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ABSTRACT
Motivation: Chaos Game Representation (CGR) is an
iterative mapping technique that processes sequences of
units, such as nucleotides in a DNA sequence or amino
acids in a protein, in order to find the coordinates for
their position in a continuous space. This distribution of
positions has two properties: it is unique, and the source
sequence can be recovered from the coordinates such that
distance between positions measures similarity between
the corresponding sequences. The possibility of using
the latter property to identify succession schemes have
been entirely overlooked in previous studies which raises
the possibility that CGR may be upgraded from a mere
representation technique to a sequence modeling tool.
Results: The distribution of positions in the CGR plane
were shown to be a generalization of Markov chain proba-
bility tables that accommodates non-integer orders. There-
fore, Markov models are particular cases of CGR models
rather than the reverse, as currently accepted. In addition,
the CGR generalization has both practical (computational
efficiency) and fundamental (scale independence) advan-
tages. These results are illustrated by using Escherichia
coli K-12 as a test data-set, in particular, the genes thrA,
thrB and thrC of the threonine operon.
Availability: A web page interface has been created
where analyses of arbitrary sequences by CGR can
be performed on-line (http://www.itqb.unl.pt:1111/biomat/
resources/resources.htm). The test data-set used in this
report is also included.
Contact: almeidaj@musc.edu; mfletcher@biol.sc.edu

INTRODUCTION
Genomic sequences are in a constant state of variation
due to processes such as transposition, transformation,
translocation, recombination and excision (Karlin et al.,
1998; Casjens, 1998). Consequently, different strains of

the same species may exhibit considerable differences in
global sequence due to extensive reordering of coding
regions. The resulting fluidity of microbial genomes
has to be taken into account when characterizing the
global and local properties of sequences. Consequently,
the identification of homologous regions has to follow
a bottom-up approach, by first matching individual
oligonucleotides, which can then be used as markers
to align larger sequences (Pearson and Miller, 1992) as
implemented by BLAST and FASTA (Altschul et al.,
1990; Altschul and Koonin, 1998; Pearson, 1996). In
contrast, a top-down approach targets the statistics of
nucleotide succession, which are not affected by shuffling
of individual sequences. This is achieved by identifying
Markov chain models (MCMs), which take the form
of probability tables describing the succession scheme
(Rabiner and Juang, 1986), and is further extended by
hidden Markov models (HMM) for the identification of
succession of alternative patterns of nucleotide succession
(Krogh, 1998).

Chaos Game Representation (CGR) was proposed as a
scale-independent representation for genomic sequences
by Jeffrey in 1990. The technique, formally an iterative
map, can be traced further back to the foundations of sta-
tistical mechanics, in particular to Chaos theory (Bar-Yam,
1997). The original proposition has been considerably
expanded and generalized for sequences of arbitrary
symbols (Tino, 1999), and therefore including other
biological sequences such as proteins (Basu et al., 1997;
Pleißner et al., 1997). However, the possibility that the
CGR format can be used for representing the nucleotide
sequence as well as identifying the resulting sequence
scheme has never been fully explored. Three years after
the original proposition, the translation of CGR quadrant
frequencies into oligonucleotide frequencies was demon-
strated and interpreted as an indication that ‘it is unlikely
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Fig. 1. (a) Chaos Game Representation (CGR) of the first 10 nucleotides of E.coli gene thrA: ATGCGAGTGT. The coordinates for each
nucleotide are calculated iteratively using (0.5, 0.5) as an arbitrary starting position (equation 1). The pointer is moved half the distance to
the next nucleotide to determine the next position (equation 1). (b) CGR of the full thrA sequence, totaling 2463 pairs of bases.

that CGRs can be more useful than simple evaluation of
nucleotide, dinucleotide and trinucleotide frequencies’
(Goldman, 1993). The subsequent development of HMM
further relegated CGR to the status of a representation
technique. The results reported below are all the more
relevant as the limitations of conventional HMM for
functional genomics have been increasingly noted (Baldi
and Brunak, 1998). This report shows that CGR is in
fact a generalized, scale-independent, Markov probability
table. The CGR space is a continuous reference system
where all possible sequences of any length have a unique
position. Consequently, all possible nucleotide succession
schemes will be encoded in the continuous space, and
a new generation of scale-independent Markov models
accommodating non-integer orders is made possible.

