Special theory of Relativity

Notes based on
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An open-chapter question

* Let say you have found a map revealing a huge galactic treasure at
the opposite edge of the Galaxy 200 ly away.

* Is there any chance for you to travel such a distance from Earth
and arrive at the treasure site by traveling on a rocket within your
lifetime of say, 60 years, given the constraint that the rocket
cannot possibly travel faster than the light speed?

Treasure’s

You are here
here

Relative motions at ordinary speed

» Relative motion in ordinary
life is commonplace

» E.g. the relative motions of
two cars (material objects)
along a road

* When you observe another
car from within your car, can
you tell whether you are at
rest or in motion if the other
car is seen to be “moving?”

Relative motion of wave

* Another example: wave motion

* Speed of wave measured by Observer 1 on wave 2
depends on the speed of wave 1 wrp (with respect)
to the shore: v, | =v, —v,

observer 1 observer 2
— v, «— Vq
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Query: can we surf light waves?

 Light is known to be wave

« If either or both wave 1 and wave 2 in the
previous picture are light wave, do they
follow the addition of velocity rule too?

» Can you surf light wave ? (if so light shall
appear at rest to you then)

In other word, does light wave follows
Galilean law of addition of velocity?
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speed « ¢ seen from S Speed

Frame S’ travels with velocity v relative to S. If light waves obey
Galilean laws of addition velocity, the speeds of the two opposite
light waves would be different as seen by S’. But does light really

obey Galilean law of addition of velocity?
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The negative result of Michelson-
Morley experiment on Ether

* In the pre-relativity era, light is thought to be propagating in a medium called

ether -

« an direct analogy to mechanical wave propagating in elastic medium such as

sound wave in air

e If exist, ether could render measurable effect in the apparent speed of light in

various direction

«  However Michelson-Morley experiment only find negative result on such

effect

e A great puzzlement to the contemporary physicist: what does light wave move

relative to?

=l

How could we know whether we are
at rest or moving?

» Can we cover the
windows of our car
and carry out
experiments inside to
tell whether we are at
rest or in motion?

+ NO




In a “covered” reference frame, we
can’t tell whether we are moving or
at rest

Without referring to an external reference
object, whatever experiments we conduct in
a constantly moving frame of reference
(such as a car at rest or a car at constant
speed) could not tell us the state of our
motion (whether the reference frame is at
rest or is moving at constant velocity)
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» “The Earth is at constant state of motion yet
men are unaware of it, as in a simile: if one
sits in a boat with its windows closed, he

would not aware if the boat is moving” in
“Shangshu jing”, 200 B.C

Physical laws must be invariant in
any reference frame

Such an inability to deduce the state of motion is a
consequence of a more general principle:

There must be no any difference in the physical
laws in any reference frame with constant velocity

(which would otherwise enable one to differentiate
the state of motion from experiment conducted in
these reference frame)

Note that a reference frame at rest is a special case
of reference frame moving at constant velocity
(v =0 = constant)

The Principle of Relativity

 All the laws of Physics are the same in
every reference frame




Einstein’s Puzzler about running fast
while holding a mirror

Space travel at the speed of light

Says Principle of Relativity: Each fundamental constants must
have the same numerical value when measured in any reference
frame (c, h, e,m,, etc)

(Otherwise the laws of physics would predict inconsistent
experimental results in different frame of reference — which must
not be according to the Principle)

Light always moves past you with the same speed ¢, no matter
how fast you run

Hence: you will not observe light waves to slow down as you
move faster 13

Constancy of the speed of light

Figara 1.2
Two observers in relative motion. € is at rest and & moves toward @ at constant speed w.
and ' agree on the speed of light coming [rom the source carried by 0.

Obsarver G° Observer O

Reading Exercise (RE) 38-2

While standing beside a railroad track, we are startled by a boxcar traveling past
us at half the speed of light. A passenger (shown in the figure) standing at the
front of the boxcar fires a laser pulse toward the rear of the boxcar. The pulse is
absorbed at the back of the box car. While standing beside the track we measure
the speed of the pulse through the open side door.

(a) Is our measured value of the speed of the pulse greater than, equal to, or less
than its speed measured by the rider?

(b) Is our measurement of the distance between emission and absorption of the
light pulse great than, equal to, or less than the distance between emission and
absorption measured by the rider?

(c) What conclusion can you draw about the relation between the times of flight

of the light pulse as measured in the two reference frames?
. 2




Touchstone Example 38-1:
Communication storm!

* A sunspot emits a tremendous burst of particles that travels

toward the Earth. An astronomer on the Earth sees the
emission through a solar telescope and issues a warning.
The astronomer knows that when the particle pulse arrives
it will wreak havoc with broadcast radio transmission.
Communications systems require ten minutes to switch
from over-the-air broadcast to underground cable
transmission. What is the maximum speed of the particle
pulse emitted by the Sun such that the switch can occur in
time, between warning and arrival of the pulse? Take the
sun to be 500 light-seconds distant from the Earth.

Solution

It takes 500 seconds for the warning light flash to travel the distance of 500
light-seconds between the Sun and the Earth and enter the astronomer’s
telescope. If the particle pulse moves at half the speed of light, it will take
twice as long as light to reach the Earth. If the pulse moves at one-quarter the
speed of light, it will take four times as long to make the trip. We generalize
this by saying that if the pulse moves with speed v/c, it will take time to make
the trip given by the expression:

At ..=500s/ (v, .. /c)

pulse pulse’
How long a warning time does the Earth astronomer have between arrival of
the light flash carrying information about the pulse the arrival of the pulse
itself? It takes 500 seconds for the light to arrive. Therefore the warning time
is the difference between pulse transit time and the transit time of light:

Atwarning = Atpu]se -500s.
But we know that the minimum possible warning time is 10 min = 600 s.
Therefore we have

600 s =500 s / (V,5/c) — 500's,
which gives the maximum value for v

warning:

ouls if there is to he sufficient time for

Vouts = 0.455 c. (Answer)
Observation reveals that pulses of particles emitted from the sun travel much

slower than this maximum value. So we would have much longer warning

time than calculated here. 18

Relating Events is science

Science: trying to relate one event to another event

E.g. how the radiation is related to occurrence of
cancer; how lightning is related to electrical
activities in the atmosphere etc.

Since observation of events can be made from
different frames of reference (e.g. from an
stationary observatory or from a constantly
moving train), we must also need to know how to
predict events observed in one reference frame
will look to an observer in another frame

Some examples

How is the time interval measured between
two events observed in one frame related to
the time interval measured in another frame
for the same two events?

How is the velocity of a moving object
measured by a stationary observer and that
by a moving observer related?

20




Defining events

* So, before one can work out the relations
between two events, one must first precisely
define what an event is

21

Locating Events

« An event isan occurrence that happensat a
unique place and time

» Example: a collision, and explosion, emission of a
light flash

» An event must be sufficiently localised in space
and time

 ¢.g. your birthday: you are born in the General
Hospital PP at year 1986 15t April 12.00 am)
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Example of two real-life events

Event 1: She said “I love you”

July 1Dec, 12.01:12 am, Tasik Aman
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Event 2: She said “Let’s break up-lah”
27 Dec 2005, 7.43:33 pm, Tasik Harapan

TASIK Ahs
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Subtle effect to locate an event:
delay due to finiteness of light speed

* In our (erroneous) “‘common sense”
information are assumed to reach us
instantaneously as though it is an immediate
action through a distance without any delay

* In fact, since light takes finite time to travel,
locating events is not always as simple it
might seems at first

24




An illustrative example of delay
while measuring an event far away

1, is very short due to the very fast speed of light Event 1: Lightning
c. In our ordinary experience we ‘mistakenly’ strikes at 7, =0.00a;
think that, at the instance we see the lightning, it
also occurs at the ¢,, whereas the lightning
actually at an earlier time #;, not ¢,

Event 2: the information
of the lightning strike
reaches the observer at
,=(1000/30x10%)s later

3

/N

Distance = 1 km
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Reading Exercise 38-4

* When the pulse of protons passes through detector
A (next to us), we start our clock from the time ¢ =
0 microseconds. The light flash from detector B
arrives hack at detector A at a time ¢ = 0.225
microsecond later.

