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Introductory Quantum mechanicsIntroductory Quantum mechanics
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Probabilistic interpretation of matter Probabilistic interpretation of matter 
wavewave

3

A beam of light if pictured as monochromatic wave (λ, ν) 

A = 1 
unit 
area

Intensity of the light beam is

λ

A beam of light pictured in terms of photons A = 1 
unit 
area

Intensity of the light beam is I = Nhν

N = average number of photons per unit time crossing unit area 
perpendicular to the direction of propagation

E=hν

2
0 EcI ε=

Intensity = energy crossing one unit area per unit 
time. I is in unit of joule per m2 per second 4

•• Consider a beam of lightConsider a beam of light
•• In wave picture, In wave picture, EE = = EE00 sin(sin(kxkx––ωωtt), electric ), electric 

field in radiationfield in radiation
•• Intensity of radiation in wave picture isIntensity of radiation in wave picture is

2
0I cEε=

•• On the other hand, in the photon picture, On the other hand, in the photon picture, II = = NhNhνν
•• Correspondence principle: what is explained in the Correspondence principle: what is explained in the 

wave picture has to be consistent with what is wave picture has to be consistent with what is 
explained in the photon picture in the limit explained in the photon picture in the limit 
NN infinityinfinity: : 

νε NhEcI == 2
0

Probability of observing a photonProbability of observing a photon
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Statistical interpretation of radiationStatistical interpretation of radiation

•• The probability of observing a photon at a point in unit The probability of observing a photon at a point in unit 
time is proportional to time is proportional to NN

•• However, since However, since 
•• the probability of observing a photon must also the probability of observing a photon must also 

•• This means that the probability of observing a photon at This means that the probability of observing a photon at 
any point in space is proportional to the square of the any point in space is proportional to the square of the 
averaged electric field strength at that pointaveraged electric field strength at that point

ProbProb (x)       (x)       

2E∝2
0 EcNh εν =

2E∝

Square of the mean of the square of 
the wave field amplitude 6

What is the physical interpretation of What is the physical interpretation of 
matter wave?matter wave?

•• we will call the mathematical representation of the de we will call the mathematical representation of the de BroglieBroglie’’ss wave / matter wave / matter 
wave associated with a given particle (or an physical entity) aswave associated with a given particle (or an physical entity) as

The wave function, The wave function, ΨΨ

•• We wish to answer the following questions:We wish to answer the following questions:
•• Where is exactly the particle located within Where is exactly the particle located within ∆∆xx? the locality of a particle ? the locality of a particle 

becomes fuzzy when itbecomes fuzzy when it’’s represented by its matter wave. We can no more tell s represented by its matter wave. We can no more tell 
for sure where it is exactly located.for sure where it is exactly located.

•• Recall that in the case of conventional wave physics, |field ampRecall that in the case of conventional wave physics, |field amplitudelitude||2 2 is is 
proportional to the intensity of the wave). Now, what does |proportional to the intensity of the wave). Now, what does |ΨΨ ||22 physically physically 
mean? mean? 
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Probabilistic interpretation of (the Probabilistic interpretation of (the 
square of) matter wavesquare of) matter wave

•• As seen in the case of radiation field, As seen in the case of radiation field, 
|electric field|electric field’’s amplitudes amplitude||2 2 is proportional to the is proportional to the 
probability of finding a photonprobability of finding a photon

•• In exact analogy to the statistical interpretation of In exact analogy to the statistical interpretation of 
the radiation field, the radiation field, 

•• PP((xx) = ) = ||Ψ Ψ ||22 is interpreted as the probability is interpreted as the probability 
density of observing a material particledensity of observing a material particle

•• More quantitatively, More quantitatively, 
•• Probability for a particle to be found between Probability for a particle to be found between 

point a and b ispoint a and b is
∫∫ Ψ==≤≤
b

a

b

a

dxtxdxxPbxap 2|),(|)()(
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2| ( , ) |  is the probability to find the 

particle between  and   

b

ab
a

p x t dx

a b

= Ψ∫

•• It value is given by the area under the curve of It value is given by the area under the curve of 
probability density between probability density between a a and and bb
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Expectation valueExpectation value
•• Any physical observable in quantum mechanics, Any physical observable in quantum mechanics, O O (which is a (which is a 

function of position, function of position, xx), when measured repeatedly, will yield ), when measured repeatedly, will yield 
an expectation value of given byan expectation value of given by

•• Example, Example, O O can be the potential energy, position, etc. can be the potential energy, position, etc. 
•• (Note: the above statement is not applicable to energy and (Note: the above statement is not applicable to energy and 

linear momentum because they cannot be express explicitly as linear momentum because they cannot be express explicitly as 
a function of a function of xx due to uncertainty principle)due to uncertainty principle)……

