CHAPTER 6

Very Brief introduction to
Quantum mechanics

THE FAR SIDE By GARY LARSON
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Probabilistic interpretation of matter
A wavce A=1
G R
area
A beam of light if pictured as monochromatic wave (A, v)
Intensity of the light beamis [ = gocE2

A beam of light pictured in terms of photons A =1
unit

E=hv4®©’@©© 00000 QKarea

Intensity of the light beam is I = Nhv

N = average number of photons per unit time crossing unit area
perpendicular to the direction of propagation

Intensity = energy crossing one unit area per unit
time. / is in unit of joule per m2 per second
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Probability of observing a photon
* Consider a beam of light

* In wave picture, £ = E, sin(kx—ax), electric
field in radiation

* Intensity of radiation in wave picture is
[ =gk’
* On the other hand, in the photon picture, I = Nav
» Correspondence principle: what is explained in the
wave picture has to be consistent with what 1s

explained in the photon picture in the limit

N-2infinity: —
I =¢g,cE” = Nhv

Statistical interpretation of radiation

* The probability of observing a photon at a point in unit
time is proportional to N

« However, since NhV=¢cE E «<E’
* the probability of observing a photon must also

* This means that the probability of observing a photon at
any point in space is proportional to the square of the
averaged electric field strength at that point

Prob (x) < E*

Square of the mean of the square of
the wave field amplitude

Printed with FinePrint - purchase at www.fineprint.com



What 1s the physical interpretation of
matter wave?

» we will call the mathematical representation of the de Broglie's wave / matter
wave associated with a given particle (or an physical entity) as

The wave function, ¥

FIGURE 6.14 An idealized wave packet localized in space over a region Ax is the
perposition of many waves of different amplitudes and frequencies.

*  We wish to answer the following questions:

*  Where is exactly the particle located within Ax? the locality of a particle
becomes fuzzy when it’s represented by its matter wave. We can no more tell
for sure where it is exactly located.

 Recall that in the case of conventional wave physics, [field amplitude)? is
proportional to the intensity of the wave). Now, what does [¥ |* physically
mean?

5

Probabilistic interpretation of (the
square of) matter wave

» As seen in the case of radiation field,

lelectric field’s amplitudel? is proportional to the
probability of finding a photon

* In exact analogy to the statistical interpretation of
the radiation field,

* P(x)=|¥|*is interpreted as the probability
density of observing a material particle

* More quantitatively,

* Probability for a particle to be found between
pontaandbis

pla<x<b)= jP(x)dx j\\y(xm dx
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b
Dy = j W (x,1)|” dx is the probability to find the

particle between a and b

* It value is given by the area under the curve of
probability density between a and b

Expectation value

* Any physical observable in quantum mechanics, O (which is a
function of position, x), when measured repeatedly, will yield
an expectation value of given by

T WO dx T O|¥[ dx
(0)== ==
[ewar  [wwax

* Example, O can be the potential energy, position, etc.

* (Note: the above statement is not applicable to energy and
linear momentum because they cannot be express explicitly as
a function of x due to uncertainty principle)...
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Example of expectation value:
average position measured for a
quantum particle

* If the position of a quantum particle is
measured repeatedly with the same 1nitial
conditions, the averaged value of the
position measured 1s given by

(o]

I x“P‘z dx 2
<x> == 1 =_J;x“P‘ dx
Example

* A particle limited to the x axis has the wave
function ¥ = ax between x=0 and x=1; ¥ =
0 else where.

* (a) Find the probability that the particle can
be found between x=0.45 and x=0.55.