* (a) At what time did the pulse arrive at detector B?

* (b) Use the result from part (a) to find the speed at
which the proton pulse moved, as a fraction of the
speed of light.
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Redefining Simultaneity

* Hence to locate an event accurately we must take
into account the factor of such time delay

* An intelligent observer is an observer who, in an
attempt to register the time and spatial location of
an event far away, takes into account the effect of
the delay factor

* (In our ordinary daily life we are more of an
unintelligent observer)

+ For an intelligent observer, he have to redefine the
notion of “simultaneity”’ (example 38-2)

27

Example 38-2:
Simultaneity of the Two Towers

Frodo is an intelligent observer
standing next to Tower A,
which emits a flash of light
every 10 s. 100 km distant from
you 1s the tower B, stationary
with respect to you, that also
emits a light flash every 10 s.
Frodo wants to know whether
or not each flash is emitted
from remote tower B
simultaneous with (at the same
time as) the flash from Frodo’s
own Tower A. Explain how to
do this with out leaving Frodo
position next to Tower A. Be
specific and use numerical
values.

28




Solution

* Frodo are an intelligent observer, which means that he know
how to take into account the speed of light in determining
the time of a remote event, in this case the time of emission
of a flash by the distant Tower B. He measures the time
lapse between emission of a flash by his Tower A and his
reception of flash from Tower B.

« If this time lapse is just that required for light move from
Tower B to Tower A, then the two emissions occur the
same time.

* The two beacons are 100 km apart. Call this distance L.
Then the time ¢ for a light flash to move from B to A is

e t =Llc=10°m/3 x 108 m/s = 0.333 ms. (ANS)

« If this is the time Frodo records between the flash nearby
beacon A and reception of the flash from distant beacon
then he is justified in saying that the two Towers emit

flashes simultaneously in his frame. i

The problem of an intelligent

observer
For an intelligent observer, in
order to take care of the time
delay effect, she needs a
precise way to determine the
local time and (spatial)
location of an event

But how could she jot down
the local time of every event
since (1) she is not at the same
spot at which the event occurs
(i1) she does not already know
the location of every event
she wants to measure?
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Latticework Clocks

Event occurshere

Conceptually an intelligent observer
set up an latticewrok of meter sticks
and clocks

Events are then measured by
reading the distance of the lattice
site (where events occur) from an
reference location

However we need to synchronise all
the clocks so that they all read the
same reading at the beginning as
seen from the reference lattice site
Since the distance of all the lattice is
known we can use light to
synchronise all the lattice clock

Reference lattice site
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Latticework Clocks

Event occurshere

Station at every lattice site an
timekeepers

At 00.00am on the reference clock,
send out light pulse

Once a timekeeper at a lattice site
receives the light, she sets the local
clock to read (00.00 + //c) am,
where / is the distance from the
reference point

Then all the clocks in the same
time would read the same time by
the intelligent observer at the
reference point

(In fact they all read the same time
from any other points in the lattice)
All the clocks are said to have been

synchronised with respect to this -
lgtltlice 2 Reference lattice site

32




Ready to register events

» Within the frame of latticework, an intelligent
observer can now start to register the location and
time of an event that occur during an experiment,
with the time-delay effect well taken care of

* Analysing the results of that experiment means relating events
by collecting event data from all recording clocks in the lattice
and analysing these date at some reference location

* (Note: To collect data of the time an event that occurs at some
lattice site some distance away from the reference point, the
intelligent observer don’t travel to the site of the event to read
the clock there. She collects the data of the time the event by
reading the reading of the clock from a distance (i.e from the
reference point). -

Laboratory and Rocket Frames

Events can be measured in any frames of reference; non is privileged over
the other

Laboratory frame (at rest) and Rocket frame (one that coasts at constant
velocity)

E.g. a “pom-chat” event.

To the driver in the car (the rocket frame) the event occurs at the front tyre
For a lepak kaki at a mamak store, the pom-chat event occurs just in front
of the mamak stor

The upshot is: the same event is observed by two observers in two frame of
reference, both of which have equal status in observing and recording the
pom-chat
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Example 38-3: Synchronizing
Clocks

* You are stationed at a latticework clock
with the coordinates x =3 x 103 m, y =3 x
10® m and z = 0 m. The reference clock at
coordinates x =y = z = ( emits a reference
flash at exactly midnight on its clock. You
want your clock to be synchronized with
(set to the same time as) the reference clock.
To what time do you immediately set your
clock when you receive the reference flash?

35

Solution

* Your distance D from the reference clock is
e D=[(3x108m)2+(4x108m)2]%=5%108 m
» The time At that it takes the reference flash to

reach you is therefore

* At=Dlc=(5%x108 m)/(3 x 108 m)= 1.66 s.
* So when you receive the reference flash, you

quickly set your clock to 1.66 seconds after
midnight.

36
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Time dilation as direct consequence
of constancy of light speed

» According to the Principle of Relativity, the speed
of light is invariant (i.e. it has the same value) in
every reference frame (constancy of light speed)

* A direct consequence of the constancy of the speed
of light is time stretching

» Also called time dilation

» Time between two events can have different values
as measured in lab frame and rocket frames in
relative motion

* “Moving clock runs slow”

38
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Experimental verification of
time stretching with pions

* Pion’s halflife ¢, is 18 ns.

* Meaning: If N, of them is at rest in the beginning, after 18 ns, N,
/2 will decay

» Hence, by measuring the number of pion as a function of time
allows us to deduce its half life

» Considernow N, of them travel at roughly the speed of light ¢, the
distance these pions travel after #,=18 ns would be ct,, =5.4 m.

» Hence, if we measure the number of these pions at a distance 5.4
m away, we expect that N /2 of them will survive

» However, experimentally, the number survived at 5.4m is much
greater than expected

» The flying poins travel tens of meters before half of them decay

» How do you explain this? the half life of these pions seems to
have been stretched to a larger value!

» Conclusion: in our lab frame the time for half of the pions to

decay is much greater than it is in the rest frame of the pions!
40




RE 38-5

» Suppose that a beam of pions moves so fast that at
25 meters from the target in the laboratory frame
exactly half of the original number remain
undecayed. As an experimenter, you want to put
more distance between the target and your
detectors. You are satisfied to have one-eighth of
the initial number of pions remaining when they
reach your detectors. How far can you place your
detectors from the target?

e ANS:75m
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A Gedanken Experiment

e Since light speed ¢ is invariant (i.e. the same in all frames), it is
suitable to be used as a clock to measure time and space

e Use light and mirror as clock — light clock

e A mirror is fixed to a moving vehicle, and a light pulse leaves O” at
rest in the vehicle. O’ is the rocket frame.

e Relative to a lab frame observer on Earth, the mirror and O’ move
with a speed v.

In the rocket frame

* The light pulse is observed
to be moving in the
vertical direction only

» The distance the light
pulse traversed is 2d

* The total time travel by
the light pulse to the top,
get reflected and then
return to the source is A7=
2d/c

43

In the lab frame

» However, O in the lab frame
observes a different path
taken by the light pulse —it’s ¢
a triangle instead of a
vertical straight line

 The total light path is longer
=2l

o P=(cAt/2)?
—& + (Ax/2)?
— + (VAL2)?