2*

* *

O dx O dx
O

dx dx

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

Ψ Ψ Ψ
= =

ΨΨ ΨΨ

∫ ∫

∫ ∫
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Example of expectation value: Example of expectation value: 
average position measured for a average position measured for a 

quantum particlequantum particle
•• If the position of a quantum particle is If the position of a quantum particle is 

measured repeatedly with the same initial measured repeatedly with the same initial 
conditions, the averaged value of the conditions, the averaged value of the 
position measured is given by position measured is given by 

2

2

1

x dx
x x dx

∞

∞
−∞

−∞

Ψ
= = Ψ
∫

∫

11

ExampleExample

•• A particle limited to the A particle limited to the xx axis has the wave axis has the wave 
function function Ψ Ψ = = axax between between xx=0 and =0 and xx=1; =1; Ψ Ψ = = 
0 else where. 0 else where. 

•• (a) Find the probability that the particle can (a) Find the probability that the particle can 
be found between be found between xx=0.45 and =0.45 and xx=0.55. =0.55. 

•• (b) Find the expectation value <(b) Find the expectation value <x> x> of the of the 
particleparticle’’s positions position
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SolutionSolution

•• (a) the probability is(a) the probability is

•• (b) The expectation value is(b) The expectation value is

0.550.55 3
2 2 2 2

0.45 0.45

0.0251
3
xdx x dx a a

∞ ∞

−∞

⎡ ⎤
Ψ = = =⎢ ⎥

⎣ ⎦
∫ ∫

11 3 2
2 3 2

0 04 4
x ax x dx x dx a

∞

−∞

⎡ ⎤
= Ψ = = =⎢ ⎥

⎣ ⎦
∫ ∫
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Max Born and probabilistic Max Born and probabilistic 
interpretationinterpretation

•• Hence, a particle’s wave Hence, a particle’s wave 
function gives rise to a function gives rise to a 
probabilistic probabilistic 
interpretationinterpretation of the of the 
position of a particleposition of a particle

•• Max Born in 1926Max Born in 1926

German-British physicist who worked on the mathematical basis for 
quantum mechanics. Born's most important contribution was his 
suggestion that the absolute square of the wavefunction in the 
Schrödinger equation was a measure of the probability of finding 
the particle at a given location. Born shared the 1954 Nobel Prize in 
physics with Bothe 14

PYQ 2.7, Final Exam 2003/04PYQ 2.7, Final Exam 2003/04

•• A large value of the probability density of an A large value of the probability density of an 
atomic electron at a certain place and time atomic electron at a certain place and time 
signifies that the electron signifies that the electron 

•• A.A. is likely to be found thereis likely to be found there
•• B.B. is certain to be found thereis certain to be found there
•• C. C. has a great deal of energy therehas a great deal of energy there
•• D.D. has a great deal of chargehas a great deal of charge
•• E. E. is unlikely to be found thereis unlikely to be found there
• ANS:A, Modern physical technique, Beiser, MCP 25, pg. 802
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Particle in in an infinite wellParticle in in an infinite well
(sometimes called particle in a box)(sometimes called particle in a box)

•• Imagine that we put particle Imagine that we put particle 
(e.g. an electron) into an (e.g. an electron) into an 
““infinite wellinfinite well”” with width with width L L 
(e.g. a potential trap with (e.g. a potential trap with 
sufficiently high barrier)sufficiently high barrier)

•• In other words, the particle In other words, the particle 
is confined within 0 < is confined within 0 < xx < < LL

•• In Newtonian view the In Newtonian view the 
particle is traveling along a particle is traveling along a 
straight line bouncing straight line bouncing 
between two rigid walls between two rigid walls 
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•• The The ‘‘particleparticle’’ is no more pictured as a particle is no more pictured as a particle 
bouncing between the walls but a de bouncing between the walls but a de BroglieBroglie wave that wave that 
is trapped inside the infinite quantum well, in which is trapped inside the infinite quantum well, in which 
they form standing wavesthey form standing waves

However, in quantum view, particle However, in quantum view, particle 
becomes wavebecomes wave……
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Particle forms standing wave Particle forms standing wave 
within the infinite wellwithin the infinite well

•• How would the wave How would the wave 
function of the function of the 
particle behave inside particle behave inside 
the well?the well?

•• They form standing They form standing 
waves which are waves which are 
confined within confined within 
0 0 ≤≤ xx ≤≤ LL
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Standing wave in generalStanding wave in general
•• Shown below are standing waves which ends are Shown below are standing waves which ends are 

fixed at fixed at xx = 0 and = 0 and xx = = LL
•• For standing wave, the speed is constant), For standing wave, the speed is constant), vv = = λ λ ff = = 

constant)constant)
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Mathematical description of standing Mathematical description of standing 
waveswaves

•• In general, the equation that describes a standing wave In general, the equation that describes a standing wave 
(with a constant width (with a constant width LL) is simply: ) is simply: 

LL = = nnλλnn/2/2
n n = 1, 2, 3, = 1, 2, 3, …… (positive, discrete integer)(positive, discrete integer)

•• n n characterisescharacterises the the ““modemode”” of the standing waveof the standing wave
•• nn = 1 mode is called the = 1 mode is called the ‘‘fundamentalfundamental’’ or the first or the first 

harmonicharmonic
•• nn = 2 is called the second harmonics, etc.= 2 is called the second harmonics, etc.

