| ntroductory Quantum mechanics

THE FAR SIDE By GARY LARSON

“Ohhhhhhh . . . Loak at that, Sehuster . . .
Dags are so cute when they try to comprehend 1
quantum mechanics.”

Probabilistic interpretation of matter
wave

A beam of light if pictured as monochromatic wave (A, v)

A A=1
unit

O/\/\//\/\/O/area

Intensity of the light beamis | = gOCE

A beam of light pictured in terms of photons A=1
unit

E:hvégg@()@ 00000 O(area

Intensity of the light beam is | = Nhv

N = average number of photons per unit time crossing unit area
perpendicular to the direction of propagation

Intensity = energy crossing one unit area per unit
time. | is in unit of joule per m2 per second

Probability of observing a photon
e Consider abeam of light
* Inwave picture, E = E, sin(kx—at), electric
field in radiation
* Intensity of radiation in wave picture is
| =¢,cE®
» On the other hand, in the photon picture, | = Nhv
 Correspondence principle: what is explained in the
wave picture has to be consistent with what is
explained in the photon picture in the limit
N->infinity: —
| =&,cE” = Nhv




Statistical interpretation of radiation

The probability of observing a photon at a point in unit
timeisproportiona toN

However, since  Nhv =g, cE? o E*
the probability of observing a photon must also

This means that the probability of observing a photon at
any point in spaceis proportional to the square of the
averaged electric field strength at that point

Prob (x) o< E2

Square of the mean of the square of
the wave field amplitude

What is the physical interpretation of
matter wave?

» wewill call the mathematical representation of the de Broglie's wave / matter
wave associated with a given particle (or an physical entity) as
The wave function, ¥

FIGURE 6.14 An idealized wave packet localized in space over a region Ax is the
perposition of many waves of different amplitudes and frequencies.

* We wish to answer the following questions:

* Whereis exactly the particle located within Ax? the locality of a particle
becomes fuzzy when it's re‘)resented by its matter wave. We can no more tell
for sure whereit is exactly located.

* Recall that in the case of conventional wave physics, [field amplitudg?is
proportional to the intensity of the wave). Now, what does [¥ |* physically

mean? 6

Probabilistic interpretation of (the
square of) matter wave

As seen in the case of radiation field,

lelectric field’s amplitudel? is proportional to the
probability of finding a photon

In exact analogy to the statistical interpretation of
the radiation field,

P(X) = |Z[? is interpreted as the probability
density of observing a materia particle
More quantitatively,

Probability for a particle to be found between
pointaandbis X

p(a< x<b)= j P(X)dx = J'|‘P(x,t) P dx

b
Py = j|‘1’(x,t) |* dx isthe probability to find the

particle betweena and b

* |t valueisgiven by the area under the curve of
probability density between a and b




Expectation value

* Any physical observable in quantum mechanics, O (whichisa
function of position, X), when measured repeatedly, will yield
an expectation value of given by

T YO dx T ol dx
(O)== ==
[ewdax [ wwidx

» Example, O can be the potential energy, position, etc.

» (Note: the above statement is not applicable to energy and
linear momentum because they cannot be express explicitly as
afunction of x due to uncertainty principle)...

€

Example of expectation value:
average position measured for a
guantum particle

* |f the position of a quantum particleis
measured repeatedly with the same initial
conditions, the averaged value of the
position measured is given by

T x|‘{’|2 dx

e _w 2
(x)=f—£x|‘1’| dx
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Example

A particle limited to the x axis has the wave
function ¥ = ax between x=0 and x=1; ¥ =
0 else where.

* (@) Find the probability that the particle can
be found between x=0.45 and x=0.55.

* (b) Find the expectation value <x> of the
particle's position
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Solution

* (a) the probability is

= 0.55¢ NE 055
[ ax= [ xdx=a {—} =0.0251a°
3 0.45

—oo 0.45

* (b) The expectation valueis

oo

2

1 3L
_ 20 [y3dv—a?| X | &
(x>_jx|‘P| dx__([xdx_a{‘l}0 2

—oo
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Max Born and probabilistic
interpretation

» Hence, aparticle’ swave
function givesriseto a
probabilistic
interpretation of the
position of a particle

« Max Bornin 1926

German-British physicist who worked on the mathematical basis for
guantum mechanics. Born's most important contribution was his
suggestion that the absolute square of the wavefunction in the
Schrédinger equation was a measure of the probability of finding
the particle at a given location. Born shared the 1954 Nobel Prizein
physics with Bothe