Light triangle

We can calculate the
relationship between Az, AT
and v:

P=(cAt2)*>=d* +(vAt/2)?
(lab frame) — (©
A7=2d/c (Rocket frame)
Eliminating d,
T
f=———=p y=—r—=21
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Time dilation equation

« Time dilation equation t=l[vjz: d

C
* Gives the value of time AT between two events
occur a time At apart in some reference frame

1

« Lorentz factor 7~ (VJZ X
1_ —
C

* Note thatasv<<c,y=1l;asv=> ¢,y 2

» Appears frequently in SR as a measure of
relativistic effect: Y= 1 means little SR effect; y>>
1 is the ultra-relativistic regime where SR is most
pronounce

46

RE 38-6

* A set of clocks is assembled in a stationary boxcar. They
include a quartz wristwatch, a balance wheel alarm clock, a
pendulum grandfather clock, a cesium atomic clock, fruit
flies with average individual lifetimes of 2.3 days. A clock
based on radioactive decay of nuclei, and a clock timed by
marbles rolling down a track. The clocks are adjusted to
run at the same rate as one another. The boxcar is then
gently accelerated along a smooth horizontal track to a
final velocity of 300 km/hr. At this constant final speed,
which clocks will run at a different rate from the others as
measured in that moving boxcar?
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The Metric Equation

e From the light triangle in
lab frame and the vertical
light pulse in the rocket

cAt
2

frame: w
o P=(cAt2)*=d? + (Ax/2)%; ©
o d=cA72 N

=(cAt2)*=(cA72)*+(Ax/2)?
e If all the terms that refer to
the lab frame are on the right: (cA7)>=(cAt)*-(Ax)?

48




“the invariant space-time
interval”

We call the RHS, s = (cA?)>-(Ax)* “invariant space-time interval squared” (or
sometimes simply “the space-time interval”)

In words, the space-time interval reads:

5% = (cxtime interval between two events as observed in the frame)? - (distance
interval between the two events as observed in the frame)?

We can always calculate the space-time intervals for any pairs of events

The interval squared s? is said to be an invariant because it has the same value
as calculated by all observers

Obviously, in the light-clock gadanken experiment, the space-time interval of
the two light pulse events s = (cAf)>-(Ax)* = (AT)? is positive because (AT)>> 0
The space-time interval for such two events being positive is deeply related to
the fact that such pair of events are causally related

The space-time interval of such event pairs is said to be ‘time-like’ (because the
time component in the interval is larger in magnitude than the spatial
component)

Not all pairs of events has a positive space-time interval

Pairs of events with a negative value of space-time interval is said to be
“space-like”, and these pairs of event cannot be related via any causal relaion

RE 38-8

Points on the surfaces of the Earth and the Moon that face
each other are separated by a distance of 3.76 x 108 m.

(a) How long does it take light to travel between these
points?

A firecraker explodes at each of these two points; the time
between these explosion is one second.

(b) What is the invariant space-time interval for these two
events?

Is it possible that one of these explosions caused the other
explosion?
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Solution

(a) Time taken is
t=L/c=3.76x108m/3x 108 m/s=1.25s
(b) s*=(ct)*-L?
= (3x10% m/s x 1.25 8)>2 —(3.76x108 m)? =-7.51 m?
(space-like interval)

(c) It is known that the two events are separated by only 1 s.
Since it takes 1.25 s for light to travel between these point, it
is impossible that one explosion is caused by the other, given
that no information can travel fast than the speed of light.

Alternatively, from (b), these events are separated by a space-
like space-time interval. Hence it is impossible that the two
explosions have any causal relation because
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Proper time

Imagine you are in the rocket frame, O’, observing
two events taking place at the same spot, separated
by a time interval Az (such as the emission of the
light pulse from source (EV1), and re-absorption
of it by the source again, (EV2))

Since both events are measured on the same spot,
they appeared at rest wrp to you

The time lapse AT between the events measured on
the clock at rest is called the proper time or
wristwatch time (one’s own time)
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Improper time

In contrast, the time lapse
measured by an observer
between two events not at the
same spot, i.e. Ax #0, are
termed improper time

E.g., the time lapse, A¢,
measured by the observer O
observing the two events of

light pulse emission and i

absorption in the train is
improper time since both events
appear to occur at different
spatial location according to
him.

Event 1 occurs
here atx =0

Event 2 occurs
here at x = vAt

53

Space and time are combined by the

metric equation: Space-time
52 =(cAty-(Ax) =
invariant=(At)?

e The metric equation says
(cAf)>~(Ax)? = invariant
=(At)? in all frames

e [t combines space and

time in a single expression
on the RHS!! ¥?

e Meaning: Time and space
are interwoven in a fabric
of space-time, and is not
independent from each
other anymore (we used to
think so in Newton's
absolute space and
absolute time system)

The space-time invariant is the 1+1
dimension Minkowsky space-time

analogous to the 3-D Pythagoras
theorem with the hypotenuse 2= x2+ 2.
However, in the Minkowsky space-time
metric, the space and time components
differ by an relative minus sign 54

s2 relates two different measures
of time between the same two

events
s2 =(cAt)*~(Ax)? = invariant=(At)?

* (1) the time recorded on clocks in the reference frame in
which the events occur at different places (improper time,
Af), and

* (2) the wristwatch time read on the clock carried by a
traveler who records the two events as occurring a the
same place (proper time, A7)

¢ In different frames, Af and Ax measured for the same two
events will yield different values in general. However, the
interval squared, (cAf)%-(Ax)? will always give the same
value, see example that ensues
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Example of calculation of space-
time interval squared

e In the light-clock gedanken experiment: For O,

he observes the proper time interval of the two

light pulse events to be Az For him, Ax =0

since these events occur at the same place

Hence, for O’,

s "2 = (cxtime interval observed in the frame)? -
(distance interval observed in the frame)?

= (cATP - (Ax")2= (cAT)?

For O, the time-like interval for the two events

is SZ—(cAt)2 (Ax)> = (c;Al?)2 (vAt 2= (c JAT)?-

(V)AT)? = P (VAT = AT =5~
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What happens at high and low speed
t=yt Ty
()

» Atlow speed, v <<¢, y=1, and T = ¢, not much
different, and we can’t feel their difference in
practice

» However, at high speed, proper time becomes
much larger than improper time in comparison

» A journey that takes, say, 10 years to complete,
according to a traveler on board (this is his proper
time), looks like as if they take 10y yr according to

Earth observers. -

Space travel with time-dilation

A spaceship traveling at speed v = 0.995c¢ is sent to planet
100 light-year away from Earth

How long will it takes, according to a Earth’s observer?

At =100 1y/0.995¢ = 100.05yr

But, due to time-dilation effect, according to the traveler on
board, the time taken is only

At= At/y= An(1-0.9952) = 9.992 yr, not 100.05 yr as
the Earthlings think

So it is still possible to travel a very far distance within
one’s lifetime (At = 50 yr) as long as ¥ (or equivalently, v)
is large enough
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Nature’s Speed Limit

» Imagine one in the lab measures the speed of a rocket v to
be larger than c.

2
* As aconsequence, according to , _; 1_(3\
C
the proper time measurement AT in the rocket would be
proportional to an imaginary number, i =V(-1)
 This is unphysical (and impossible) as no real time can be
proportional to an imaginary number

» Conclusion: no object can be accelerated to a speed greater
than the speed of light in vacuum, ¢

* Or more generally, no information can propagate faster
than the light speed in vacuum, ¢

* Such limit is the consequence required by the logical
consistency of SR
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Time dilation in ancient legend

KET—H, NEE+HE

One day in the heaven, ten years in the
human plane

60




RE 38-7

* Find the rocket speed v at which the time At
between ticks on the rocket is recorded by
the lab clock as Af = 1.01At
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Satellite Clock Runs Slow?