SYSTEM AND METHODS
Computation
The algorithms described in this manuscript were coded
using MATLABTM 5.3 language, licensed by The Math-
Works Inc. (http://www.mathworks.com). An internet in-
terface was also developed to make them freely accessible
through user-friendly web-pages (see Availability).

Test data
The genome of E.coli K-12 MG1655 was analyzed
to illustrate CGR properties. The sequence was ob-
tained from the University of Winsconsin E.coli Genome
Project (http:/www.genetics.wisc.edu). The test sequences
corresponding to the threonine genes thrA (positions 337–
2799), thrB (positions 2801–3733) and thrC (3734–5020)

correspond to the second, third and fourth open reading
frames (ORFs), respectively.

ALGORITHM AND IMPLEMENTATION
CGR of E.coli thrA
The properties of the CGR procedure (see also Jeffrey,
1990; Burma et al., 1992; Deschavanne et al., 1999)
are hereby illustrated by analyzing the sequence of
E.coli threonine gene thrA. The CGR space generated
by genomic sequences is planar and is confined by the
four possible nucleotides as vertices of a binary square
(Figure 1). The CGR positions, CG Ri , of each nucleotide,
gi , of a sequence, g of length nG , is calculated by moving
a pointer to half the distance between the previous position
and the current binary representation (equation 1). The
binary CGR vertices were assigned to the four nucleotides
as A = (0, 0); C = (0, 1); G = (1, 1); T = (1, 0). The
procedure is illustrated in Figure 1.

CG Ri = CG Ri−1 + 0.5 · (CG Ri−1 − gi )

with i = 1, . . . , nG and CG Ro = (0.5, 0.5). (1)

Inversely, the nucleotide sequence can also be recovered
from the CGR coordinate, where the number of bases re-
solved is a function of the resolution of the CGR coordi-
nates (Goldman, 1993). This is illustrated in Figure 2 for
the 8th position in E.coli’s thrA gene recovered with a res-
olution of 4 bits for each coordinate, which implies that
a sequence of 4 bases can be resolved (underlined in the
figure). It is interesting to note that the position in the CGR
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Fig. 2. Resolution of 8th CGR coordinate for thrA in order to recover
the DNA sequence. If each CGR coordinate has a precision of
4 bits, the corresponding sequence will be recovered within 4 bases
(underlined).

Fig. 3. Determination of trinucleotide frequency matrix for thrA. The CGR coordinates for the 2463 base pairs are plotted with the relative
frequencies for each 8 × 8 quadrant represented as a grayscale (left). The distribution of counts is listed in the table (right). The quadrant
highlighted in the plot and in the table is defined by the vertices ...AAGT, ...CAGT, ...GAGT and ...TAGT.

Second base
A C G T
58 15 20 22 A

A 37 36 28 41 C
38 33 30 55 G

First 43 29 25 43 T Third
Base 39 36 50 14 A Base

C 24 27 60 29 C
37 57 46 72 G
30 23 43 28 T
64 43 37 17 A

G 22 56 64 29 C
19 76 26 46 G
55 45 43 50 T
15 36 54 33 A

T 30 24 68 40 C
8 33 68 48 G
33 46 31 36 T

Second base
A C G T

0.33 0.13 0.19 0.14 A
A 0.21 0.32 0.27 0.25 C

0.22 0.29 0.29 0.34 G
First 0.24 0.26 0.24 0.27 T Third
Base 0.30 0.25 0.25 0.10 A Base