* (b) Find the expectation value <x> of the
particle’s position

10
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Solution

* (a) the probability 1s

oo ) 0.5500 x3 0.55
“‘I" dx = I x’dx=a’ [?} =0.02514"

0.45 0.45

* (b) The expectation value 1s

o0 1 37! 2
_ ‘PZ _[3.7 — 2| A :a_
<x> Jx‘ ‘dx dex a{4}

—o0 0
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Max Born and probabilistic
interpretation

* Hence, a particle’s wave
function gives rise to a
probabilistic
interpretation of the
position of a particle

e Max Born in 1926

German-British physicist who worked on the mathematical basis for
quantum mechanics. Born's most important contribution was his
suggestion that the absolute square of the wavefunction in the
Schrédinger equation was a measure of the probability of finding
the particle at a given location. Born shared the 1954 Nobel Prize in
physics with Bethe
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PYQ 2.7, Final Exam 2003/04

A large value of the probability density of an
atomic electron at a certain place and time
signifies that the electron

A. 1s likely to be found there

B. is certain to be found there

C. has a great deal of energy there
D. has a great deal of charge

E. is unlikely to be found there

* ANS:A, Modern physical technique, Beiser, MCP 25, pg. 802
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Particle in in an infinite well
(sometimes called particle in a box)

Imagine that we put particle
(e.g. an electron) into an A
“infinite well” with width L
(e.g. a potential trap with (@~ =
sufficiently high barrier) U m UG

> 8

In other words, the particle L
is confined within 0 <x <L _____ U=

In Newtonian view the o0 L
particle 1s traveling along a

straight line bouncing

between two rigid walls

14
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However, in quantum view, particle
becomes wave...

I

U(x)

» The ‘particle’ is no more pictured as a particle
bouncing between the walls but a de Broglie wave that
is trapped inside the infinite quantum well, in which

they form standing waves
15

Particle forms standing wave
within the infinite well

 How would the wave
function of the
particle behave inside
the well? "

* They form standing
waves which are
confined within

O<X<L 0 L

A\ J

16
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Standing wave in general
» Shown below are standing waves which ends are

fixedatx=0andx=L

 For standing wave, the speed is constant, (v=A f=

constant)
) . " e ¥
0N 0N
i s
\:\\H\‘?-:j___; '/ \\Q““-\___ ______../'/J
— . -~
n=2 L=,
(a) ( (')
A
> Bl S N = .
\/f/,—-_;__ L — N V4 \\ 5// \\\\ ’;4/ N\
.V )\ >\ 1~ =\
fl k‘:‘-.“_f’ t“—) ,(; ‘,// \ f 4 g \\‘\ y 4 ~3
5 \“_Q“‘“—--,.q__ ,_,--",’,—-(‘ JEIE 7% ,__t =
N N"—7\Y—7\—7
NS > \ / N y,
;s —_— \ N’/ \___ S \ i
e 1 N K
n=1 —— "‘_«_)/‘J v

(b) (d) & 17

© 2004 ThomsonBrocks Cole

Mathematical description of standing
waves

* In general, the equation that describes a standing wave
(with a constant width L) is simply:

L=nAa/2
n=1,2,3, ... (positive, discrete integer)
 n characterises the “mode” of the standing wave

* n=1 mode is called the ‘fundamental’ or the first
harmonic

* n=21s called the second harmonics, etc.

A _are the wavelengths associated with the »-th mode
standmg waves

* The lengths of A_is “quantised” as it can take only
discrete values accordlng to A =2L/n

18
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Energy of the particle in the box

* Recall that
oo, x<0,x=>L

V(x) =
& {o, 0<x<L

» For such a free particle that forms standing waves in the box, it
has no potential energy

It has all of its mechanical energy in the form of kinetic energy
only

* Hence, for the region 0 <x < L, we write the total energy of
the particle as

E=K+ V=p?2m+ 0 = p?/2m 1

Energies of the particle are
quantised

* Due to the quantisation of the standing wave
(which comes in the form of A = 2L/n), the
momentum of the particle must also be quantised
due to de Broglie’s postulate:

b _nh
A 2L

n

pP—=p,=

It follows that the total energy of the particle
c o 242
is also quantised: 5, , _ Ve el

2m 2ml?

20
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_p_,f . 2 27z'2h2

= =n
" 2m 8mlL? 2ml?

The n = 1 state is a characteristic state called the ground
state = the state with lowest possible energy (also called
zero-point energy )

242

En=)=E,=

2ml’

Ground state is usually used as the reference state when
we refer to ““excited states” (n = 2, 3 or higher)

The total energy of the n-th state can be expressed in term
of the ground state energy as

E =n’E, (n=1,234..)