PYQ 2.7, Final Exam 2003/04

A large value of the probability density of an
atomic electron at a certain place and time
signifies that the electron

A. islikely to be found there

B. is certain to be found there

C. hasagreat deal of energy there
D. has agreat deal of charge

E. isunlikely to be found there

e ANSA, Modern physical technique, Beiser, MCP 25, pg. 802
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Particlein in an infinite well
(sometimes called particlein a box)

« Imagine that we put particle
(e.g. an electron) into an A
“infinite well” with width L
(e.g. apotential trap with | (@2 -
sufficiently high barrier) P
 In other words, the particle L
is confined within 0 <x < L u=0 x
* |n Newtonian view the [ L
particle is traveling along a
straight line bouncing
between two rigid walls

>8

Ulx)
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Ulx)

However, in quantum view, particle
becomes wave...

T

00
. —
A A e A - n=3

n=1

The ‘particle’ isno more pictured as a particle
bouncing between the walls but a de Broglie wave that
is trapped inside the infinite quantum well, in which
they form standing waves
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Particle forms standing wave
within theinfinite well

 How would the wave
function of the
particle behave inside
the well? v

* They form standing
waves which are
confined within

o< x<L 0 I

17

Standing wave in general
» Shown below are standing waves which ends are

fixedatx=0andx=L
 For standing wave, the speed is constant), v=Af =

constant)
|

- |
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Mathematical description of standing
waves

 |In genera, the equation that describes a standing wave
(with a constant width L) issimply:
L=n4/2
n=1,2, 3, ... (positive, discrete integer)
 n characterises the “mode” of the standing wave

e n=1 modeiscdled the ‘fundamental’ or the first
harmonic

* n=2iscaled the second harmonics, €tc.

A_are the wavelengths associated with the n-th mode
standing waves

* Thelengths of A_is“quantised” asit can take only
discrete values according to 4_= 2L/n
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Energy of the particle in the box

e Recal that
o, X<0,x=>L

V(X):{O, O<x<L

 For such afree particle that forms standing waves in the box, it
has no potential energy

e It hasall of its mechanical energy in the form of kinetic energy
only

» Hence, for theregion 0 < x< L , we write the total energy of
the particle as

E=K+ V=p?/2m + 0 = p?/2m 20




Energies of the particle are
quantised

* Dueto the quantisation of the standing wave
(which comesintheformof A, = 2L/n),

* the momentum of the particle must aso be
guantised due to de Brogli€' s postulate:

D
P—p,=—=or

n

It follows that the total energy of thzezparticle
is also quantised: ¢, g _Pa_ 27"

2m 2mL?
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pz h? 2h?

= = n2 = n2 _—
" 2m 8mlL? 2mlL?

The n = 1 state is a characteristic state called the ground
state = the state with lowest possible energy (also called
zero-point energy )

232

E,(n=D)=E,=

2mL?

Ground state is usually used as the reference state when
we refer to ~"excited states” (n = 2, 3 or higher)

The total energy of the n-th state can be expressed in term
of the ground state energy as

E,=n’E, (n=1234..)

The higher n the larger is the energy level #

» Some terminology
* n =1 correspondsto the ground state
* n =2 corresponds to the first excited state, etc

n = 3 is the second e i W e Y A
excited state, 4
nodes, 3 antinodes | e N
n = 2 is the first

excited state, 3 \

nodes, 2 antinodes

n=1istheground— ____

n=1

state (fundamental . N

0 L

mode): 2 nodes, 1 « Note that lowest possible energy for a
antinode particle in the box is not zero but

E, (= E, ), the zero-point energy.
» Thisaresult consistent with the
Heisenberg uncertainty principle 23

Simple analogy

e Carsmoving in theright lane on the highway arein
‘excited states' as they must travel faster (at least
according to the traffic rules). Carstravelling in the left
lane arein the "ground state” as they can move with a
relaxingly lower speed. Carsin the excited states must
finally resume to the ground state (i.e. back to the left
lane) when they slow down

| . 1§
i I l I '
: I 24

Ground state excited states




Example on energy levels

» Consider an electron confined by electrical
force to an infinitely deep potential well whose
length L is 100 pm, which is roughly one
atomic diameter. What are the energies of its
three lowest alowed states and of the state
with n=15?