C 0.18 0.19 0.30 0.20 C
0.28 0.40 0.23 0.50 G
0.23 0.16 0.22 0.20 T
0.40 0.20 0.22 0.12 A

G 0.14 0.25 0.38 0.20 C
0.12 0.35 0.15 0.32 G
0.34 0.20 0.25 0.35 T
0.17 0.26 0.24 0.21 A

T 0.35 0.17 0.31 0.25 C
0.09 0.24 0.31 0.31 G
0.38 0.33 0.14 0.23 T

Fig. 4. Reordering of CGR quadrant frequencies, FCGR, left, obtained for thrA (Figure 3), to determine the corresponding probability matrix
for the second-order Markov Chain model, right, order nM = nC − 1 = 2. The shaded cell counts ...AGT positions (like the 8th position,
Figure 1).

space is only partially dependent on the position in the
genomic sequence, as the ‘memory’ of its coordinates is
limited to the precision with which they are recorded. As
a consequence, the trajectory of identical sequences, inde-
pendent of their location in different genomes, will con-
verge in the CGR space (see also Discussion).

The frequency of alternative oligonucleotide combi-
nations, the ‘genomic signature’, can be determined by
dividing the CGR space with a grid of appropriate size
and counting occurrence in each quadrant. In order to
obtain the frequency matrix of oligonucleotide length
nC , a 2nC × 2nC grid must be used. In Figure 3, the
trinucleotide frequency matrix (nC = 3) is obtained for
the same thrA sequence plotted in Figure 2.

The frequency matrices extracted from CGR (FCGR)
can now be reordered in the more useful MCM format
(Goldman, 1993; Almagor, 1983; Avery, 1987) as illus-
trated for trinucleotide frequency (Figure 4). The length
considered for the preceding sequence determines the or-
der of MCM, nM = nC − 1.
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Fig. 5. FCGRT hr A,3.32: frequency 10 × 10 table for CGR of thrA,
k = 100 ⇒ n = 3.32. The gray scale represents frequencies
between 0 (white) and the maximum frequency in any quadrant
(black). The 8th position of E.coli’s thrA will now fall in the framed
quadrant, delimited by ...(agga)aggaagt; ...(cgta)cgtacgt;

...(ggaa)ggaaggt; ...(tgca)tgcatgt.

The conversion of FCGR to MCM is only straightfor-
ward if the number of quadrants k satisfies the condition
in equation (2), necessary to produce an integer order.

k = 22nC , nC is an integer � 1. (2)

However, unlike MCM, FCGR is not constrained to
represent sequences with an integer number of bases. This
fundamental characteristic of CGR is illustrated for E.coli
thrA in Figure 5 where the frequency of oligonucleotides
with a fractionary length has been computed by dividing
the CGR plane with a 10 × 10 grid (k = 100 violates
condition in equation (2)). The non-integer portion of a
fractionary sequence quantifies a restriction or redundancy
in the oligonucleotide resolution as shown below. The
resolved length, nC , can be determined by removing the
condition in equation (2):

nC = log2(k)/2. (3)

Therefore, a 10 × 10 = 100 quadrant FCGR (k = 100)
tracks the frequency of oligonucleotides with 3.32 re-
solved bases. The number of quadrants itself can also be
non-integer (e.g. by using uneven quadrants, more below),
which implies that the resolved length, nC , can indeed be
any positive real number. The identity of the fractionary
sequence can be determined by calculating the delimiting
sequences at the vertices of the corresponding quadrant.
This is accomplished by subdividing the CGR plane
consecutively as illustrated in Figure 2. For k = 100, the

8th base of thrA (Figure 2) would now fall in a quadrant,
highlighted in Figure 5, delimited by:

...(cgta)cgtacgt (ggaa)ggaaggt 

...(agga)aggaagt ... (tgca)tgcatgt 

The tetromers within brackets are repeated ad infinitum
and the underlined trinucleotides correspond to the integer
portion of the resolved length, n = 3.32. The definition of
areas in the CGR space and the mapping of its frequency
back to the sequence enables the determination of the
frequency of redundant of fractionary sequences. This
property of inverse frequency mapping was missed in
earlier studies and the implications will be discussed
below (see Discussion). By reordering the quadrants as
illustrated in Figures 3 and 4 it is observed that non-integer
precision in FCGR is equivalent to an incomplete higher
order MCM probability table (not shown here), which is
equivalent to complete MCM of non-integer order.