The higher n the larger is the energy level -

* Some terminology
* n =1 corresponds to the ground state
» n =2 corresponds to the first excited state, etc

l(x) E

n = 3 is the second nes st 25E,
excited state, 4
nodes, 3 antinodes n=4

n=4 16E
n = 2 is the first =l h
excited state, 3 i 5
nodes, 2 antinodes n=2
n=1istheground— __ " f
state (fundamental T ol E=0
mode): 2 nodes, 1 ¢ Note that lowest possible energy for a
antinode particle in the box is not zero but

E, (= E,), the zero-point energy.

* This a result consistent with the
Heisenberg uncertainty principle 2
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Simple analogy

* Cars moving in the right lane on the highway are in
‘excited states’ as they must travel faster (at least
according to the traffic rules). Cars travelling in the left
lane are in the "“ground state™ as they can move with a
relaxingly lower speed. Cars in the excited states must
finally resume to the ground state (i.e. back to the left
lane) when they slow down

i ] tit

% |
=
2 o

]
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Ground state excited states

Example on energy levels

* Consider an electron confined by electrical
force to an infinitely deep potential well whose
length L 1s 100 pm, which 1s roughly one
atomic diameter. What are the energies of its
three lowest allowed states and of the state
with n =157

* SOLUTION
* Forn =1, the ground state, we have

2

(6.63x107Js)

_= _=6.3x107*7=37.7eV
8m, L’ (9.1x10"'kg100x10™">m)

24

E = (1)2
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* The energy of the remaining states (n=2,3,15)
are
E,=(2)’E, =4x37.7¢V =150eV
E,=(3)*E, =9%37.7¢V =339¢eV

E . =(15)*E, =225x37.7eV =8481eV

ii(x) E

E=0

(a) (b)

25E,

16E,

9E,

4E,

Question continued

3 excited state back to the ground state, does
* Solution:

drops from 339 eV to 150 eV

eV is radiated away in the form of

electromagnetic wave with wavelength A
obeying AE = hc/A

* When electron makes a transition from the n =

the energy of the system increase or decrease?

* The energy of the system decreases as energy

* The lost amount |AE| = E;- E, =339 eV — 150

26
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Photon with
Example

A= xxnm

A

* Calculate the wavelength of the
electromagnetic radiation
emitted when the excited n=3
system at n = 3 in the previous
example de-excites to its
ground state <Z

ra
* Solution 2
A = hc/|AE]
= 1240 nm. eV / (|E;- E||) n=1
= 1240 nm. eV/(339 eV-150 eV) v
= xxnm R
(a)

Radiation emitted during de-excitation

co
A

»

Example

back and forth between two rigid walls

takes 100 s for the particle to cross this gap.

A macroscopic particle’s quantum state

* Consider a 1 microgram speck of dust moving
separated by 0.1 mm. It moves so slowly that it

What quantum number describes this motion?

28

Printed with FinePrint - purchase at www.fineprint.com




Solution
The energy of the particle is

E(=K) =%mv2 =%(IXIO'gkg)X(1X10'6m/S)2 =5x1072J

. . 212
* Solving fornin 5 _, 27"

" 2mL’
e yields n= %«/SmE ~3x10"

* This is a very large number
* [t 1s experimentally impossible to distinguish between
then=3 x 10 and n=1 + (3 x 10!4) states, so that

the quantized nature of this motion would never rex;g:al
itself

* The quantum states of a macroscopic particle
cannot be experimentally discerned (as seen in
previous example)

» Effectively its quantum states appear as a
continuum

|

E(n=10") = 5x10%2J

l AE =~ 5x1022/10™
=1.67x103¢ = 107 eV

T is too tiny to the discerned
allowed energies in classical system  j.¢.rot energies in quantised

— appear continuous (such as
energy carried by a wave; total
mechanical energy of an orbiting
planet, etc.)

system — discrete (such as energy
levels in an atom, energies carried
by a photon)

30
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PYQ 4(a) Final Exam 2003/04

* An electron i1s contained in a one-dimensional
box of width 0.100 nm. Using the particle-in-a-
box model,

* (1) Calculate the n =1 energy level and n =4
energy level for the electron in eV.

