-Kutta (RK2) method

Consider a generic second order differential
equation.
! d?u(x)
;=G (u)
dx

It can be numerically solved using second order Runge-
Kutta method.

Split the second order DE into two first order parts:

v(x) dudE(x) d\;(xx) 6 (u)

Algorithm

Set boundary conditions: u(x=x,)=u,, u’(x=x,)=v(x=x,)=V,.

g

calculate U" — ui + _Vi AX
| 2
calculate / 1 I
calculate u — u| + \7AX

1+1

calculate Vi+1 — Vi + G (l]) AX

Translating the SK2 algorithm into the case of

simple pendulum
d?u(x) 6 (u)

dx?
v(x) = dudE(x)

g

Set boundary conditions:
u(x=x,)=u,, u’(x=x,)=v(x=x,)=v,

~

1
U=uU; +—V;AX
2

V=V, +%G(U‘)Ax

U4 = U +VAX

Vi +1 —

=V; +G () Ax

?— o(t)

d20(t) g6

a2z
do(t)

o) =—4~

dt I
Set boundary conditions:

At=t,)= 0, & (t=t,)=ct=t,)=c,

Exercise: Develop a code to implement SK2
for the case of the simple pendulum.
Boundary conditions: w(O):ﬁ;H(O):O

Exercise:

Develop a code to implement SK2 for the case of a
pendulum experiencing a drag force, with damping
coefficient g= 0.1* (4Q)), Q= \/ﬁ, [=1.0m.
Boundary conditions: 8(0) = 0.2; w(t = 0) = 0;

Translating the SK2 algorithm into the case of

damped pendulum

424 (x 426 _ g0 do
U 6w i
v(x) = dudE(x) o(t) - diit)

d do(t) g6

Vd(xx):c;(u) G(u)=-T 00 -q0) —g— = ()

Set boundary conditions:
u(x=x,)=u,, u’(x=x,)=v(x=x,)=v,

~

1
U=uU; +—V;AX
2

\7:vi+%G(U‘)Ax @ =

U

i1 = U +VAX

Vi +1

=V; +G () Ax

%(—%é(t)—q@jmj&)z

Set boundary conditions:

H(t—to) 0, O (t=t,)=ct=t,)=c,

g ~
(a}, ol Q(t)Atj

(1+%thj
Hi—I-l — (9i + G’V)At

i+1 = @ +(_9T9_q5)jAt

Q;

Exercise: Stability of the total
energy a SHO in RKa2.

w = d— angular velocity. m=1 kg; I=1 m.

The total energy of the SHO 1n can be calculated as
1

E. =K. +U., = Eﬂ-z(la),-ﬂ)2 +mgl(1—-cosb,,)

!

~ iml o, +mgl|1-|1-—L
2 2

lnzl ;| +;m gl6);,

t=0 till t=25T; T=2m,/l/g. Boundary conditions: ®(0)= T;9(0)=0

User your RK2 code to track the total energy for t runn\iﬁg from
g
E; should remain constant throughout all ;.