λλnn are the wavelengths associated with the   are the wavelengths associated with the   nn--thth mode mode 
standing wavesstanding waves

•• The lengths of The lengths of λλnn is is ““quantisedquantised”” as it can take only as it can take only 
discrete values according to discrete values according to λλnn= 2= 2LL//nn
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Energy of the particle in the boxEnergy of the particle in the box
•• Recall thatRecall that

•• For such a free particle that forms standing waves in the box, iFor such a free particle that forms standing waves in the box, it t 
has no potential energy has no potential energy 

•• It has all of its mechanical energy in the form of kinetic energIt has all of its mechanical energy in the form of kinetic energy y 
only only 

•• Hence, for the region 0 < Hence, for the region 0 < xx < < L , L , we write the total energy of we write the total energy of 
the particle asthe particle as

⎩
⎨
⎧

<<
≥≤∞

=
Lx
Lxx

xV
0,0

,0,
)(

EE = = K K + + VV = = pp22/2/2mm + 0 = + 0 = pp22/2/2mm
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Energies of the particle are  Energies of the particle are  
quantisedquantised

•• Due to the quantisation of the standing wave Due to the quantisation of the standing wave 
(which comes in the form of (which comes in the form of λλnn = 2= 2LL//nn),),

•• the momentum of the particle must also be  the momentum of the particle must also be  
quantised due to de quantised due to de Broglie’sBroglie’s postulate:postulate:

L
nhhpp

n
n 2

==→
λ

It follows that the total energy of the particle It follows that the total energy of the particle 
is also quantised:is also quantised:
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The The nn = 1 state is a characteristic state called the ground = 1 state is a characteristic state called the ground 
state = the state with lowest possible energy (also called state = the state with lowest possible energy (also called 
zerozero--point energy )point energy )

Ground state is usually used as the reference state when Ground state is usually used as the reference state when 
we refer to ``excited stateswe refer to ``excited states’’’’ (n = 2, 3 or higher)(n = 2, 3 or higher)

The total energy of the The total energy of the nn--thth state can be expressed in term state can be expressed in term 
of the ground state energy asof the ground state energy as

(n = 1,2,3,4(n = 1,2,3,4……))

The higher The higher nn the larger is the energy levelthe larger is the energy level

2

22
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•• Some terminologySome terminology
•• nn = 1 corresponds to the ground state= 1 corresponds to the ground state
•• nn = 2 corresponds to the first excited state, etc= 2 corresponds to the first excited state, etc

•• Note that lowest possible energy for a Note that lowest possible energy for a 
particle in the box is not zero but particle in the box is not zero but 
EE00 (= (= EE11 ), the zero), the zero--point energy.point energy.

•• This a result  consistent with the This a result  consistent with the 
Heisenberg uncertainty principleHeisenberg uncertainty principle

n = 1 is the ground 
state (fundamental 
mode): 2 nodes, 1 
antinode

n = 2 is the first 
excited state, 3 
nodes, 2 antinodes

n = 3 is the second 
excited state, 4 
nodes, 3 antinodes
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Simple analogy
• Cars moving in the right lane on the highway are in 

‘excited states’ as they must travel faster (at least 
according to the traffic rules). Cars travelling in the left 
lane are in the ``ground state’’ as they can move with a 
relaxingly lower speed. Cars in the excited states must 
finally resume to the ground state (i.e. back to the left 
lane) when they slow down

Ground state excited states
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Example on energy levelsExample on energy levels
•• Consider an electron confined by electrical Consider an electron confined by electrical 

force to an infinitely deep potential well whose force to an infinitely deep potential well whose 
length length LL is 100 pm, which is roughly one is 100 pm, which is roughly one 
atomic diameter. What are the energies of its atomic diameter. What are the energies of its 
three lowest allowed states and of the state three lowest allowed states and of the state 
with with nn = 15?= 15?

•• SOLUTIONSOLUTION
•• For For nn = 1, the ground state, we have = 1, the ground state, we have 

( )
( )( ) eV7.37J103.6

m10100kg101.9
Js1063.6

8
)1( 18

21231

234

2

2
2

1 =×=
××

×== −

−−

−

Lm
h

E
e
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eV8481eV7.37225)15(

eV339eV7.379)3(

eV150eV7.374)2(

1
2

15

1
2

3

1
2

2

=×==

=×==

=×==

EE

EE

EE

•• The energy of the remaining states (The energy of the remaining states (nn=2,3,15) =2,3,15) 
are are 
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•• When electron makes a transition from the When electron makes a transition from the nn = = 
3 excited state back to the ground state, does 3 excited state back to the ground state, does 
the energy of the system increase or decrease?the energy of the system increase or decrease?