* (1) Find the wavelength of the photon (in nm)
in making transitions that will eventually get it
from the the n =4 to n = 1 state

* Serway solution manual 2, Q33, pg. 380, modified

31

. . Solution | |
* 4a(i) In the particle-in-a-box model, standing wave is
formed in the box of dimension L: P

n

n

The energy of the particle in the box is given by

o _p o WA wnr _waw
" 2m,  2m, 8m, > 2ml’
-=377eV E,=4E =603 eV

2m L

e

222
Elzfrh

4a(11)

The wavelength of the photon going fromn =4 ton =
1is A=hc/(Eg - E))

= 1240 eV nm/ (603 —37.7) eV =2.2 nm

32
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Example on the probabilistic
interpretation:
Where 1n the well the particle spend
most of 1ts time?
* The particle spend most of its time in places
where its probability to be found 1s largest

e Find, for the n = 1 and for » =3 quantum states
respectively, the points where the electron 1s
most likely to be found

33

Solution

* For electron in the n =1 state,
the probability to find the
particle 1s highest at x = L/2

] . AL Y

* Hen in the n =1 stat ~ Y

spend most of its time there 7%
compared to other places

iy fom

» For electron in the n = 3 statg, the probability to find the
particle is highest at x = L/6,L/2, 5L/6

* Hence electron in the n =3 state spend most of its time at
this three places

34
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Boundary conditions and
normalisation of the wave function
in the infinite well

* Due to the probabilistic interpretation of the
wave function, the probability density P(x) =
|¥|* must be such that

e P(x)=|¥)*P>0for0<x<L

* The particle has no where to be found at the

boundary as well as outside the well, 1.e P(x) =
WPP=0forx < Oandx = L

35

* The probability density is zero at the boundaries

S

e It is obvious that it must exist
within somewhere within the
well

* Inside the well, the
bouncing back and fo
between the walls

* This means:

TP(x)dx =‘L[|‘P > dx =1
—oo 0
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]?P(x)dxzh ¥ dx=1
—o0 0

 1s called the normalisation condition of the wave
function

* [t represents the physical fact that the particle 1s
contained inside the well and the integrated
possibility to find it inside the well must be 1

* The normalisation condition will be used to
determine the normalisaton constant when we
solve for the wave function in the Schrodinder
equation

37

See 1f you could answer this
question

» Can you list down the main differences
between the particle-in-a-box system
(infinite square well) and the Bohr’s
hydrogen like atom? E.g. their energies
level, their quantum number, their energy
gap as a function of n, the sign of the
energies, the potential etc.

38
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Schrodinger Equation

Schrodinger, Erwin (1887-1961),
Austrian physicist and Nobel laureate.
Schrodinger formulated the theory of

| | wave mechanics, which describes the
behavior of the tiny particles that make
up matter in terms of waves.
Schrodinger formulated the
Schrodinger wave equation to describe
the behavior of electrons (tiny,
negatively charged particles) in atoms.
For this achievement, he was awarded
the 1933 Nobel Prize in physics with
British physicist Paul Dirac

39

What 1s the general equation that
governs the evolution and behaviour
of the wave function?

* Consider a particle subjected to some time-
independent but space-dependent potential 7(x)
within some boundaries

* The behaviour of a particle subjected to a time-
independent potential is governed by the famous (1-
D, time independent, non relativistic) Schrodinger
equation:

n* 0'y(x)
2m  ox’

+(E-V )y(x)=0

40

Printed with FinePrint - purchase at www.fineprint.com



How to derive the T.I.S.E

* 1) Energy must be conserved: E=K + U

» 2) Must be consistent with de Brolie hypothesis that
p=h/A

» 3) Mathematically well-behaved and sensible (e.g.

finite, single valued, linear so that superposition
prevails, conserved in probability etc.)