* An Earth satellite in circular orbit just above the
atmosphere circles the Earth once every 7= 90 min. Take
the radius of this orbit to be » = 6500 kilometers from the
center of the Earth. How long a time will elapse before the
reading on the satellite clock and the reading on a clock on
the Earth’s surface differ by one microsecond?

» For purposes of this approximate analysis, assume that the
Earth does not rotate and ignore gravitational effects due
the difference in altitude between the two clocks
(gravitational effects described by general relativity).
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Solution

First we need to know the speed of the satellite in orbit. From the
radius of the orbit we compute the circumference and divide by the
time needed to cover that circumference:

v =2m/T = (21x6500 km)/(90 x60 s) = 7.56 km/s

Light %peed is almost exactly ¢ = 3 x 105 km/s. so the satellite moves
at the fraction of the speed of light given by

(v Ie)? = [(7.56 km/s)/(3x105 kn/s)]? = (2.52 x10%)2 = 6.35x10-10

The relation between the time lapse Az recorded on the satellite clock
and the time lapse Az on the clock on Earth (ignoring the Earth’s
rotation and gravitational effects) is given by .

We want to know the difference between Af and At i.e. A7 - At:

We are asked to find the elapsed time for which the satellite clock
and the Earth clock differ in their reading by one microsecond

Rearrange the above equation to read
This is approximately one hour. A difference of one microsecond
between atomic clock is easily detectable.
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EEk! THE TEST 15 FIVE MINUTES! Twe MINUTES! MOVING  THERE'S oNE
OVER N 10 MINUTES!
1

CLOCKS RUN 1N EVERY
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Two events that are simultaneous
in one frame are not necessarily
simultaneous in a second frame

1n uniform relative motion

e This is due to the invariance of the
space-time invariant in all frames, (i.e.
the invariant must have the same value

for all frames) No, I don’t agree. These two lightning
does not strike simultaneously

o, o -ikes
simultaneously 66

How invariance of space-time

interval explains disagreement on Einstein Train illustration

* Lightning strikes the

SlmUItanelty by tWO Observers fI‘OIlt‘ and baCk Ofa I am equidistant from the front and back char
¢ Consider a pair of events with space-time interval moving train, leaving marliis on theftrain. Ligglt haslthe stgr}daéd N
8 _ , - speed in my frame, and equal speed in bot]
s2=(cAt)*-(Ax)* =(cAt ")*-(Ax ) char marks qn both direction. The flash from the front of the train
¢ where the primed and un-primed notation refer to space track and train. Each ?ﬁrl\f/ed tﬁrSft,t }tlhetrreforg thte %ﬁshfmutstl ‘hzlil\t/rﬁi'leﬁ
i i i i . e front of the train first. The front lightning
anﬁ tilme cooordéngt,es of two frames at relative motion (lets emitted flash spreads | ol fell first before the rear light bolt Tell.
call them O an ) . o . out in all directions. conclude that the two strokes are not
e Say O observes two simultaneous event in his frame (i.e. simultaneous.

At = 0) and are separate by a distance of (Ax), hence the Em—
space-time interval is s2= - (Ax)?2 :
¢ The space-time interval for the same two events observed

in another frame, O, s2 = (cAt")?- (Ax ")? must read the
same, as - (Ax)?

e Hence, (cAt’)?= (Ax")? - (Ax)* which may not be zero on
the RHS. i.e. Az’ is generally not zero. This means in
frame O’, these events are not observed to be occurring
simultaneously 67

I stand by the tracks halfway between the
char marks on the track. The flashes from
the strokes reach me a the same time and I
am equidistance from the char marks on the
track. I conclude that two events were
simultaneous
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RE 38-9

Susan, the rider on the train pictured

in the figure is carrying an audio tape

player. When she received the light

flash from the front of the train she . . ——
switches on the tape player, which R e e

plays very loud music. When she
receives the light flash from the back ; ; _ =
end of the train, Susan switches off jemsamannsssivne | ] Jusnannemssions iy

o i o - =
the tape player. Will Sam, the '
observers on the ground be able to
hear the music? [FE—Y [Fe———

Later Susan and Sam meet for coffee
and examine the tape player. Will they
agree that some tape has been wound
from one spool to the other?

The answer is: ...
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Touchstone Example 38-5: Principle
of Relativity Applied

« Divide the following items into two lists, On one list, labeled SAME, place
items that name properties and laws that are always the same in every frame.
On the second list, labeled MAY BE DIF FERENT. place items that name
properties that can be different in different frames:

« a. the time between two given events

« b. the distance between two given events

* c. the numerical value of Planck’s constant h

¢ d. the numerical value of the speed of light ¢

* e. the numerical value of the charge e on the electron
« f. the mass ni of an electron (measured at rest)

» g. the elapsed time on the wristwatch of a person moving between two given
events

» h. the order ot elements in the periodic table

« i. Newton’s First Law of Motion (“A particle initially at rest remains at rest,
and ...”)

* j. Maxwell’s equations that describe electromagnetic fields in a vacuum
» k. the distance between two simultaneous events
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Solution

THE SAME IN ALL FRAMES MAY BE DIFFERENT IN
* c. numerical value of / DIFFERENT FRAMES
o d. numerical value of ¢ * a.time between two given
¢ e. numerical value of e CVCI'ltS )
» f. mass of electron (at rest) ‘ Ig‘./éllllitsance Riireen twoRge

* g. wristwatch time between two

¢ h. order of elements in the
periodic table

¢ 1. Newton’s First Law of
Motion

e j. Maxwell’s equations

* k. distance between two
simultaneous events
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Relativistic Dynamics
Where does E=mc? comes from?

By Einstein's postulate, the observational law of
linear momentum must also hold true in all frames
of reference

m,u
myu,

— @ O —

M;Vy m,Vv,

Conservation of linear momentum classically means

myU; +MyuU; = MyVy +MyV, 7




Modification of expression of linear
momentum

* Classically, p = mv. In the other frame, p> =m’v ’; the
mass m’ (as seen in frame O’) is the same as m (as
seen in O frame) — this is according to Newton’s
mechanics

* However, simple consideration will reveal that in
order to preserver the consistency between
conservation of momentum and the LT, the definition
of momentum has to be modified such that m’ is not
equal to m.

* That is, the mass of an moving object, m, is different
from its value when it’s at rest, m,,

73

In other words...

¢ In order to preserve the consistency between Lorentz
transformation of velocity and conservation of linear
momentum, the definition of 1-D linear momentum,
classically defined as p_;,.;..; = MV, has to be
modified to

P, = mv = ymgv (where the relativisitic mass m = ym,,
is not the same the rest mass m,

e Read up the text for a more rigorous illustration why
the definition of classical momentum is inconsistent
with LT
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Pictorially...

I see the momentum
of M as p = mv=myyv

I see M is at rest. Its mass
is my, momentum, p’ = 0
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Two kinds of mass

e Differentiate two kinds of mass: rest mass
and relativistic mass

® m, = rest mass = the mass measured in a
frame where the object is at rest. The rest
mass of an object must be the same in all
frames (not only in its rest frame).

e Relativistic mass m = ym,. The relativistic
mass is speed-dependent
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Behaviour of pgy as compared to

| Pclassic
sof = | e (Classical momentum is
' | constant in mass, P jsic = MoV

| e Relativistic momentum is pgg

/ =mypw
* pSR/pclassic: }/eooasvec

R ¢ In the other limit, v << ¢

Psr /pclassic =1

Figure 28.7 This graph shows how
the ratio of the magnitude of the
relativistic momentum to the magnitude
of i lativistic momentum
Increases

approaches the speed of light. 77

as the speed of an object

Example

The rest mass of an electron is m, = 9.11 x 10-3'kg.