•• Solution:Solution:
•• The energy of the system decreases as energy The energy of the system decreases as energy 

drops from 299 drops from 299 eVeV to 150 to 150 eVeV
•• The lost amount |The lost amount |∆∆EE| = | = EE3 3 -- EE11 = 299 = 299 eVeV –– 150 150 

eVeV is radiated away in the form of is radiated away in the form of 
electromagnetic wave with wavelength electromagnetic wave with wavelength λ λ 
obeying obeying ∆∆EE = = hchc//λλ

Question continuedQuestion continued
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n = 1

n = 3

Photon with 

λ = 8.3 nm ExampleExample
Radiation emitted during deRadiation emitted during de--excitationexcitation

•• Calculate the wavelength of the Calculate the wavelength of the 
electromagnetic radiation electromagnetic radiation 
emitted when the excited emitted when the excited 
system at system at n n = 3 in the previous = 3 in the previous 
example deexample de--excites to its excites to its 
ground stateground state

•• SolutionSolution
λ λ == hchc/|/|∆∆E|E|

•• = 1240 nm. = 1240 nm. eVeV / (|E/ (|E3 3 -- EE11|)|)
•• = 1240 nm. eV/(299 = 1240 nm. eV/(299 eVeV––150 150 eVeV) ) 

=   8.3 nm=   8.3 nm



29

ExampleExample
macroscopic particlemacroscopic particle’’s quantum states quantum state

•• Consider a 1 microgram speck of dust moving Consider a 1 microgram speck of dust moving 
back and forth between two rigid walls back and forth between two rigid walls 
separated by 0.1 mm. It moves so slowly that it separated by 0.1 mm. It moves so slowly that it 
takes 100 s for the particle to cross this gap. takes 100 s for the particle to cross this gap. 
What quantum number describes this motion?What quantum number describes this motion?
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SolutionSolution
•• The energy of the particle is The energy of the particle is 

( ) ( ) J105s/m101kg101
2
1

2
1)( 222692 −−− ×=×××=== mvKE

•• Solving for Solving for nn in in 
2

22
2

2mL
nEn

π
=

•• yields yields 141038 ×≈= mE
h
Ln

•• This is a very large numberThis is a very large number
•• It is experimentally impossible to distinguish between It is experimentally impossible to distinguish between 

the n = 3 x 10the n = 3 x 101414 and n = 1 + (3 x 10and n = 1 + (3 x 101414) states, so that ) states, so that 
the quantized nature of this motion would never reveal the quantized nature of this motion would never reveal 
itselfitself
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PYQ 4(a) Final Exam 2003/04PYQ 4(a) Final Exam 2003/04
•• An electron is contained in a oneAn electron is contained in a one--dimensional dimensional 

box of width 0.100 nm. Using the particlebox of width 0.100 nm. Using the particle--inin--aa--
box model,box model,

•• (i) (i) Calculate the Calculate the nn = 1 energy level and = 1 energy level and n n = 4 = 4 
energy level for the electron in energy level for the electron in eVeV..

•• (ii)(ii) Find the wavelength of the photon (in nm) Find the wavelength of the photon (in nm) 
in making transitions that will eventually get it in making transitions that will eventually get it 
from the from the thethe nn = 4 to = 4 to nn = 1 state = 1 state 

• Serway solution manual 2, Q33, pg. 380, modified
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SolutionSolution
•• 4a(i) In the particle4a(i) In the particle--inin--aa--box model, standing wave is box model, standing wave is 

formed in the box of dimension formed in the box of dimension LL: : 

•• The energy of the particle in the box is given by The energy of the particle in the box is given by 

•• 4a(ii)4a(ii)
•• The wavelength of the photon going from The wavelength of the photon going from nn = 4 to = 4 to nn = = 

1 is 1 is λλ = = hchc/(/(EE66 -- EE11))
•• = 1240 = 1240 eVeV nm/ (603 nm/ (603 –– 37.7) 37.7) eVeV = = 2.2 nm2.2 nm
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•• The quantum states of a macroscopic particle The quantum states of a macroscopic particle 
cannot be experimentally discerned (as seen in cannot be experimentally discerned (as seen in 
previous example)previous example)

•• Effectively its quantum states appear as a Effectively its quantum states appear as a 
continuumcontinuum

E(n=1014) = 5x10-22J

allowed energies in classical system 
– appear continuous (such as 
energy carried by a wave; total 
mechanical energy of an orbiting 
planet, etc.)

descret energies in quantised 
system – discrete (such as energy 
levels in an atom, energies carried 
by a photon)

∆E ≈ 5x10-22/1014

=1.67x10-36 = 10-17 eV

is too tiny to the discerned
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Example on the probabilistic Example on the probabilistic 
interpretation: interpretation: 

Where in the well the particle spend Where in the well the particle spend 
most of its time?most of its time?