 Read the msword notes or text books for more
technical details (which we will skip here)

41

Energy of the particle

* The kinetic energy of a particle subjected to
potential V(x) is e Vix)

» [E is conserved if there is no net change in the total mechanical
energy between the particle and the surrounding

(Recall that this is just the definition of total mechanical energy)
» It s essential to relate the de Broglie wavelength to the energies of
the particle:
A=hl/p=h/ N[2m(E-V)]
* Note that, as /' =0, the above equation reduces to the no-potential
case (as we have discussed earlier)

A=h/p->h/ J[2mE], where E = K only

42
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Infinite potential revisited

 Armed with the T.I.S.E we now revisit the
particle in the infinite well

* By using appropriate boundary condition to the
T.I.S.E, the solution of T.I.S.E for the wave
function ¥ should reproduces the quantisation
of energy level as have been deduced earlier,
1.e. g _nTn

" oml?

In the next slide we will need to do some mathematics to solve for ¥(x) in the second
order differential equation of TISE to recover this result. This is a more formal way
compared to the previous standing waves argument which is more qualitative

Why do we need to solve the
Shrodinger equation?

» The potential V(x) represents the environmental influence on the particle

* Knowledge of the solution to the T.I.S.E, i.e. ¥Ax) allows us to obtain
essential physical information of the particle (which is subjected to the
influence of the external potential V(x) ), e.g the probability of its existence
in certain space interval, its momentum, energies etc.

Take a classical example: A particle that are subjected to a gravity field U(x)
= GMm/r? is governed by the Newton equations of motion,

GMm d*r
-, —m—
r dt

 Solution of this equation of motion allows us to predict, e.g. the
position of the object m as a function of time, r = r(¢), its
instantaneous momentum, energies, etc.

44
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S.E. 1s the quantum equivalent of the
Newton’s law of motion

e The equivalent of “Newton laws of motion™
for quantum particles = Shroedinger
equation

* Solving for the wave function in the S.E.
allows us to extract all possible physical
information about the particle (energy,
expectation values for position, momentum,
etc.)

45

The infinite well in the light of TISE

oo, x<0,x=>L -y by
V(x)=
0, O<x<lL
Plug the potential function V/(x) i Vb Yl
into the T.1.S.E
n’ 9’y (x)
—+(E-V)p(x)=0
2m Ox
Within 0 < x < L, V (x) = 0, hence the i g2
TISE becomes
azl//(X) 2m 1 4 —p v
—=—TEy()=-By(x) 9
ax h FIGURE 5.3 A particle moves freely in

the one-dimensional region 0 = x = [,
but is excluded completely fromx <0 46
andx > L.
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The behavior of the particle inside 8zw(x)

= _By(x
the box is governed by the equation ox> W( )
B? = 2mE This term contain the information of the energies of
h* the particle, which in terns governs the behaviour

(manifested in terms of its mathematical solution) of
v (x) inside the well. Note that in a fixed quantum
state n, B 1s a constant because £ is conserved.

However, if the particle jumps to a state n” = n, E
takes on other values. In this case, £ is not conserved
because there is an net change in the total energy of
the system due to interactions with external
environment (e.g. the particle is excited by external
photon)

If you still recall the elementary mathematics of second order differential
equations, you will recognise that the solution to the above TISE is simply

W(x)= Asin Bx + C cos Bx

Where 4, C are constants to be determined by ultilising the boundary conditions 45
pertaining to the infinite well system

You can prove that indeed

W(x)= Asin Bx+ C cos Bx (EQ1)

1s the solution to the TISE w = —B(x) (EQ2)
X

* [ will show the steps in the following:

* Mathematically, to show that EQ 1 is a solution to EQ
2, we just need to show that when EQI is plugged into
the LHS of EQ. 2, the resultant expression 1s the same
as the expression to the RHS of EQ. 2.