Global distance
The use of FCGR to access the dissimilarity between
genetic sequences can be illustrated by comparing thrA
with the remaining two E.coli genes involved in the
metabolism of threalose, i.e. thrA, thrB and thrC. These
genes correspond to the second, third and fourth ORFs of
E.coli genome and code for homoserine dehydrogenase,
homoserine kinase and threonine synthase, respectively
(Cami et al., 1993; Malumbres et al., 1995). The cal-
culation of the global distance between sequences at
any scale was based on the determination of a weighted
Pearson correlation coefficient, rw between the FCGRs
(equation 4). The modification of the standard definition
consisted on weighting the variance with the compounded
frequency, nw, to determine the correlation between the
two sets of FCGR quadrants x and y, each containing the
occurrence of the same k oligomeric sequences.

nw =
k∑

i=1

xi · yi

x̄w =
∑k

i=1 x2
i · yi

nw
, ȳw =

∑k
i=1 y2

i · xi

nw

sx =
∑k

i=1 (xi − x̄w)2·xi · yi

nw
,

sy =
∑k

i=1 (yi − ȳw)2·xi · yi

nw
(4)

rwx,y =
∑k

i=1
xi −x̄w√

sx
· yi −ȳw√

sy · xi · yi

nw
.

The advantage of using the weighted correlation coeffi-
cient defined above over using the standard definition, is
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C thrA G C thrB G
143 220 199 170 50 94 80 85
113 139 102 221 40 47 52 77
130 160 143 142 52 59 49 56
177 86 162 175 53 31 51 77

A total: 2482 T A total: 953 T

C thrC G
64 119 105 79 d thrA thrB thrC
66 67 65 115 thrA 0.00 0.17 0.07
74 93 73 73 thrB 0.17 0.00 0.25
104 34 70 86 thrC 0.07 0.25 0.00

Fig. 6. Dinucleotide counts (nC = 2) for the FCGR of the three
selected ORFs of E.coli, thrA, B and C and corresponding distance
matrix (lower right table).

that the importance of each quadrant is proportional to its
frequency. In addition to giving equal weight to each oc-
curring sequence, this procedure also enables the use of
partial or uneven quadrants, and therefore the FCGR for
any positive value of nC can be obtained without biasing
the correlation coefficient. The distance, d, between two
DNA sequences is defined in equation (5), and has val-
ues between 0 and 2. Values above 1 would correspond
to negative correlation coefficients and a null value would
correspond to exact similarity.

d = 1 − rw. (5)

The value of d is specific for the resolution of the fre-
quency decompositions (FCGR) being compared. The se-
quences can have different lengths, nG , but the frequency
decomposition for the two sequences must have the same
resolution, nC , for d to be calculated. The ORFs thrA, thrB
and thrC were used to illustrate the properties and applica-
tions of distance measures. The FCGR decomposition at a
resolution of nC = 2 (dinucleotide) for the three thr ORFs
is presented in Figure 6, with the cross tabulation of dis-
tances in the lower right table. The distances can now be
subjected to several multivariate statistical analyses, such
as cluster and factor analysis (Figure 7).