•• The particle spend most of its time in places The particle spend most of its time in places 
where its probability to be found is largestwhere its probability to be found is largest

•• Find, for the Find, for the nn = 1 and for n =3 quantum states = 1 and for n =3 quantum states 
respectively, the points where the electron is respectively, the points where the electron is 
most likely to be foundmost likely to be found
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SolutionSolution
•• For electron in the n = 1 state, For electron in the n = 1 state, 

the probability to find the probability to find the the 
particle is highest at particle is highest at xx = = LL/2/2

•• Hence electron in the n =1 state Hence electron in the n =1 state 
spend most of its time there spend most of its time there 
compared to other placescompared to other places

•• For electron in the n = 3 state, the probability to find For electron in the n = 3 state, the probability to find the the 
particle is highest at particle is highest at xx = = LL/6,/6,LL/2, 5/2, 5LL/6/6

•• Hence electron in the n =3 state spend most of its time at Hence electron in the n =3 state spend most of its time at 
this three placesthis three places
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Boundary conditions and Boundary conditions and 
normalisationnormalisation of the wave function of the wave function 

in the infinite wellin the infinite well
•• Due to the probabilistic interpretation of the Due to the probabilistic interpretation of the 

wave function, the probability density wave function, the probability density PP((xx) = ) = 
||ΨΨ||2 2 must be such that must be such that 

•• PP((xx) = |) = |ΨΨ||2 2 > 0 for 0 < > 0 for 0 < xx < < LL
•• The particle has no where to be found at the The particle has no where to be found at the 

boundary as well as outside the well, boundary as well as outside the well, i.ei.e PP((xx) = ) = 
||ΨΨ||2 2 = 0 for = 0 for x x ≤≤ 0 and x 0 and x ≥≥ LL
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•• TheThe probability density is probability density is zero at the boundaries zero at the boundaries 

•• Inside the well, the particle is Inside the well, the particle is 
bouncing back and forth bouncing back and forth 
between the wallsbetween the walls

•• It is obvious that it must exist It is obvious that it must exist 
within somewhere within the within somewhere within the 
wellwell

•• This means:This means:

1||)(
0

2 =Ψ= ∫∫
∞

∞−

L

dxdxxP
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•• is called the is called the normalisationnormalisation condition of the wave condition of the wave 
functionfunction

•• It represents the physical fact that the particle is It represents the physical fact that the particle is 
contained inside the well and the integrated contained inside the well and the integrated 
possibility to find it inside the well must be 1possibility to find it inside the well must be 1

•• The The normalisationnormalisation condition will be used to condition will be used to 
determine the determine the normalisatonnormalisaton constant when we constant when we 
solve for the wave function in the solve for the wave function in the SchrodinderSchrodinder
equationequation

1||)(
0

2 =Ψ= ∫∫
∞

∞−

L

dxdxxP
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SchrodingerSchrodinger EquationEquation
Schrödinger, Erwin (1887-1961), 
Austrian physicist and Nobel laureate. 
Schrödinger formulated the theory of 
wave mechanics, which describes the 
behavior of the tiny particles that make 
up matter in terms of waves. 
Schrödinger formulated the 
Schrödinger wave equation to describe 
the behavior of electrons (tiny, 
negatively charged particles) in atoms. 
For this achievement, he was awarded 
the 1933 Nobel Prize in physics with 
British physicist Paul Dirac

40

What is the general equation that What is the general equation that 
governs the evolution and governs the evolution and behaviourbehaviour

of the wave function?of the wave function?
•• Consider a particle subjected to some timeConsider a particle subjected to some time--

independent but spaceindependent but space--dependent potential dependent potential VV(x(x) ) 
within some boundaries within some boundaries 

•• The The behaviourbehaviour of a particle subjected to a timeof a particle subjected to a time--
independent potential is  governed by the famous (1independent potential is  governed by the famous (1--
D, time independent, non relativistic) D, time independent, non relativistic) SchrodingerSchrodinger
equation:equation:

( ) 0)(
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2 2
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How to derive the T.I.S.E How to derive the T.I.S.E 

•• 1) Energy must be conserved: 1) Energy must be conserved: EE = = KK + + UU
•• 2) Must be consistent with de 2) Must be consistent with de BrolieBrolie hypothesis thathypothesis that

p = p = h/h/λλ
•• 3)3) Mathematically wellMathematically well--behaved and sensible (e.g. behaved and sensible (e.g. 

finite, single valued, linear so that superposition finite, single valued, linear so that superposition 
prevails, conserved in probability etc.)prevails, conserved in probability etc.)

