Lecture 6

Data Manipulation; Curve Fitting; Statistics

Import and Export of data files

Syntax

- Directory[]
- SetDirectory[NotebookDirectory[]]
- SetDirectory["path of my directory"]
- Import["datasemicircle.dat"];

Least Squares Fitting

http://mathworld.wolfram.com/LeastSquaresFitting.htm

You have measured a set of data points, $\{x_i, y_i\}, i = 1, 2, ..., N$; and you know that they should approximately lie on a straight line of the form $y = a \times b$ if the y_i 's are plotted against x_i 's.

• We wish to know what are the best values for a and b that make the best fit for the data set. The process is called 'data fitting'. The function to be fit against is in a linear form, y = a + bx.

Vertical offset

Let $f(x_i, a, b) = b x_i + a$, in which we are looking for the best values for *b* and *a*.

Vertical least squares fitting proceeds by minimizing the sum of the squares of the vertical deviations R^2 of a set of *n* data points

$$R^{2}(a, b) \equiv \sum_{i=1}^{n} [y_{i} - (a + b x_{i})]^{2}$$

vertical offsets

Minimisation of R^2

The values of *a* and *b* for which R^2 is minimized are the best fit values.

You can find these best fit values by minimize R^2

vertical offsets

Least Squared Minimisation

$$R^{2}(a, b) \equiv \sum_{i=1}^{n} [y_{i} - (a + b x_{i})]^{2}$$

$$\frac{\partial \left(R^2\right)}{\partial a} = -2\sum_{i=1}^n [y_i - (a+bx_i)] = 0$$

$$n a + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$

$$\frac{\partial \left(R^2\right)}{\partial b} = -2\sum_{i=1}^n \left[y_i - (a+b\,x_i)\right]x_i = 0.$$

$$a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i.$$

In matrix form

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i & y_i \end{bmatrix},$$
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i & y_i \end{bmatrix}.$$
Eq. (1)

$$\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \begin{bmatrix} \sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i y_i \\ n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i \end{bmatrix},$$

$$a = \frac{\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$= \frac{\overline{y} \left(\sum_{i=1}^{n} x_{i}^{2} \right) - \overline{x} \sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}}$$
Eq. (2)
$$b = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$
Eq. (3)
$$= \frac{\left(\sum_{i=1}^{n} x_{i} y_{i} \right) - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}}$$

$$\overline{x} = \frac{1}{N} \sum_{i}^{N} x_{i}, \overline{y} = \frac{1}{N} \sum_{i}^{N} y_{i}$$

Standard errors in *a* and *b* are given by SE(*a*) and SE(*b*) $ss_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$

$$\overline{\mathbf{SS}_{\mathbf{x}}} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

$$\mathbf{SS}_{\mathbf{y}|\mathbf{y}|} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$s = \sqrt{\frac{\mathrm{ss}_{yy} - b \, \mathrm{ss}_{xy}}{n-2}} = \sqrt{\frac{\mathrm{ss}_{yy} - \frac{\mathrm{ss}_{xx}^2}{\mathrm{ss}_{xx}}}{n-2}}$$
$$\mathrm{SE}(a) = s \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\mathrm{ss}_{xx}}} \qquad \mathrm{SE}(b) = \frac{s}{\sqrt{\mathrm{ss}_{xx}}}.$$

Mathematica's built-in functions for data fitting

Syntax:

NonlinearModelFit[], Normal[], model["ParameterTable"]

These are Mathematica's built in functions to fit a set of data against a linear formula, such as y = a + b x, and at the same time automatically provide errors of the best fit parameters – very handy way to fit a set of data against any linear formula.

Exercise: Line fitting

- Download the data "data for linear fit.dat" online.
- "linear.dat" is supposed to be a list of measured data of pairs of data points in the form of $\{x_i, y_i\}, i = 1, 2, ..., n$.
- Visualise the data using **ListPlot**[]. You should realise that this data set lie along a supposed linear function, y = a + bx.
- Find the slope *b* and intersection *a* that best fit this data set.
- Overlapped the fitted function on the original data to show that you have done a good fit.

Gaussian function

A Gaussian function has the general form: $y = ae^{-(x-b)^2}$

Parametrised by two parameters, *a* and *b*.

Exercise: Line fitting

- Download the data "gaussian.dat" online.
- It is supposed to be a list of measured data of pairs of data points in the form of {x_i, y_i}, i = 1,2, ..., n.
- Visualise the data using ListPlot[].
- This data set lie along a nonlinear curve of the form $y = ae^{-(x-b)^2}$.
- Find *b* and *a* that best fit this data set.
- Overlapped the fitted function on the original data to show that you have done a good fit.

Data in XYZ format

See

http://openbabel.org/wiki/XYZ_(format) for data file in XYZ format. https://reference.wolfram.com/language/ref/format/XYZ.html

Example File

12				
benzene example				
С	0.00000	1.40272	0.00000	
Н	0.00000	2.49029	0.00000	
С	-1.21479	0.70136	0.00000	
Н	-2.15666	1.24515	0.00000	
С	-1.21479	-0.70136	0.00000	
Н	-2.15666	-1.24515	0.00000	
С	0.00000	-1.40272	0.00000	
Н	0.00000	-2.49029	0.00000	
С	1.21479	-0.70136	0.00000	
Н	2.15666	-1.24515	0.00000	
С	1.21479	0.70136	0.00000	
Н	2.15666	1.24515	0.00000	

Visualising sample XYZ data

Download and install VMD at either

https://staffusm-

my.sharepoint.com/personal/tlyoon_usm_my/_layouts/15/guestacce ss.aspx?docid=04b5757e70c3543038c7502d5c8b5702d&authkey=Ad XO5ypu0iE8iXH-bpS5LfE

- or
- http://www.ks.uiuc.edu/Development/Download/download.cgi?Pack ageName=VMD
- Download the sample XYZ data files N3PD.xyz.
- Use VMD to visualise N3PD.xyz.

Data manipulation

- Import the online data file: <u>http://comsics.usm.my/tlyoon/teaching/ZCE111/1617SEM2/data/ato</u> <u>m1.lammpstrj</u>
- Manipulate the data so that it can be converted into a *.xyz format.
- Export the *.xyz formatted file.
- Install vmd so that you can visualize the *.xyz file.

Converting *.lammpstrj into *.xyz format

- To this end, you need to know how to abstract the following information from <u>atom1.lammpstrj</u>
- 1. Total number of atom
- 2. Types of the atoms
- 3. *x*-,*y* and *z*-coordinates of these atom
- 4. Write these info in a *.XYZ format into a named *.xyz file.

Exercise

• By making use of the **Manipulate**[] command, develop a code to visualize NP3D.xyz using Mathematica automatically without manual intervention.

Exercise: log.lammps

- If you are given a data file with certain format, can you write a code to read in the data, process them and visualise the content according to your need?
- Try this out on the file log.lammps, which is part of an output produced by a Molecular Dynamics simulation software package LAMMPS.
- log.lammps is a formatted file containing assorted information of the LAMPPS output, such as "Step" "Atoms" "Temp" "Press" "PotEng" "KinEng" "TotEng" "Volume" "Enthalpy

Exercise: log.lammps

 Write a Mathematica code to abstract the data of "Step" "Atoms" "Temp" "Press" "PotEng" "KinEng" "TotEng" "Volume" "Enthalpy from log.lammps.

Then plot

- Temp vs. Step
- PotEng vs. Step
- PotEng vs. Temp