Mm@
VI

If 1t moves with v = 0.75 ¢, what is its relativistic
momentum?

p = mypm .

Compare the relativistic p with that calculated
with classical definition
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Solution

» The Lorentz factor is
v=[1-(v/c)*] V2 =[1-(0.75¢/c)?] "V*=1.51
» Hence the relativistic momentum is simply
p=7Ymyx0.75¢c
= 1.51 x9.11 x 103'kg x 0.75 x 3 x 108 m/s
= 3.1 x 102 Ns

* In comparison, classical momentum gives p,«ical
=myx 0.75¢ = 2.5 x 1022 Ns — about 34% lesser

than the relativistic value
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Work-Kinetic energy theorem

e Recall the law of conservation of mechanical
energy:

Work done by external force on a system,
W = the change in kinetic energy of the
system, AK
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K ok

F

S S S S S LSS S S ST S S S S

S
Aservation of mechanical energy: W= AK

W= Fs
The total energy of the object, £ = K + U. Ignoring potential energy,
E of the object is solely in the form of kinetic energy. If K| = 0, then
E = K,. But in general, U also needs to be taken into account for £.

@In classical mechanics, mechanical energy (kinetic +
potential) of an object is closely related to its momentum and
mass

#Since in SR we have redefined the classical mass and
momentum to that of relativistic version

<i>m class

<%>pclass = mclassv 9 pSR = (mOY)v

(cosnt, = mg) = mgg = myy

@we must also modify the relation btw work and energy so that
the law conservation of energy is consistent with SR

@E.g, in classical mechanics, K

class

relationship has to be supplanted by the relativistic version
K

class

®We will like to derive K in SR in the following slides

=mv¥/2 > Ko, = E— myc? = ym,c? - myc?
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Force, work and kinetic energy

e When a force is acting on an object with rest mass
m,, it will get accelerated (say from rest) to some
speed (say v) and increase in kinetic energy from 0
to K

K as a function of v can be derived from first principle
based on the definition of:

Force, F'=dp/dt,
work done, W= IF dx,

and conservation of mechanical energy, AK = W
83

Derivation of relativistic kinetic
energy

Force = rate change of
omentum
/ \4 )
dp (dp dx
X =
=

Chain rule in
calculus

v x=jd—pvdv
y dv

.- X
where, by definition, 3 =_—_  is the velocity of the
dt  object

= p*2m = 2mv*/2. However, this




Explicitly, p =y myv,
Hence, dp/dv = d/dv (Yymv)
=my [v (dy/dv) +17]
= mg [y + (v?/c?) ¥¥] = mq (1-v?/c?) 32

in which we have inserted the relation

d d 1 % 1 v
ar _v AP

A dv v 2Y7
1-— 1-—
c c

integrate

2 \3/2
W:mOJ‘Ov( —Z—ZJ dv y

BS

e E = mc? is the total relativistic energy of an moving
object
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* Or in other words, the total relativistic energy of a
moving object is the sum of its rest energy and its
relativistic kinetic energy

E=mc’ =myc’ +K

@ The (relativistic) mass of an moving object m is
larger than its rest mass m,, due to the contribution
from its relativistic kinetic energy — this is a pure
relativistic effect not possible in classical
mechanics

& E = mc? relates the relativistic mass of an object to
the total energy released when the object is
converted into pure energy
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2 2
K=mc” —myc

* When a given particle is not at rest in a
given reference frame, its momentum p is
not zero as measured in that frame.

* In this case the total particle energy (the
total relativistic energy), £, must be greater
than its rest value, E,,.

» The increase in energy due to its motion is
the kinetic energy, K = AE=E - E,
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2 2 2
K =mc” —my” =Amc

* One could also think that the kinetic energy gained by an
moving object is ‘stored’ in the form of the mass increase
of the object

* As asimile, imagine a man who is craze about cars.

* When his is poor, he owns a proton. When he earn an extra
income, he uses them up to buy a new Toyota

» Here, the extra income is a simile to the kinetic energy
gained, K

» The upgrade in car status (from Proton to Toyota) is a
simile to the increase in mass, Am
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Relativistic Kinetic Energy of an
electron

Kinetic energy (MeV)
.

o
Ultimate speed

.
..

0 1 2 3

Speed ( 10° m/s)

» The kinetic energy increases without limit as the particle
speed v approaches the speed of light

* In principle we can add as much kinetic energy as we want
to a moving particle in order to increase the kinetic energy
of a particle without limit

» What is the kinetic energy required to accelerate an electron
to the speed of light?
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Example, 10 kg of mass, if converted into pure energy, it
will be equivalent to £ =mc?=10x (3 x108) 2]

=9x10!7J
— equivalent to a few tons of TNT explosive
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So, now you know how E=mc?
comes about...
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Example 38-6: Energy of Fast
Particle

* A particle of rest mass m, moves so fast that
its total (relativistic) energy is equal to 1.1
times its rest energy.

* (a) What is the speed v of the particle?

» (b) What is the kinetic energy of the
particle?
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Solution

(a)

* Rest energy E, = mjc?

* We are looking for a speed such that the energy is 1.1 times
the rest energy.

*  We know how the relativistic energy is related to the rest
energy via

E=9E,=1.1E,

= 1/¥=1/1.12=1/1.21 = 0.8264
1-v%/c2=0.8264

= ¥/c2=1-0.8264 =0.1736

e = v=0.41662c

(b) Kinetic energy is K=E — E; = 1.1E, - E, = 0.1E;, =0.1 mc?
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Reduction of relativistic kinetic
energy to the classical limit

e The expression of the relativistic kinetic

energy
2

K =m,yc’ —myc
must reduce to that of classical one in the limit v/c
-2 0, ie.
2 2
0 _ p lassical (__ mOV
hm K relativistic ~— < (_ )
y<<e 2 mO 2
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Expand y with binomial expansion

e For u <<c, we can always expand 7y in terms of
(u/c)? as

5 \-172 2 4
Y= [1 _‘C)_ZJ = 1+2V?+ terms of order Z—4and higher

K =mc’ —myc® =y’ (y—1)

1 myv’
=myc’ || l+=—+...|-1| ==
2c 2
1.e., the relativistic kinetic energy reduces to

classical expression in the v << ¢ limit
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Example

¢ A microscopic particle
such as a proton can be
accelerated to extremely
high speed of v = 0.85¢
in the Tevatron at Fermi
National Accelerator
Laboratory, US.

¢ Find its total energy and
kinetic energy in eV.
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Solution

Due to mass-energy equivalence, sometimes we
express the mass of an object in unit of energy

* Electron has rest mass m,= 6.7 X 1027kg

e The rest mass of the proton can be expressed as
energy equivalent, via

J m,c? = 1.67x10-3"kg x (3 X 10%m/s)>

Solution

First, find the Lorentz factor, y=1.89
The rest mass of proton, mc?, is 939 MeV

Hence the total energy is
E =mc? =7y (myc*)=1.89 X 939 MeV = 1774 MeV

¢ Kinetic energy is the difference between the total
relativistic energy and the rest mass,

K=FE -my?= (1774 —939) MeV = 835 MeV
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° =1.5%10-107J
° =1.5x%x1010x (1.6){10'19)'1 eV
- = 939,375,000 &V = 939 MeV
98
Exercise

* Show that the rest mass of an electron is
equivalent to 0.51 MeV
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Conservation of Kinetic energy in
relativistic collision

e Calculate (1) the kinetic energy of the
system and (i1) mass increase for a
completely inelastic head-on of two balls
(with rest mass m, each) moving toward the
other at speed v/c = 1.5x10° (the speed of a
jet plane). M is the resultant mass after
collision, assumed at rest.