•• Read the Read the mswordmsword notes or text books for more notes or text books for more 
technical details (which we will skip here)technical details (which we will skip here)
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Energy of the particleEnergy of the particle
•• The kinetic energy of a particle subjected to The kinetic energy of a particle subjected to 

potential potential VV((xx) is ) is 

K (= pK (= p22/2m) = E /2m) = E –– V V 
•• E is conserved if there is no net change in the total mechanicalE is conserved if there is no net change in the total mechanical

energy between the particle and the surroundingenergy between the particle and the surrounding
(Recall that this is just the definition of total mechanical ene(Recall that this is just the definition of total mechanical energy) rgy) 

•• It is essential to relate the de It is essential to relate the de BroglieBroglie wavelength to the energies of wavelength to the energies of 
the particle:the particle:

λλ = = hh / / pp = = hh / / √√[2[2mm((EE--VV)])]
•• Note that, as Note that, as VV 0, the above equation reduces to the no0, the above equation reduces to the no--potential potential 

case (as we have discussed earlier)case (as we have discussed earlier)
λλ == hh // pp hh // √√[2[2mEmE], where], where EE == KK onlyonly

V(x)E, K

λλ
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Infinite potential revisitedInfinite potential revisited

•• Armed with the T.I.S.E we now revisit the Armed with the T.I.S.E we now revisit the 
particle in the infinite wellparticle in the infinite well

•• By using appropriate boundary condition to the By using appropriate boundary condition to the 
T.I.S.E, the solution of T.I.S.E for the wave T.I.S.E, the solution of T.I.S.E for the wave 
function function Ψ Ψ should reproduces the quantisation should reproduces the quantisation 
of energy level as have been deduced earlier, of energy level as have been deduced earlier, 
i.e. i.e. 
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In the next slide we will need to do some mathematics to solve for ΨΨ((xx) ) in the second 
order differential equation of TISE to recover this result. This is a more formal way 
compared to the previous standing waves argument which is more qualitative
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Why do we need to solve the Why do we need to solve the 
ShrodingerShrodinger equation?equation?

•• The potential The potential VV((xx)  represents the environmental influence on the particle)  represents the environmental influence on the particle
•• Knowledge of the solution to the T.I.S.E, i.e. Knowledge of the solution to the T.I.S.E, i.e. ψψ((xx) allows us to obtain ) allows us to obtain 

essential physical information of the particle (which is subjectessential physical information of the particle (which is subjected to the ed to the 
influence of the external potential influence of the external potential VV((xx) ), ) ), e.ge.g the probability of its  existence the probability of its  existence 
in certain space interval, its momentum, energies etc.in certain space interval, its momentum, energies etc.

Take a classical example: A particle that are subjected to a graTake a classical example: A particle that are subjected to a gravity field vity field UU((xx) ) 
= GMm/r= GMm/r2 2 is governed by the Newton equations of motion,   is governed by the Newton equations of motion,   

2

2

2 dt
rdm

r
GMm =−

•• Solution of this equation of motion allows us to predict, e.g. tSolution of this equation of motion allows us to predict, e.g. the he 
position of the object m as a function of time, position of the object m as a function of time, rr==rr((tt), its ), its 
instantaneous momentum, energies, etc.instantaneous momentum, energies, etc.
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The infinite well in the light of TISEThe infinite well in the light of TISE
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Plug the potential function V(x) 
into the T.I.S.E

Within 0 < x < L, V (x) = 0, hence the 
TISE becomes
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∂

2
2 2mEB = This term contain the information of the energies of 

the particle, which in terns governs the behaviour
(manifested in terms of its mathematical solution) of 
ψ (x) inside the well. Note that in a fixed quantum 
state n, B is a constant because E is conserved. 

However, if the particle jumps to a state n’ ≠ n, E 
takes on other values. In this case, E is not conserved 
because there is an net change in the total energy of 
the system due to interactions with external 
environment (e.g. the particle is excited by external 
photon)

The behavior of the particle inside 

the box is governed by the equation

If you still recall the elementary mathematics of second order differential 
equations, you will recognise that the solution to the above TISE is simply

BxCBxAx cossin)( +=ψ
Where A, C are constants to be determined by ultilising the boundary conditions 
pertaining to the infinite well system
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You can prove that indeed You can prove that indeed 

BxCBxAx cossin)( +=ψ

is the solution to the TISE is the solution to the TISE )(
)( 2

2

2

xB
x

x
ψ

ψ
−=

∂
∂

•• I will show the steps in the following:I will show the steps in the following:
•• Mathematically, to show that EQ 1 is a solution to EQ Mathematically, to show that EQ 1 is a solution to EQ 

2, we just need to show that when EQ1 is plugged into 2, we just need to show that when EQ1 is plugged into 
the LHS of EQ. 2, the resultant expression is the same the LHS of EQ. 2, the resultant expression is the same 
as the expression to the RHS of EQ. 2.as the expression to the RHS of EQ. 2.