« SOLUTION

* For n=1, the ground state, we have

2

h 34 3o
£ = 1y (6.63x10°* Js) :

= =6.3x10"°J=37.7eV
8mL®  (9.1x10*'kg)100x10 ¥ m)
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» The energy of the remaining states (n=2,3,15)
are
E, = (2)E, = 4x37.7¢eV =150eV

E, = (3)°E, = 9x37.7eV = 339V
E,, = (15)°E, = 225x37.7eV =8481eV

Question continued

» When electron makes a transition from then =
3 excited state back to the ground state, does
the energy of the system increase or decrease?

e Solution:

» The energy of the system decreases as energy
drops from 299 eV to 150 eV

» Thelost amount |[AE| = E;- E; =299 eV — 150
eV isradiated away in the form of
electromagnetic wave with wavelength 4
obeying AE = hc/A

27

Photon with
A=8.3nm EX pl €

Radiation emitted during de-excitation

 Calculate the wavelength of the
electromagnetic radiation
emitted when the excited
system at n = 3 in the previous
example de-excitesto its
ground state <

e Solution
A= hcl/|AE]|
e =1240nm. eV / (|E3' Ell)

e =1240 nm. eV/(299 eV-150 eV) 0 L
= 83nm -

8 3003 Brcaniaie - Thamaon




Example
macroscopic particle's quantum state

e Consider a1 microgram speck of dust moving
back and forth between two rigid walls
separated by 0.1 mm. It moves so slowly that it
takes 100 sfor the particle to cross this gap.
What quantum number describes this motion?
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Solution

The energy of the particleis

E(=K)= % mv? = %(1><1o-9 kg)x (1x10°m/s) =5x102J

. . th
Solvingfornin g _p 7"
2mL

yields n= %\/8mE ~ 3x10"

Thisisavery large number
It is experimentally impossible to distinguish between
then=3x 10 and n=1 + (3 x 10%) states, so that

the quantized nature of this motion would never re\éoeei
itself

PY Q 4(a) Final Exam 2003/04

« An electron is contained in a one-dimensional
box of width 0.100 nm. Using the particle-in-a
box model,

* (i) Calculatethen=1energy level andn=4
energy level for the electronin eV.

* (i) Find the wavelength of the photon (in nm)
in making transitions that will eventually get it
fromthethen=4ton =1 dstate

» Serway solution manual 2, Q33, pg. 380, modified
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Solutio
e 4a(i) Inthe particlein-&lbox mOQeI, standing waveis

formed in the box of dimension L: 4 2L

n

n
The energy of the particlein the box is given by

p? (h/)pn)2 _n’h? _ n’z’n?

Kn = En = = . -
2m, 2m, 8m/L* 2m,l?
7h” E, = 42E. = 603 eV
E—gm =S¢ E=#E-60e
. 4alii)

The wavelength of the photon going fromn=4ton=
lisA=hcl/(Eg- E))
=1240 €V nm/ (603 — 37.7) eV = 2.2 nm
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» The quantum states of a macroscopic particle
cannot be experimentally discerned (as seen in
previous example)

 Effectively its quantum states appear as a
continuum
I E(n=10%4) = 5x1022)

R l AE ~ 5x1022/10%
—— =1.67x10%¢ = 107 eV

T is too tiny to the discerned
allowed energiesin classical system

— appear continuous (such as
energy carried by awave; tota
mechanical energy of an orbiting
planet, etc.)

descret energies in quantised
system — discrete (such as energy
levelsin an atom, energies carried
by a photon)
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Example on the probabilistic
interpretation:
Where in the well the particle spend
most of itstime?
* The particle spend most of itstime in places
where its probability to be found is largest

 Find, for then =1 and for n =3 quantum states

respectively, the points where the electron is
most likely to be found

Solution

» For electron in the n = 1 state,
the probability to find the
particleis highest at x = L/2

Y N
* H inthen =1 stat ~
spend most of itstimet 7%

compared to other places

1 e

particle is highest at x = L/6,L/2, 5L/6

» Hence electron in the n =3 state spend most of its time at
this three places

Boundary conditions and
normalisation of the wave function
in the infinite well

 Due to the probabilistic interpretation of the
wave function, the probability density P(x) =
|2 must be such that

e P(X)=|¥P>0forO<x<L

» The particle has no where to be found at the

boundary as well as outside the well, i.e P(x) =
[¥P=0forx <Oandx =L

36




» The probability density is zero at the boundaries

between the walls

e |tisobviousthat it must exi
within somewhere within the
well

e This means:

]QP(x)dx=j'|‘P Pdx=1
—oo 0

]iP(X)dXZh‘P P dx=1
—co 0

 scdled the normalisation condition of the wave
function

* |t represents the physical fact that the particleis
contained inside the well and the integrated
possibility to find it inside the well must be 1

» The normalisation condition will be used to
determine the normalisaton constant when we
solve for the wave function in the Schrodinder
equation

38

Schrodinger Equation

Schrédinger, Erwin (1887-1961),
Austrian physicist and Nobel laureate.
| | Schrodinger formulated the theory of

| | wave mechanics, which describes the
behavior of the tiny particles that make
up matter in terms of waves.
Schrodinger formulated the
Schrodinger wave eguation to describe
the behavior of eectrons (tiny,
negatively charged particles) in atoms.
For this achievement, he was awarded
the 1933 Nobel Prize in physics with
British physicist Paul Dirac
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What is the general equation that
governsthe evolution and behaviour
of the wave function?

» Consider a particle subjected to some time-
independent but space-dependent potential V/(X)
within some boundaries

» The behaviour of a particle subjected to atime-
independent potential is governed by the famous (1-
D, time independent, non relativistic) Schrodinger
equation:

h? 9%w(X)
2m ox’

+(E-V)p(x)=0




How to derivethe T.1.S.E

* 1) Energy must be conserved: E=K + U
» 2) Must be consistent with de Brolie hypothesis that
p=hA
» 3) Mathematically well-behaved and sensible (e.g.
finite, single valued, linear so that superposition
prevails, conserved in probability etc.)

* Read the msword notes or text books for more
technical details (which we will skip here)
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Energy of the particle

» The kinetic energy of a particle subjected to
potential V(X) is Bk V(%)

i

» Eisconserved if thereis no net change in the total mechanical
energy between the particle and the surrounding

(Recall that thisisjust the definition of total mechanical energy)
» |tisessentia to relate the de Broglie wavelength to the energies of
the particle:
A=h/p=h/ v[2m(E-V)]
» Notethat, asV =0, the above equation reduces to the no-potential
case (as we have discussed earlier)
A=h/p—>h/ v[2mE], where E = K only
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Infinite potential revisited

* Armed with the T.I.S.E we now revisit the
particle in the infinite well

By using appropriate boundary condition to the
T.1.S.E, the solution of T.l.S.E for the wave
function ¥ should reproduces the quantisation
of energy level as have been deduced earlier,
I.e E n°z?h?

" 2mL?

In the next slide we will need to do some mathematics to solve for ¥{(x) in the second
order differential equation of TISE to recover this result. This is a more formal way
compared to the previous standing waves argument which is more qualitative

Why do we need to solvethe
Shrodinger equation?

* The potentia V(X) represents the environmental influence on the particle

« Knowledge of the solution to the T.I.S.E, i.e. y(x) alows us to obtain
essential physical information of the particle (which is subjected to the
influence of the externa potential V(x) ), e.g the probability of its existence
in certain space interval, its momentum, energies etc.

Take a classical example: A particle that are subjected to a gravity field U(x)
= GMm/r2is governed by the Newton equations of motion,

r? dt?

 Solution of this equation of motion alows usto predict, e.g. the
position of the object m as afunction of time, r=r(t), its
instantaneous momentum, energies, etc.




Theinfinite well in the light of TISE

o, X<0,X>L Ny %
V(x)=
0, O<x<L
Plug the potential function V(x) e V=0 SEg
into the T.I.S.E
n* 0%y (x)
2 (E-V)p(x) =0
2m ox
Within 0 < x < L, V (x) = 0, hence the 7 iy
TISE becomes
oy __2m o
_ _ 2 Q—O—%
— 2 =5 Ep(X) =-By (X Z /
aX h FIGURE 5.3 A particle moves freely in
the one-dimensional region 0 = x = [,
but is excluded completely fromx <0 15
and x > L.

The behavior of the particle inside 2w (X
y(X) C

the box is governed by the equation ox?

B2 = 2mE  This term contain the information of the energies of
K? the particle, which in terns governs the behaviour
(manifested in terms of its mathematical solution) of
v (X) inside the well. Note that in a fixed quantum
state n, B is a constant because E is conserved.