Moreover, the multivariate statistical representations can
be performed with arbitrary resolved lengths (nC ), screen-
ing a continuous range of scales. For example, in Figure 8
the first principal component for the correlation matrixes
between three sequences was extracted with 0.5 nucleotide
length increments. This plot shows that the three thr genes
have similar succession schemes up to dinucleotide length.
For longer sequences the signature of thrB (homoserine ki-
nase) is observed to diverge from that of thrA (homoserine
dehydrogenase) and thrC (homoserine kinase) pointing to
a higher evolutionary radiation for thrB (Cami et al., 1993;
Malumbres et al., 1995).

CGR has been used before to derive measures of global
similarity based on ratios between quadrant frequencies
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Fig. 7. Cluster analysis by unweighted pair-group average (left)
and principal component extraction (right) applied to the cross-
correlation (d) matrix between the three trh genes (Figure 6).
The first component (PC1) represents 89% and the second (PC2)
represents 9% of total variance.
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Fig. 8. First principal component analysis of the distance matrix,
d, of thrA, thrB and thrC with different resolutions, nC . The table
on the right lists the fraction of the variance represented by the first
principal component.

(Solovyev, 1993), who also proposed unweighted correla-
tion metrics, and distances between CGR positions (De-
schavanne et al., 1999). The derivation of a measure of
global similarity based on a weighted Pearson correlation
coefficient, above, introduces a metric more convenient for
multivariate statistical analysis.

Local similarity
The identification of local homology between genomic
sequences is particularly important for functional genomic
studies. The development of scale-independent procedures
to identify local similarity is particularly relevant since it
may occur at different locations and at different or even
multiple scales. Although position in the CGR plane is
determined by sequence, distance between positions is
only dependent on similarity between sequences. This
property is a consequence of the fact that CGR position is
determined by moving the pointer half the distance to the
next nucleotide in the sequence (equation 1). Therefore,
two sequences with the same last nucleotide cannot
be further than 0.5 from each other in any coordinate
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Fig. 9. Example of two sequences (filled circles) and the four
possible positions for the sequence that ends in the next nucleotide
(hollow circles). In both cases, the four possibilities are away from
each other 0.5 in horizontal and/or vertical directions.

(Figure 9). Accordingly, two sequences that have the same
last two nucleotides will not be further than 0.25 from
each other, and a sequence of three similar last units will
be no more than 0.125 apart. The existence of similar
nucleotides in other positions upstream will shorten that
distance (if all nucleotides are similar, the sequences
being compared are equal and the distances between CGR
positions will be null). This observation can be generalized
in order to measure similarity as length of the similar
sequence, nH , as a function of the maximum absolute
difference between either CGR coordinate (equation 6).

nH = − log2(max |�CG R1...nG |). (6)

The properties of nH as a measure of similarity are
illustrated in Figure 10.
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1.3 1.4 1.3 1.2 1.1 1.1 2.8 1.5 0.7 1.1 T
1.0 2.3 2.4 2.3 2.2 2.1 1.9 0.9 0.6 0.5 T
0.9 2.0 3.3 3.4 3.3 3.2 1.4 0.7 0.4 0.3 T
0.9 1.9 3.0 4.3 4.4 4.3 1.2 0.5 0.3 0.2 T
0.9 1.9 2.9 4.0 5.3 5.4 1.1 0.5 0.2 0.1 T
0.8 1.2 1.1 1.0 1.0 1.0 6.4 1.0 0.4 1.2 G
0.8 0.6 0.5 0.4 0.4 0.4 1.0 7.4 2.0 2.5 C
0.5 0.3 0.3 0.2 0.2 0.2 0.4 2.0 8.4 1.4 C
1.7 0.8 0.4 0.3 0.3 0.2 0.2 1.4 1.2 1.0 A

Fig. 10. Map of similarity between two sequences of thrA and thrB genes of E.coli as measured by nH (equation 6). The grayscale map on
the left ranges between 0 (white) and 8.4 (black), the maximum length observed for nH between the two sequences. The numerical values
for the cross-tabulation of nH for the longest homologous sequence (framed region zooming in a similarity of eight consecutive nucleotides)
are listed on the right. The maximum value of nH corresponds to positions thrA 216 and thrB 220.