48
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Plug
W(x)= Asin Bx+Ccos Bx into the LHS of EQ 2:

0’ 0’

(_;ﬂ(zx) = " | 4sin Bx + C cos Bx]
X X
_9

=3 |BA cos Bx — BC'sin Bx]
X

= —B*A4sin Bx— B*C cos Bx
=—B?|4sin Bx + C cos Bx|
= — B’y(x) =RHS of EQ2

Proven that EQ1 is indeed the solution to EQ2

49

Boundary conditions

» Next, we would like to solve for the constants 4, C in
the solution ¥(x), as well as the constraint that is
imposed on the constant B

 We know that the wave function forms nodes at the
boundaries. Translate this boundary conditions into
mathematical terms, this simply means

Ux =0)=ux=L)=0

50
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First,

Plug y(x = 0) =0 into

W = AsinBx + CcosBx, we obtain
w(x=0)=0=A4Asm 0+ Ccos 0 =C
1, C=0

Hence the solution is reduced to
W(x)= AsinBx

51

» Next we apply the second boundary condition
W(x=L)=0=4sin(BL)
* Only either 4 or sin(BL) must be zero but not both

» A cannot be zero else this would mean ¥ (x) is zero
everywhere inside the box, conflicting the fact that the
particle must exist inside the box

* The upshot is: 4 cannot be zero

52

Printed with FinePrint - purchase at www.fineprint.com




* This means it must be sinBL = 0, or in other words
 B=nm/L=B,n=123,...

* nis used to characterise the quantum states of ¥ (x)
* B is characterised by the positive integer n, hence we use B, instead of B

* The relationship B, = nz/L translates into the familiar quantisation of energy
condition:

2.2 212
2mE. n'Tw T°h
= L= =FE =n’

« (B,=nml)? > B’ f
n’ r 2ml’

53

> Hence, up to this stage, the solution is
>y (x) = A sin(nzx/L),n=1,2,3,..for0<x <L
> y,(x) = 0 elsewhere (outside the box)

4

The area
under the
curves of
. |¥/n|2 :1

0 . ! 0 I for every
»The constant A, is yet unknown.up to now ,
»\We.can solve for A, by applying another
“boundary condition” — the normalisation

condition that: . .
[vi dx = [y ()de=1

54
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Solve for 4, with normalisation

F r r N A*L
2(x)dx = w2 (x)dx = A% |sin* (—D)dx="2"=1
_j:m() !%() j (= )dv="2
e thus 4= 2
L

 We hence arrive at the final solution that

sw(x) = (2IL)"2sin(nm/L), n=1,2,3,..for0<x<L

>, (x) = 0 elsewhere (i.e. outside the box)

55

Example

An electron is trapped in a one-
dimensional region of length L =
1.0X1019m.

(a) How much energy must be
supplied to excite the electron )
from the ground state to the first ¥ *'""Muf"-“* sl

state? .
. (}l:) In t}gebggpundfst‘fatg., whfalt IS — gl VSN
the probability of finding the 1 TR
elecl'zron in the}:, region fr(%m - ? .‘{“’"‘\\_
x=0.090 X 10 m to 0.110 A= bl e
X101 m? 0 Lo L
* (c¢) In the first excited state, what Tosltion | |

is the probability of finding the
electron between

x=0andx=0250 X 100 m? 0257 05A 1A

56
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Solutions
@ g=p "7 _3ev E,=n’E,=(2)°E, =148V

— AE=|E,—E, |=111eV
X 9% o On average the particle in
(b) P_(x,<x<x,))= I'//gdx h Isinz = dx the ground state spend
L L only 0.04 % of its time in
the region between
,=0.114 x=0.11A and x=0.09 A

=0.0038

On average the particle in
P_,(x,<x<x,))= Il//zdx ——J‘sm —dx the n = 2 state spend 25% of
its time in the region
between x=0 and x=0.25 A

_o2s .

x,=0.254

The nightmare
of a lengthy calculation

"HeaeS  wiene Mov
MPDE oL MISTAKE.