(EQ 1)

(EQ 2)
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BxCBxAx cossin)( +=ψ into the LHS of EQ 2:
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Plug

Proven that EQ1 is indeed the solution to EQ2
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Boundary conditionsBoundary conditions
•• Next, we would like to solve for the constants Next, we would like to solve for the constants AA,, CC in in 

the solution the solution ψψ((xx), as well as the constraint that is ), as well as the constraint that is 
imposed on the constant imposed on the constant BB

•• We know that  the wave function forms nodes at the We know that  the wave function forms nodes at the 
boundaries. Translate this boundary conditions into boundaries. Translate this boundary conditions into 
mathematical terms, this simply means mathematical terms, this simply means 

ψψ((xx = = 0) = 0) = ψψ((xx = L= L) = 0) = 0
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•• First, First, 
•• Plug Plug ψψ((xx = = 0) = 0 into 0) = 0 into 

ψ  ψ  = = AAsinsinBxBx + + CCcoscosBxBx, , we obtainwe obtain
ψ ψ ((x=x=0)0))) = 0 = = 0 = AAsinsin 00 + C + C coscos 00 = C= C

•• i.ei.e, , CC = 0= 0
•• Hence the solution is reduced to Hence the solution is reduced to 

ψ ψ ((xx))=  =  AAsinsinBxBx
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•• Next we apply the second boundary condition Next we apply the second boundary condition 

ψψ ((x = Lx = L) = 0 = ) = 0 = AAsinsin(BL(BL))

•• Only either Only either AA or or sin(sin(BLBL) must  be zero but not both) must  be zero but not both

•• AA cannot be zero else this would mean cannot be zero else this would mean ψψ ((xx) is zero ) is zero 
everywhere inside the box, conflicting the fact that the everywhere inside the box, conflicting the fact that the 
particle must exist inside the boxparticle must exist inside the box

•• The upshot is: The upshot is: AA cannot be zero cannot be zero 
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•• This means it must be This means it must be sinsinBLBL = = 0, or in other words0, or in other words
•• B = n B = n π/ π/ L L ≡≡ BBnn, n = , n = 1,2,3,1,2,3,……

•• nn is used to is used to characterisecharacterise the quantum states of  the quantum states of  ψψnn ((xx))

•• B is B is characterisedcharacterised by the positive integer by the positive integer nn, hence we use  , hence we use  BBnn instead of Binstead of B

•• The relationship The relationship BBnn = = nnππ//L L translates into the familiar translates into the familiar quantisationquantisation of energy of energy 
condition:condition:

•• ((BBnn = n= nππ//L)L)22
2

22
2

2

22

2
2

2
2

mL
nE

L
nmEB n

n
n

ππ
=⇒==
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Hence, up to this stage, the solution is Hence, up to this stage, the solution is 
ψψnn((xx) =  ) =  AAnnsinsin((nnππxx/L/L), ), nn = 1, 2, 3,= 1, 2, 3,……for 0 < x < Lfor 0 < x < L
ψψnn((xx) = 0 elsewhere (outside the box)) = 0 elsewhere (outside the box)

The constant The constant AAnn is yet unknown up to nowis yet unknown up to now
We can solve for We can solve for AAnn by applying another by applying another 

““boundary conditionboundary condition”” –– the the normalisationnormalisation
condition that: condition that: 

1)()(
0

22 == ∫∫
∞

∞−

L

nn dxxdxx ψψ

The area 
under the 
curves of 
|Ψn|2 =1 
for every 
n
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Solve for Solve for AAnn with with normalisationnormalisation

•• thusthus

1
2

)(sin)()(
2
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xnAdxxdxx n
L

n

L

nn
πψψ

L
An

2=

•• We hence arrive at the final solution thatWe hence arrive at the final solution that

ψψnn((xx) =  (2/L)) =  (2/L)1/21/2sinsin((nnππx/Lx/L), ), nn = 1, 2, 3,= 1, 2, 3,……for 0 < for 0 < xx < < LL

ψψnn((xx) = 0 elsewhere (i.e. outside the box)) = 0 elsewhere (i.e. outside the box)
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ExampleExample
•• An electron is trapped in a oneAn electron is trapped in a one--

dimensional region of length dimensional region of length LL = = 
1.01.0××1010--1010 m. m. 

•• (a) How much energy must be (a) How much energy must be 
supplied to excite the electron supplied to excite the electron 
from the ground state to the first from the ground state to the first 
state? state? 

•• (b) In the ground state, what is (b) In the ground state, what is 
the probability of finding the the probability of finding the 
electron in the region from electron in the region from 
xx = 0.090 = 0.090 ×× 1010--1010 m to 0.110 m to 0.110 
××1010--1010 m? m? 