M
sfigie
mO m, 101

Solution

e (i) K=2mc?*- 2myc? = 2(y~1)mc?

< (11) Ebefore= Eafter = 27m002 = M=M= 27m0

e Mass increase AM = M - 2my = 2(y—1)m,

e Approximation: v/c = ...=1.5x100 = y==1 + Y2 v¥/c?
(binomail expansion) =M~ 2(1 + V2 v2/cP)m,

® Mass increase AM = M - 2m,,

. ~ (V/c?)my=1.5x10%m,

e Comparing K with AMc?: the Kinetic energy is not lost
in relativistic inelastic collision but is converted into the

mass of the final composite object, i.e. kinetic energy is
conserved

¢ In contrast, in classical mechanics, momentum is
conserved but kinetic energy is not in an inelastic

collision
102

Relativistic momentum and
relativistic Energy

In terms of relativistic momentum, the relativistic
total energy can be expressed as followed

2 2.2

cp
:}/2m c;p —7/2m0v :>——
c’ E*
2 4 2 4712
m;c mic'E
E2:72m(§c4: ° 2 :mgcz 20 7 2
=Y E°=c'p
e
Conservation of

2 2 2 2 4
E°= p ¢ +myC | energy-momentum
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Invariance in relativistic dynamics

¢ Note that E2 - p2c2 is an invariant, numerically equal to
my*ct

e i.e., in any dynamical process, the difference between the
total energy and total momentum of a given system must
remain unchanged

e In additional, when observed in other frames of reference,
the total relativistic energy and total relativistic momentum
may have different values, but their difference, E? - pc?
must remain invariant (i.e. to remain the same value in
different frames)

e Such invariance greatly simplify the calculations in
relativistic dynamics
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A mnemonic energy-momentum
invariance, E? - p*c? = mc?

* A useful mnemonic device
for recalling the relationships
between E,, p, K, and E. Note
that to put all variables in
energy units, the quantity pc
must be used

* Note that when m; =0, e.g.
for the case of photon, the
energy-momentum
invariance reduces to

= 2
E,=myc

E = pc = (h/M)c (later topic)
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Example: measuring pion mass
using conservation of momentum-
energy

¢ pi meson decays into a muon F massless neutrino

o [fthe mass of the muon is known to be 106 MeV/c2, and
the kinetik energy of the muon is measured to be 4.6 MeV,
find the mass of the pion

Before After

AT at rest Pt Ky 106

Solution

Relationship between Kinetic energy and momentum:

2 _ 22 2 4
E,=p,c +m;c

Conservation of relativistic energy: £, =E, + E,

2 _ 2 4 2 2 2 4 2.2
= m,.c —\/mﬂc +c'p, +\/)7(Vc +c'p,

_ 2 2 2
= m,c=\/m,c’+p,

Momentum conservation: p =Dy
Also, total energy = K.E. + rest energy pun o
- 2 -
E,=K,+m,c s
2 4

2
= pict =(K, +m,c*) —mich;

D= \/(K# +myc2 )2 —mic4

Plug pc’® = (K +m,c’ )2 —myc* into

c? ,/m ct+c? pﬂ +ap,

T
2 2 4 2\2 2 4
\/m c* + K +mﬂc) —m,c }+\/(Kﬂ+mﬂc ) —m,c

3

(K, +m,c ) (K;+2K,m,c?)

U

(4 6Me V+106M°'V 2J+ \/(4.6MeV)2+2(4.6MeV)(1061\feVJc2
C
= 111MeV ++/996MeV=143MeV
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“These days eierything is higher.”"
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Observing an event from lab frame and

rocket frame
Figure 1.13

Referente systems S and 5’ in relative motion. An event occurs at {x, 3,2, ¢} in & and
(', ¥, &', {7 in &' In this view, §' is moving through &

5} Event
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Lorentz Transformation

All inertial frames are equivalent

Hence all physical processes analysed in one frame
can also be analysed in other inertial frame and yield
consistent results

Any event observed in two frames of reference must
yield consistent results related by transformation laws

Specifically such a transformation law is required to
related the space and time coordinates of an event
observed in one frame to that observed from the other
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Different frame uses different
notation for coordinates

* O' frame uses {x')'z "t} to denote the
coordinates of an event, whereas O frame uses
{xy.z:t}

» How to related {x'y'z" ¢} to {x,y,z;¢}?

¢ In Newtonian mechanics, we use Galilean
transformation
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Two observers in two inertial frames
with relative motion use different
notation

I measures the coordinates of

M as {)f’t}; : g I measures the coordinates
Isee O’ moving with a of Mas {x",’}

velocity +v

I see O moving with a

N velocity -v
=) 1
] Object M |
0

O

X x’ 113

Galilean transformation
(applicable only for v<<c)

» For example, the spatial coordinate of the
object M as observed in O is x and is being
observed at a time ¢, whereas according to O’,
the coordinate for the space and time
coordinates are x’ and ¢’. At low speed v <<,
the transformation that relates {x’,¢’} to {x,t} is
given by Galilean transformation

o {X’=x-vt, t’ =t} (x’ and ¢’ in terms of x,?)
e {x=x"+vt, t=1"} (xand ¢ in terms of x',¢")
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Illustration on Galilean transformation

b t, —
* Assume object M is at restin the O frame,’hence the coérdinate of the object M
in O frame is fixed atx

« [Initially, when ¢t =¢" =0, O and O’ overlap
* O’ is moving away from O at velocity +v

* The distance of the origin of O’ is increasing with time. At time # (in O frame),
the origin of O’ frame is at an instantaneous distance of +v¢ away from O

¢ In the O’ frame the object M is moving away with a velocity —v (to the left)

* Obviously, in O’ frame, the coordinate of the object M, denoted by x’, is time-
dependent, being x’ = x — vt

* In addition, under current assumption (i.e. classical viewpoint) the rate of time
flow is assumed to be the same in both frame, hence 1 = ¢

x=vt v,

Object M : AN
0 ) |

4

()
x (fixed) x’ (not fixed, time dependent) 115

However, GT contradicts the SR
postulate when v approaches the
speed of light, hence it has to be
supplanted by a relativistic version
of transformation law when near-to-
light speeds are involved:
Lorentz transformation
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“Derivation of Lorentz transformation
F

‘\ (g4
\fx',y’.:',t')

11

Wavelront

{a}

Figure 1.13 A rocket moves with a speed
© along the xx’ axes. (a} A pulse of light is
sent out from the rocket at £ = ' = 0 when
the twn systems coincide. (b} Coordinates
of some point P on an expanding spherical
wavefront as measured by observers in both
inertial systems. (This figure is entirely
schematic, and you should not be misled by
the geometry.)