58
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Quantum tunneling

* In the infinite quantum well, there are
regions where the particle is “forbidden” to

appcar V4 —>infinity V infinity
: | 1l
Forbidden region _ .
where particle Allowed region Forbidden region
cannot be found where particle where particle
because y =0 can be found cannot be found
everywhere because y = 0
before x <0 everywhere after

//' x> L

n=1
y(x=0)=0 y(x=L)=0

Finite quantum well

<0, x = L is because of the
infiniteness of the potential, V' > °
 If V has only finite height, the U
solution to the TISE will be
modified such that a non-zero value
of y can exist beyond the boundaries

* The fact that y is 0 everywhere x I
| Il

atx=0andx=L 0 L
* In this case, the pertaining ,
boundaries conditions are o %

Y, (x=0)=y,(x=0),y,(x=L)=y,,(x=L)

% — dl//11| dW11| — dW1H|

b

dx x=0 dx |x:0 dx |x:L dx |x:L
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* For such finite well, the wave function is not vanished at the boundaries, and may
extent into the region I, III which is not allowed in the infinite potential limit

* Such y that penetrates beyond the classically forbidden regions diminishes very
fast (exponentially) once x extents beyond x =0 and x =L

* The mathematical solution for the wave function in the “classically forbidden”
regions are

A4, exp(Cx)#0, x<0

X)=
v {A_ exp(-Cx)#0, x=L
The total energy of the particle

Lo |2 E = Kinside the well.

The height of the potential well Vis

M larger than E for a particle trapped
V 24 ) inside the well

Hence, classically, the particle
',/\, inside the well would not have

I I m  enough kinetic energy to overcome

the potential barrier and escape
b) into the forbidden regions |, Il

£ 700 ook wtole - Thamace

However, in QM, there is a slight chance to find
the particle outside the well due to the quantum
tunneling effect
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* The quantum tunnelling effect allows a
confined particle within a finite potential
well to penetrate through the classically
impenetrable potential wall

After many many
Hard times of banging Hard
and the wall and
high high
® E wall, ® E wall,
= v S v
Quantum tunneling effect o
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Why tunneling phenomena can
happen

* It's due to the continuity requirement of the wave function
at the boundaries when solving the T.I.S.E

» The wave function cannot just “die off” suddenly at the
boundaries of a finite potential well

* The wave function can only diminishes in an exponential
manner which then allow the wave function to extent
slightly beyond the boundaries

A4, exp(Cx)#0, x<0

V)= {A_ exp(—Cx)#0, x>1L
* The quantum tunneling effect is a manifestation of the

wave nature of particle, which is in turns governed by the
T.I.S.E.

* In classical physics, particles are just particles, hence never,
display such tunneling effect

Quantum tunneling effect
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Real example
of tunneling
phenomena:

Alpha particle |

'y . - g 1) &3
bl later | il FROAINE
;:-Lu.h.u..ﬂl--.l | o
' I alpha particle
[} ke T : e
R R, = ZkZeiE

MWuwclear
racliis

Figure 6.7 ({a} Alpha decay of a radioactive nucleus, (b) The
potential energy seen by an alpha particle emitted with mrrf')'
E. R is the nuclesr radius, about 107" m or 10 fm. Alpha
particles tunneling through the potential barrier bebwesn A
and A, escape the nucleus to be detected as radicactive decay

products.
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Real example of tunneling phenomena:
Atomic force microscope
\T;\le-|'i:||‘ Empty space
Ammeter
[ I Bias
voltage

(b) | ==

Material Empty  Probe

Tunneling

atoms electrons

Figure 3 (a) The wavefunction  FIGURE A Highly schematic diagram of the scanning
ofan electron in the surface of the ¥ ; ;
material to be studied. The wave-
A "
function extends beyond the sur- the figure as small dots, tunnel across the gap between
face into the empty region. (b) :
The sharp tip of a conducting
probe is brought close to the sur-  that keeps the tunneling current constant causes the tip
face. The wavefunction ofasur- ) move up and down tracing out the contours of the
face electron penetrates into the | k
tip, so that the electron can “‘tun-  S&mple atoms. FIGURE D An atomic force microscope scan of a
nel” from surface to tip. stamper used to mold compact disks. The numbers
given are in nm. The bumps on this metallic mold
stamp out 60 nm-deep holes in tracks that are 1.6 wm
apart in the optical disks. Photo courtesy of Digital Instru-

ments.

tunneling micr ISCOPE Process, Electrons, n'pn’st'lltt'd in

the atoms of the h'p and Hill]ll]lt'. A feedback system
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