•• (c) In the first excited state, what (c) In the first excited state, what 
is the probability of finding the is the probability of finding the 
electron between electron between 
xx = 0 and = 0 and x x = 0.250 = 0.250 ×× 1010--1010 m? m? 0.5A 1A0.25A
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SolutionsSolutions
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On average the particle in 
the n = 2 state spend 25% of 
its time in the region 
between x=0 and x=0.25 A

For ground state

On average the particle in 
the ground state spend 
only 0.04 % of its time in 
the region between 
x=0.11A and x=0.09 A
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A nightmare A nightmare 
for a difficult calculationfor a difficult calculation
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Quantum tunnelingQuantum tunneling

•• In the infinite quantum well, there are In the infinite quantum well, there are 
regions where the particle is regions where the particle is ““forbiddenforbidden”” to to 
appearappear V infinity V infinity

II 

Allowed region 
where particle 
can be found

I
Forbidden region 
where particle 
cannot be found 
because ψ = 0 
everywhere 
before x < 0

III

Forbidden region 
where particle 
cannot be found 
because ψ = 0 
everywhere after 
x > L

ψ(x=0)=0 ψ(x=L)=0
n = 1
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Finite quantum wellFinite quantum well
•• The fact that The fact that yy is 0 everywhere x is 0 everywhere x 

≤≤0, x 0, x ≥≥ L L is because of the is because of the 
infiniteness of the potential, infiniteness of the potential, VV ∞∞

•• If If VV has only finite height, the has only finite height, the 
solution to the TISE will be solution to the TISE will be 
modified such that a nonmodified such that a non--zero value zero value 
of of yy can exist beyond the boundaries can exist beyond the boundaries 
at at x = x = 0 and 0 and x x = = LL

•• In this case, the pertaining In this case, the pertaining 
boundaries conditions are boundaries conditions are 
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•• For such finite well, the wave function is not vanished at the bFor such finite well, the wave function is not vanished at the boundaries, and may oundaries, and may 
extent into the region I, III which is not allowed in the infiniextent into the region I, III which is not allowed in the infinite potential limitte potential limit

•• Such Such ψψ that penetrates beyond the classically forbidden regions diminthat penetrates beyond the classically forbidden regions diminishes very ishes very 
fast (exponentially) once fast (exponentially) once xx extents beyond x = 0 and extents beyond x = 0 and xx = = LL

•• The mathematical solution for the wave function in the The mathematical solution for the wave function in the ““classically forbiddenclassically forbidden””
regions are regions are 

••

⎩
⎨
⎧
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x
,0)exp(

0,0)exp(
)(ψ

The total energy of the particle 

E = K inside the well. 

The height of the potential well V is 
larger than E for a particle trapped 
inside the well

Hence, classically, the particle 
inside the well would not have 
enough kinetic energy to overcome 
the potential barrier and escape 
into the forbidden regions I, III

V

E1 = K1

E2 = K2

However, in QM, there is a slight chance to find 
the particle outside the well due to the quantum 
tunneling effect
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•• The quantum tunnelling effect allows a The quantum tunnelling effect allows a 
confined particle within a finite potential confined particle within a finite potential 
well to penetrate through the classically well to penetrate through the classically 
impenetrable potential wallimpenetrable potential wall

Hard 
and 
high 
wall, 
V

E

Hard 
and 
high 
wall, 
V

E

After many many
times of banging 
the wall

Quantum tunneling effect 62

Why tunneling phenomena can Why tunneling phenomena can 
happenhappen

•• ItIt’’s due to the continuity requirement of the wave function s due to the continuity requirement of the wave function 
at the boundaries when solving the T.I.S.Eat the boundaries when solving the T.I.S.E

•• The wave function cannot just The wave function cannot just ““die offdie off”” suddenly at the suddenly at the 
boundaries of a finite potential wellboundaries of a finite potential well

•• The wave function can only diminishes in an exponential The wave function can only diminishes in an exponential 
manner which then allow the wave function to extent manner which then allow the wave function to extent 
slightly beyond the boundariesslightly beyond the boundaries

•• The quantum tunneling effect is a manifestation of the The quantum tunneling effect is a manifestation of the 
wave nature of particle, which is in turns governed by the wave nature of particle, which is in turns governed by the 
T.I.S.E. T.I.S.E. 

•• In classical physics, particles are just particles, hence never In classical physics, particles are just particles, hence never 
display such tunneling effectdisplay such tunneling effect
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Quantum tunneling effectQuantum tunneling effect
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Real example Real example 
of tunneling of tunneling 
phenomena:phenomena:
alpha decayalpha decay
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Real example of tunneling phenomena:Real example of tunneling phenomena:
Atomic force microscopeAtomic force microscope