Our purpose is to find the transformation that relates {x,7} to {x ¢’}

Derivation of Lorentz transformation

Consider a rocket moving with a speed u (O' frame) along the
xx' direction wrp to the stationary O frame

A light pulse is emitted at the instant ¢'= ¢ = 0 when the two
origins of the two reference frames coincide

The light signal travels as a spherical wave at a constant speed ¢
in both frames

After in time interval of 7, the origin of the wave centred at O
has a radius r = ct, where r 2 = x? + 2 + z2

W‘auc&ou;:»“k

F

\\ [L XT3}
(LT S |

t=¢'=0

Light =ignal

.
o
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Arguments

e From the view point of O', after an interval ¢ the origin of the wave,

centred at O' has a radius:
et (R =P (R

* y=y, z'=z (because the motion of O'is along the xx’) axis — no change
for y,z coordinates (condition A)

e The transformation from x to x’ (and vice versa) must be linear, i.e. x ‘o< x
(condition B)

¢ Boundary condition (1): If v = ¢, from the viewpoint of O, the origin of O’
is located on the wavefront (to the right of O)

e = x'=0 must correspond to x = ct

e Boundary condition (2): In the same limit, from the viewpoint of O’, the
origin of O is located on the wavefront (to the left of O’)

e = x =0 corresponds to x = -ct”

o Putting everything together we assume the transformation that relates x ” to
{x, t} takes the form x = k(x - cf) as this will fulfill all the conditions (B)
and boundary condition (1) ; (k some proportional constant to be
determined)

e Likewise, we assume the form x = k(x "+ ¢ ') to relate x to {x , ¢'} as this
is the form that fulfill all the conditions (B) and boundary condition (%)9

Illustration of Boundary
condition (1)

x = ct (x’= ct’) is defined as the x-coordinate (x’-coordinate ) of the wavefront in the O (O”) frame
Now, we choose O as the rest frame, O’ as the rocket frame. Furthermore, assume O’ is moving
away to the right from O with light speed, i.e. v=+c

Since u = ¢, this means that the wavefront and the origin of O’ coincides all the time

For O, the x-coordinate of the wavefront is moving away from O at light speed; this is tantamount to
the statement that x = ct

From O’ point of view, the x’-coordinate of the wavefront is at the origin of it’s frame; this is
tantamount to the statement that x’ =0

Hence, in our yet-to-be-derived transformation, x” = 0 must correspond to x = ct

The time now is . .

The x-coordinate of the D
wavefront is located at the h
distance x = ct, coincident

with O’ origin

The time now is
t’. The x -
coordinate of
the wavefront is
located at my

) - yﬁ frame’s origin,
O =¢t ,\O X' =0
wavefront
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Permuting frames

* Since all frames are equivalent, physics analyzed
in O’ frame moving to the right with velocity +v is
equivalent to the physics analyzed in O frame
moving to the left with velocity —v

* Previously we choose O frame as the lab frame

and O’ frame the rocket frame moving to the right
(with velocity +v wrp to O)

» Alternatively, we can also fix O’ as the lab frame
and let O frame becomes the rocket frame moving
to the left (with velocity —v wrp to O”)
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Illustration of Boundary
condition (2)

*  Now, we choose O’ as the rest frame, O as the rocket frame. From O’ point of view, O

is moving to the left with a relative velocity v=- ¢

* From O’ point of view, the wavefront and the origin of O coincides. The x’-coordinate
of the wavefront is moving away from O at light speed to the left; this is tantamount to
the statement that x”’ = -ct’

«  From O point of view, the x-coordinate of the wavefront is at the origin of it’s frame;
this is tantamount to the statement that x =0

Hence, in our yet-to-be-derived transformation, x = 0 must correspond to x’ = ct’

- 4

The time now is #°.
The x’-coordinate
of the wavefront is
located at the
distance x’ = -ct’,
coincident with O
origin

The time now is .

The x-coordinate of the
wavefront is located at my
frame’s origin, x = 0

[ S 122

Finally, the transformation obtained

e We now have

o r=cet,P=x2+y2+ 25 y=y, ' =z x = k(x' + ct');

o =t r't=x2+y?2 + 22, x = k(x - ct);

e With some algebra, we can solve for {x',t'} in terms of {x,¢} to obtain the
desired transformation law (do it as an exercise)

e The constant & turns out to be identified as the Lorentz factor, ¥

xvzx_—”tzzy(x—ul) t':ﬂ:y[f—(”/cz)xJ
e
v c

(x* and ¢’ in terms of x,?)
123

Space and time now becomes state-
of-motion dependent (via )

* Note that, now, the length and time interval
measured become dependent of the state of
motion (in terms of %) — in contrast to Newton's
classical viewpoint

» Lorentz transformation reducesto Galilean
transformation when v << ¢ (show this
your self)

e ie.LT = GT inthelimit v<<c
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How to express {x, t} interms of {x¢"}?

e We have expressed {x',¢'} in terms of {x,¢ }
as per

t—(v/c2 X

xvzx;vlzzy(x—vt) tvz—)zzy[t—(v/CZ)XJ
T
c c

e Now, how do we express {x, ¢ } interms of
{x;t}?
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Simply permute the role of x and x’
and reverse the sign of v

x> x\v—o—y
x'=y(x—vt) > x=y(x+vt")
t'= }/[t—(v/cz)x] —t= }/[t'+(v/cz)x'}

The two transformations above are equivalent; use which is
appropriate in a given question
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Length contraction

e Consider the rest length of a ruler as measured in frame O’ is
L= Ax’=x" - x’, (proper length) measured at the same
instance in that frame (15=19)

e What is the length of the rule as measured by O?

e The length in O, according the LT is
L'=Ax"=x% -x7= yl(x,-x;) = W(t,-t,)] (improper length)

e The length of the ruler in O is simply the distance btw x, and
x, measured at the same instance in that frame (z,= ¢,)

® As aconsequence, we obtain the relation between the proper
length measured by the observer at rest wrp to the ruler and
that measured by an observer who is at a relative motion wrp
to the ruler:

L=yL

127

Moving rulers appear shorter

L=yL
Lis defined as the proper length = length of and object
measured in the frame in which the object is at rest

L is the length measured in a frame which is moving wrp
to the ruler

If an observer at rest wrp to an object measures its length
to be L, an observer moving with a relative speed u wrp to
the object will find the object to be shorter than its rest
length by a factor 1 /vy

i.e., the length of a moving object is measured to be shorter
than the proper length — hence “length contraction”

In other words, a moving rule will appear shorter!!

128




Example of a moving ruler

f—
o

Consider a meter rule is carried
on beard in a rocket (call the

rocket frame Q) —— ==
An astronaut in the rocket I 1 S i O {5 {5

measure the length of the ruler. The ruler is at rest when
Since the ruler is at rest wip to I measure it. Its length is
the astronaut in O’, the length L =1.00m
measured by the astronaut 1s the i

proper length, L, = 1.00 m, see
(a)

Now consider an observer on the
lab frame on Earth. The ruler

appears moving when viewed by i & )
the lab observer. If the lab —_—
observer attempts to measure the T ,
ruler e ¥

The ruler is at moving at a e —

speed v when I measure it. Its (7_ : 1 ‘
length is L = 0.999 m § (b) '\9

RE 38-11

» What is the speed v of a passing rocket in
the case that we measure the length of the
rocket to be half its length as measured in a
frame in which the rocket is at rest?
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Length contraction only happens
along the direction of motion

Example: A spaceship in the form of a triangle flies by an
oberver at rest wrp to the ship (see fig (a)), the distance x
and y are found to be 50.0 m and 25.0 m respectively.
What is the shape of the ship as seen by an observer who
sees the ship in motion along the direction shown in fig
(b)?

(a) (b)
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Solution

e The observer sees the horizontal length of the ship to
be contracted to a length of

e L=LJy=50m v(1-0.950%)=15.6m
e The 25 m vertical height is unchanged because it is

perpendicular to the direction of relative motion
between the observer and the spaceship.

(a) (b)
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Similarly, one could also time dilation
from the LT

Do i1t as homework
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What is the velocities of the ejected

stone?
 Imagine you ride on a rocket moving % ¢
wrp to the lab. From your rocket you launch
a stone forward at /2 ¢, as measured in your
rocket frame. What is the speed of the stone

observed by the lab observer?

The speed of the stone
as [ measure it is...

Yac, wrp to lab

Y2 ¢, wrp to the
rocket

Galilean transformation of velocity
(applicable only for u,v <<c¢)

* Now, say object M is moving as a velocity of v wrp to the lab
frame O

* What is the velocity of M as measured by O’?