However, if the particle jumpsto astaten’ = n, E
takes on other values. In this case, E is not conserved
because there is an net change in the total energy of
the system due to interactions with external
environment (e.g. the particle is excited by external
photon)

If you still recall the elementary mathematics of second order differential
equations, you will recognise that the solution to the above TISE is simply

w(X) = Asin Bx+ C cosBx

Where A, C are constants to be determined by ultilising the boundary conditions 44
pertaining to the infinite well system

Y ou can prove that indeed

w(X) = Asin Bx+ C cos Bx
is the solution to the TISE azg)/((zx) =—B2(X)

e | will show the steps in the following:

» Mathematically, to show that EQ 1 isasolution to EQ
2, we just need to show that when EQL1 is plugged into
the LHS of EQ. 2, the resultant expression is the same
as the expression to the RHS of EQ. 2.
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Plug
w(X) = AsinBx+CcosBx into the LHS of EQ 2:
I 1//(2x) :a—z[Asin Bx+ C cosBx|
oX oX

= % [BAcosBx - BCsinBx]

=-B?Asin Bx— B2C cosBx
=—B?[Asin Bx+ C cosBx]
= - B%w(x) = RHS of EQ2

Proven that EQ1 isindeed the solution to EQ2




Boundary conditions

 Next, wewould like to solve for the constants A, C in
the solution y(x), as well asthe constraint that is
imposed on the constant B

» Weknow that the wave function forms nodes at the
boundaries. Trand ate this boundary conditions into
mathematical terms, this simply means

Ux=0)=pyx=L)=0
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First,

Plug y(x=0) =0into

w = AsinBx + CcosBx, we obtain
w(x=0)=0=Asn0+ Ccos0=C
.e,C=0

Hence the solution is reduced to

w (X)= AsinBx

50

« Next we apply the second boundary condition
w(x=L)=0=Asn(BL)
e Only either A or sin(BL) must be zero but not both

* A cannot be zero else this would mean () is zero
everywhere inside the box, conflicting the fact that the
particle must exist inside the box

» The upshot is: A cannot be zero

51

« (B,=nmL2 > B?= = S E =p?

¢ Thismeansit must besinBL = 0, or in other words

B=nmwL =B,n=123,...

* nisused to characterise the quantum states of 4, (X)
» B ischaracterised by the positive integer n, hence we use B, instead of B

» Thereationship B, = nzL trandates into the familiar quantisation of energy

condition:
h?
12 L? " 2mlL?

_2mE, n’z?
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> Hence, up to this stage, the solution is
>y(X) = Asin(nax/L),n=1, 2,3,..for0O<x<L
>y, (x) = 0 elsewhere (outside the box)

The area
under the
curves of
|72 =1
o L 0 i for every
»The constant A, is yet unknown-up to now
»We.can solve for A by applying another
“boundary condition” — the normalisation

condition that: . L
Jwi (= [y (ax=1
—oo 0

Solve for A, with normalisation
[wi00c= [y ce [ "= ALy

e thus 2
-

* \We hence arrive at the fina solution that

> un(X) = (2/IL)Y3sin(nax/L),n=1,2,3,...for0<x<L

> ¥, (X) = 0 elsewhere (i.e. outside the box)

Example
An electron is trapped in a one-
dimensional region of length L =
1.0X1010m.
(&) How much energy must be
supplied to excite the electron }
from the ground stateto the first vy lwdl’
state? ~
(b) In the ground state, what is
the probability of finding the
electron in the region from
x=0.090 X 10°mt00.110
X 1010 m? f . ;
(c) In the first excited state, what Posicon |
is the probability of finding the ;
electron between P 5
x=0andx=0.250 X 101m? 0.254 0-5A 1A

iy |

Solutions
@ asa:%zwev E, = n°E, = (2)°E, =148eV

= AE =| E, - E, 1116V
X, 2 X, X On average the particle in
(b) P_ (Xl <x<X ) — J',//de: < J'sinz Z2dx the ground state spend}
Nl 2 ° L only 0.04 % of its time in
i " the region between
=011  X=0.11A and x=0.09 A

For ground state = (X —lsinzm(j =0.0038
L 27[ L XI:O.OQ;A
€ F 2, V. 2 sin 2.
c) Forn=2, =.|— —_—
2 VLo L

X X: . .