This measure of similarity is independent of the partic-
ular nucleotides used for each vertices of the CGR plane.
This can be deduced by noting that all vertices of a square,
a cube, or any regular quadrangular shape are equally fur-
ther apart if distance is measured as the maximum distance
along any individual axis. As a consequence, the Heavi-
side function for homology in CGR domains, will define
squares (or cubes, etc.) instead of circles (or spheres, etc.).
As demonstrated in Figure 10, the measure of similarity
using CGR can be the basis of a new set of algorithms
to align sequences with considerable advantages over the
conventional scoring methods. The investigation of local
similarity between the sequences, as highlighted in Fig-
ure 10 for position 216 of thrA, can be quickly scanned
by following a procedure akin to wavelet decomposition
(Altaiski et al., 1996). The maximum similar length, nH ,
observed within doubling window size is recorded (Fig-
ure 11a). If the average nH value is used instead, the scale
relevance of similar length is described (Figure 11b). This
representation highlights the fact that although the maxi-
mum similar length to trhA 216 is indeed observed at trhB
220, for lower resolutions (similar lengths averaged over
longer segments, Figure 11b), similar length is higher for
trhA ∼830.

The procedure used to screen for local similarities in
Figure 11 can also be used to evaluate global matching. In
that case the comparison would be made between average
or median CGR positions. Another possibility would be to
use the average (or median) minimum distance for each
CGR positions. These two approaches are similar to using
minimum or average distance measures in cluster analysis.
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Fig. 11. Similar lengths, nH , of different positions in thrB to position 216 of trhA, determined at different scales. The grayscale is always
normalized to the maximum value, in the plot title. The scale is controlled by the width of a sliding window, represented in the y-axis as
the logarithm of the number of nucleotides in either direction included under the window, in addition to the nucleotide in the position being
analyzed. For example, for log2(window) = 3, the width of the siding window is 1 + 2.23 = 17. The nH values for each position of thrB
are represented in (c). The plot in (a) presents the maximum similar lengths in any position in the sliding window, determined for different
window width lengths. The same procedure was followed to obtain (b) except that the average value was used instead.

CGR also offers new possibilities to resolve scale
dependencies for information content in sequences. The
convenience of using CGR for entropic studies of genomic
sequences has been noted before (Román-Roldán et al.,
1994; Oliver et al., 1993) albeit only for integer length
resolutions. In order to use units consistent with the pre-
vious representations, the Shannon information number
(Khinchin, 1957) was defined in sequence length units
(equation 7). Each nucleotide corresponds to a maximum
2 bit information content and, therefore, logarithm base
22 = 4 was used instead of the conventional logarithm
base 2. The values for S4 reported below can be compared
with the literature values, reported in bits, by multiplying
them by 2.

S4 =
k∑

i=1

pi · log4 pi

pi = f (quadranti )∑k
i=1 f (quadranti )

. (7)

The maximum possible value of S4 would be obtained
for a uniform random nucleotide sequence and is equal to
the length of the oligonucleotide whose signature is being
considered (e.g. for trinucleotide signatures max S4 =
3). It has been noted by different authors that natural
sequences can be so compacted that their statistical
properties are indistinguishable from random sequences
(Oliver et al., 1993; Hairiri et al., 1990). This perplexing
characteristic can now be verified with FCGR resolved in
a continuous scale. In the example below (Figure 12), the
value of S4 for the entire E.coli genome and for the open
reading frame of thrA are plotted together for fractional
increases in the resolved length (nC ).