» Differentiate x” = x — v¢ wrp to ¢ (=¢’), we obtain

. d(x’)/dt’ = d(x — ve)/dt = d(x)/dt — v

L J—
= u’ =u,—v

I see M moving with Object M

J u (as seen by O); u,” (as seen by O”)

velocity u,

I see M moving with
velocity u,’
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Adding relativistic velocities with

According to GT of velocity (whicl:h 1s valid at low speed regime u <<
)

the lab observer would measure a velocity of u,.=u,’+v="2c¢+ Yc
= 1.25 ¢ for the ejected stone.

However, in SR, c¢ is the ultimate speed and no object can ever exceed
this ultimate speed limit

So something is no right here...Galilean addition law is no more valid
to handle addition of relativistic velocities (i.e. at speed near to ¢)

Yac, wip to lab If T use GT, the speed of the stone
as is 1.25 ¢!!! It couldn’t be right

Y5 ¢, wrp to the
rocket




If applied to light Galilean transformation of
velocity
contradicts the SR Postulate

« Consider another case, now, a photon (particle of light) observed from different frames

* A photon. being a massless particle of light must move at a speed u, = ¢ when observed
in O frame

» However Galilean velocity addition law «,’ = u,— v, if applied to the photon, says that in
O’ frame, the photon shall move at a lower speed of u,"=u,—v=c—-v

« This is a contradiction to the constancy of light speed in SR

« Conclusion: GT cannot be applicable when dealing with object moving near or at the
speed of light

« It has to be supplanted by a more general form of transformation (that must, as a low-
velocity approximation, reduces to Galilean transformation)

I see the photon is moving photon

with a velocity u, = ¢ /
u, = c(as seen by 4 I see the photon is

\/ 0); u,’'=c—v(as — TV, moving with a
seen by O’) velocity u,”=c—
v, this couldn’t be
“ right
0) 0’1

Relativity of velocities

» The generalised transformation law of velocity used for addition
of relativistic velocities is called Lorentz transformation of
velocities, derived from the Lorentz transformation of space-
time

» Our task is to relate the velocity of the object M as observed by
O’ (i.e. u,’) to that observed by O (i.e. u,).

u, (as seen by O); u,’ (as

A ing Object M >
I see the object M is moving ® OVInE Nl / seen by O’)

with a velocity u,, I also see

O’ is moving with a velocity . I see the object M is
+v v i i
——% | moving with a
L— velocity u,’
|
0 O’ 138

Relativity of velocities

» Consider an moving object being observed by two observers,
one in the lab frame and the other in the rocket frame
* We could derive the Lorentz transformation of velocities by

taking time derivative wrp to the LT for space-time, see next
slide

u, (as seen by O); u,” (as

A moving Object M ’
I see the object M is moving ° ' / seen by O')

with a velocity u,, I also see

O’ is moving with a velocity I see the object M is
+v tv

P — moving with a

velocity u,’
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Derivation of Lorentz transformation
of velocities

e By definition, u, = dx/dt, u’_ = dx"/d¢’

e The velocity in the O frame can be obtained
by taking the differentials of the Lorentz
transformation

x'=y(x—vt) t'= 7/[t—(v/cz)x}
dx' = y(dx—vdt), dt' = y(dt - dx)
C
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Combining

dx dt
. dx" _ y(dx—vdt) dt(dt_vdt]

u =
X ' v
' yde—" dv) dz(‘”-vzdx\
I c’ dt ¢ dt)
==
C

where we have made used of the definition
u, = dx/dt
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Comparing the LT of velocity with
that of GT
Lorentz transformation of velocity:

_dx'  u v
toodt!

ul

uy
—__ X
1 2

. . c
Galilean transformation of velocity:
' — —
u. =u —v

GT reduces to LT in the limit %, V << 6'2
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e Please try to be clear about the definition
ofu., u’, vso that you wont get confused
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LT is consistent with the
constancy of speed of light

In either O or O’ frame, the speed of light seen must be
the same, c. LT is consistent with this requirement.

Say object M is moving with speed of light as seen by
O,ie.u.,=c

According to LT, the speed of M as seen by O’ is

' u.—v cC—V c—u c—V
u,= = = = 1 =
uy cv v
1- 2 1_7 1—* *,(C_V)
4 4 c c

That is, in either frame, both observers agree that the
speed of light they measure is the same, ¢ =3 x 103m/s
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How to express u, in terms of u "?

e Simply permute v with —v and change the
role of u,_ with that of "

' !
u,—u' u'. —>u ,v—>-v

Recap: Lorentz transformation
relates

X' €2 {xthu', €u,
x'=y(x—vt) 4= }/[t—(v/cz)x}

u,—v
u\y

2
C

u' =

X

1—

x=y(x'tvt")  r=y[re@ic)x]
u' +v
LT
1+—5
c 146

U _—v u' +v
u'x: : %ux: x'
U u' v
= 2 1 2
C c
RE 38-12

* A rocket moves with speed 0.9¢ in our lab
frame. A flash of light is sent toward from
the front end of the rocket. Is the speed of
that flash equal to 1.9 ¢ as measured in our
lab frame? If not, what is the speed of the
light flash in our frame? Verify your answer
using LT of velocity formula.
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Example (relativistic velocity
addition)

* Rocket 1 is approaching rocket 2 on a

head-on collision course. Each is moving at
velocity 4¢/5 relative to an independent
observer midway between the two. With
what velocity does rocket 2 approaches
rocket 1?
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Diagramatical translation of the
question in text— — ~_

4 I ses O amidachnt |
| | \

i ‘.ﬁrnm !EF."M-'HF.‘
| U I #

L septhe Valpet o o
(_: '] vilde \; : i i _‘{I"_{‘_ 7
o (_LH' 2 as _.J = ”2 A
: ! u X A /z g TOoreiitron righ
-~ -’ o i Az -
D L # Py i ,_W\ L(l..-I:)'n'. ‘—"C{ A
T 6 A
i -2 ~ackef 2
jf_\_ — Je
) 4 _:-_'" _G
A e
rocket 1 e
<m G.f.ruj =i
'f'mm-o.)) W 34l

Note: c.f. in GT, their relative speed would just be 4¢/5 + 4¢/5=1.6 c —
which violates constancy of speed of light postulate. See how LT,

handle this situation:

Choose the observer in the middle as in the stationary frame, O
Choose rocket 1 as the moving frame O°

Call the velocity of rocket 2 as seen from rocket 1 «',. This is the
quantity we are interested in

Frame O' is moving in the +ve direction as seen in O, so v =+4¢/5
The velocity of rocket 2 as seen from O is in the

-ve direction, so u, = - 4¢/5

Now, what is the velocity of rocket 2 as seen from frame O', u ’ = ?
(intuitively,  *, must be in the negative direction)

* T ses O appraching
fom left hena
W=tLc;

ocketl fon right
he Bk

( 4cj (+ 4cj
Using LT: |, _w-v_\ 5 5) __420,
¥ u.y 4c 4c 41
22 e
c 5 S e
l_ﬁ
¢/ I ses O apracking |
/ frm left heow
T seathe Velgerhy ) = +E
I. J-l';"‘)il:’::_ﬁ:h:aha 7 ) o --}{' d
VS ; =t S rodketlfmn r
1) IX i A e i
O '- e I "//; H“\h i \l:lx" “'C ~
i 0 L ~pcket 2. N
T >- % —
rocket 1 L
<morin .
'fmmq) Wl | 4L

i.e. the velocity of rocket 2 as seen from rocket 1 (the moving
frame, O’) is —40c¢/41, which means that O’ sees rocket 2
moving in the —ve direction (to the left in the picture), as
expected. 151
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