2 2% . 2xx . Onaverage the particle in
P} SX<X)= jngX: n J.S"lzfdx the n = 2 state spend 25% of
% X

its time in the region
between x=0 and x=0.25 A
X 1 . 4nx
=|———sin—
L 4r L

=0.25 5

X,=0.25A

% =0




A nightmare
for adifficult calculation

"enes  wiene vov /
VADE OV mISTaKE."
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Quantum tunneling

* In the infinite quantum well, there are
regions where the particle is “forbidden” to
appear V‘ -infinity \% —?infinity

| Ml 11
Forbidden region

where particle Allowed region Forbidden region
cannot be found where particle where particle

because y =0 can be found cannot be found

everywhere because y = 0

before x <0 everywhere after

x>L
n=1
y(x=0)=0 W(x=L)=0 o

Finite quantum well

e Thefact that y is O everywhere x E—

<0, X = L is because of the
infiniteness of the potential, V > o !

« If V hasonly finite height, the U
solution to the TISE will be —E
modified such that a non-zero value
of y can exist beyond the boundaries —

ax=0andx=L 0 L
 Inthis case, the pertaining N
boundaries conditions are x

v (X=0)=l//“(X=O),l//“ (x= L)=V/|||(X= L)

dyi| _dy,| dwy| _dwy|
dX x=0 dX ‘X:O' dX ‘X:L dX ‘X:L

5

For such finite well, the wave function is not vanished at the boundaries, and may
extent into the region |, 111 which is not allowed in the infinite potential limit
Such i that penetrates beyond the classically forbidden regions diminishes very
fast (exponentialy) once x extents beyond x = 0 and x =L

The mathematical solution for the wave function in the “classically forbidden”
regions are

A exp(Cx)#0, x<0

A exp(-Cx)#0, x=>L
The total energy of the particle
/

;//ﬂ\u'rﬁl'lu{\;k E = K inside the well.

1 The height of the potential well V is

A\ larger than E for a particle trapped
L f |
;/\/ S inside the well

- Hence, classically, the particle
___/ /X inside the well would not have

w(X) ={

enough kinetic energy to overcome
the potential barrier and escape

. . into the forbidden regions I, 1l
However, in QM, there is a slight chance to find
the particle outside the well due to the quantum

tunneling effect *




» The quantum tunnelling effect allows a
confined particle within a finite potential
well to penetrate through the classically
impenetrable potential wall

After many many
Hard times of banging Hard
and the wall and
high high
® E wall, ® E wall,
= v b v
Quantum tunneling effect -

Why tunneling phenomena can
happen

It's due to the continuity requirement of the wave function
at the boundaries when solving the T.I.S.E

» The wave function cannot just “die off” suddenly at the
boundaries of afinite potential well

» The wave function can only diminishesin an exponential
manner which then allow the wave function to extent
dightly beyond the boundaries

A exp(Cx)#0, x<0
w(x) =
A exp(-Cx)#0, x=L

» The quantum tunneling effect is a manifestation of the
wave nature of particle, which isin turns governed by the
T.I.SE.

* Inclassica physics, particles are just particles, hence nevey,
display such tunneling effect

Quantum tunneling effect
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Nucleus ( + Ze) Alpha particle (+ 2¢)

Real example
of tunneling
phenomena:

alpha decay

Figure 6.7 (a) Alpha decay of a radioactive nucleus, (b) The

! by an alpha particle emitted with energy
E.Ris adius, about 107" m or 10 fm. Alpha
particles tunneling throu, gh the potential barrier between R
and R, e deus to be detected as radicactive decay




Real example of tunneling phenomena:
Atomic force microscope

Material  Empty space

oy

{a} The wavefunction
tron in the surface of the
al to be studied. T

: process. Electrons, re

¢ as small dots, tunnel across the

emipty region. (b)
The sharp tip of a conducting
close to the sur-  that
function of a sur
renetrates into the
lectron can “tun-  SAmple aboms FIGURE D An atomic force microscope sean of a
to tip

the 2

s of the tip and sample. A feedback system

s the tunneling current constant canses the tip

to move up and down tracing out the contours of the

stamper used to mold compact disks. The numbers

given are in nm. The bumps on this metallic mold

anp out G0 nm-deep holes in tracks that are 1.6 gm

y of Digital Instru-

apart in the optical disks. Phote con
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