DISCUSSION
The relevance of accessing the frequency of non-integer
genomic sequences may not be apparent at first given that
all sequences are physically made of integer number of
nucleotides. However, the loss of resolution by redundant
reading is in fact equivalent to the sequence resolved
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Fig. 12. Entropic content, S4, of E.coli genome (circles), and that
of thrA ORF (crosses). A random sequence would have an entropic
content equal to the resolved length, n (dashed line). Recall that nC
is related to k by equation (3).

as being composed of a non-integer number of units
(Figure 5). For example, if for a particular position
A and G can be always interchanged, as can C and
T, then the equivalent sequence would only encode
information equivalent to 1/2 unit (using equation (3):
k = 2, nC = log(2)

2 /2 = 1/2). This is particularly relevant,
as redundancy is a fundamental attribute of genome
structures (Jeffrey, 1990). The degenerated translation
of trinucleotides (Hsiung, 1997) is illustrative: 61 sense
trinucleotide codons encode for 20 amino acids, and
the remaining three nonsense codons signal for the
end of transcription. The resolved length, nC , is only
2.2 (equation 5). Synonym sense codons differ in the
third nucleotide (the nonsense codons may also differ
in the second position), which sets the scale for this
particular redundancy. The amino acid sequence itself is
also redundant in the sense that protein function is not
affected by some amino acid substitutions. Redundancy
in proteins is a function of position and a consequence of
similar physicochemical properties between some amino
acids. In conclusion, the property that is the object of
natural selection, i.e. function, depends on a redundant
sequence, that is to say a sequence resolved with a non-
integer resolution. Consequently, functional correlations
are bound to be maximal for non-integer resolutions (nC ),
which identify the relevant scale dependency.

The fact that CGR simultaneously represents sequences
at different scales also allows for new measures of
homology between sequences to be developed. The scale
independence of CGR of genetic sequences can be used to
investigate local and global homology.

CONCLUSIONS
The CGR of sequences is a method to ordinate the entire
domain of possibilities in a continuous two-dimensional
space. This enables determination of global distance
(equation 3) and local similarity (equation 4) for a
continuous range of resolved lengths, as illustrated in
Figures 6–11 using E.coli’s threonine operon. Conse-
quently, the CGR transformation makes DNA sequences
amenable to an entire new set of statistical analysis tools.
For example, the average sequence can now be calculated
by recovering the sequence of the position with the av-
erage CGR coordinates. Similarly, the standard deviation
can now be determined and then converted to similar
sequence length units using equation (6). For example,
the thrA gene analyzed above has an average sequence of
ATGGGGTTCGCATCTGCTAGCACGAGAAGAGACACTGTCGGA
CGCGGAAAAG, the median sequence of TGGTATGCTTGACG
GGGGAAAAG, which has a similar length, nH , to the av-
erage sequence of 7.7 nucleotides, which highlights
a sequence distribution skewness of 0.13 unit length.
Finally, the standard deviation and standard errors of
thrA (2463 bp) sequence have similar lengths, nH , of
4.8 and 1.8 nucleotides, respectively. This simple ex-
ample illustrates the fact that CGR is a formalism that
bridges between sequences of discrete units and numeric
coordinates in a continuous space. Consequently, basic
statistic measures and techniques can now be applied
to sequences and a wide range of new tools can now
be devised for statistical analysis. The utilization of
mutivariate statistical methods, such as cluster analysis
and factor extraction was demonstrated in Figures 7 and 8.
Non-hierarchical clustering methods such as Kohonen
mapping and K-nearest means (Kohonen, 1997), as
well as advanced classification methods such as neural
networks (Bishop, 1995), can be easily applied to the
FCGR of biological sequences. The authors also expect
the properties of CGR to be relevant for computational
and fundamental advances in the Bayesian modeling in
general. The current limitations of Hidden Markov Chains
to cope with simultaneous dependencies at multiple scales
may be overcome by identifying multiple alternative
states with CGR. This may be particularly effective when
coupled with the machine learning approaches increas-
ingly advocated (Baldi and Brunak, 1998) to extend the
capabilities of Markov models.
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