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

Tutorial 1 

Special Relativity

Conceptual Questions 

1) What is the significance of the negative result of Michelson-
Morley experiment? 

ANS
The negative result of the MM experiment contradicts with the 
prediction of the absolute frame (the Ether frame) of reference,
in which light is thought to propagate with a speed c. In the 
Ether postulate, the speed of light that is observed in other 
initial reference frame (such as the Earth that is moving at 
some constant speed relative to the Absolute frame), according 
to the Galilean transformation, would be different than that of 
the Ether frame. In other words, the MM negative result 
provides the first empirical evidence to the constancy of light 
postulate by Einstein. 

2) Is it possible to have particles that travel at the speed of 
light?

ANS
Particle travelling at the speed of light would have an 

infinite mass, as per 










 . Hence it is physically not 

possible to supply infinite amount of energy to boost a 
particle from rest to the speed of light.

postulate by Einstein. 

3) A particle is moving at a speed less that c/2. If the speed of 
the particle is doubled, what happens to its momentum?

ANS

According to p u , doubling the speed u will make the momentum 

of an object increase by the factor . Here’s the 

working:
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4. The rest energy and total energy respectively, of three 
particles, expressed in terms of a basic amount A are (1) A, 2A;
(2) A, 3A; (3) 3A, 4A. Without written calculation, rank the 
particles according to their (a) rest mass, (b) Lorentz factor, 
and (c) speed, greatest first. 

ANS
Case 1: {m0c

2,E}={A,2A}; Case 2: {m0c
2,E}={A,3A}; Case 3: 

{m0c
2,E}={3A,4A}

(a) Rest mass = m0. Hence for case 1: m0 m0c
2=A; Case 2:m0c

2=A;
Case 3: m0c

2 =3A. Therefore, the answer is: mass in (3) > mass 
in (2) = mass in (1);

(b) Lorentz factor = E/
  

    

(c)  = 1- v2/c2  v2/c2 =1- v2/c2
v2/c2v2/c2v2/c2
v2/c2v2/c2

PROBLEMS

1. Space Travel (from Cutnell and Johnson, pg 861,863) 
Alpha Centauri, a nearby star in our galaxy, is 4.3 light-years 
away. If a rocket leaves for Alpha Centauri and travels at a 
speed of v = 0.95c relative to the Earth, (i) by how much will 
the passengers have aged, according to their own clock, when they 
reach their destination? ii) What is the distance between Earth 
and Alpha Centauri as measured by the passengers in the rocket? 
Assume that the Earth and Alpha Centauri are stationary with 
respect to one another. 
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Figure: (a) As measured by an observer on the earth, the 
distance to Alpha Centauri is L0, and the time required to make 

the trip is t. (b) According to the passenger on the 
spacecraft, the earth and Alpha Centauri move with speed v 
relative to the craft. The passenger measures the distance and 

time of the trip to be L and t0 respectively, both quantities 
being less than those in part (a). 

Reasoning
The two events in this problem are the departure from Earth and 
the arrival at Alpha Centauri. At departure, Earth is just 
outside the spaceship. Upon arrival at the destination, Alpha 
Centauri is just outside. Therefore, relative to the passengers,
the two events occur at the same place - namely, 'just outside 
the spaceship. Thus, the passengers measure the proper time 

interval t0 on their clock, and it is this interval that we 
must find. For a person left behind on Earth, the events occur 
at different places, so such a person measures the dilated time 

interval t rather than the proper time interval. To find t we 
note that the time to travel a given distance is inversely 
proportional to the speed. Since it takes 4.3 years to traverse 
the distance between earth and Alpha Centauri at the speed of 
light, it would take even longer at the slower speed of v = 
0.95c. Thus, a person on earth measures the dilated time 
interval to be t = (4.3 years)/0.95 = 4.5 years. This value 
can be used with the time-dilation equation to find the proper 

time interval t0.

Solution
Using the time-dilation equation, we find that the proper time 
interval by which the Passengers judge their own aging is 

t0 = t (1-v2/c2) = 4.5 years (1-0.952) = 1.4 years.

Thus, the people aboard the rocket will have aged by only 1.4 
years when they reach Alpha Centauri, and not the 4.5 years an 
earthbound observer has calculated.

Both the earth-based observer and the rocket passenger agree 
that the relative speed between the rocket and earth is v = 
0.95c. Thus, the Earth observer determines the distance to 
Alpha Centauri to be L0 = v t = (0.95c)(4.5 years) = 4.3 light-
years. On the other hand, a passenger aboard the rocket finds 



the distance is only L = v t0 = (0.95c)(l.4 years) = 1.3 light-
years. The passenger, measuring the shorter time, also measures 
the shorter distance - length contraction. 

Problem solving insight 

In dealing with time dilation, decide which interval is the 
proper time interval as follows: (1) Identify the two events 
that define the interval. (2) Determine the reference frame in 
which the events occur at the same place; an observer at rest 
in this frame measures the proper time interval t0.

2)  The Contraction of a Spacecraft (Cutnell, pg 863) 

An astronaut, using a meter stick that is at rest relative to a 
cylindrical spacecraft, measures the length and diameter of the 
spacecraft to be 82 and 21 m respectively. The spacecraft moves 
with a constant speed of v = 0.95c relative to the Earth. What 
are the dimensions of the spacecraft, as measured by an 
observer on Earth? 

Reasoning
The length of 82 m is a proper length Lo since it is measured 
using a meter stick that is at rest relative to the spacecraft. 
The length L measured by the observer on Earth can be 
determined from the length-contraction formula. On the other 
hand, the diameter of the spacecraft is perpendicular to the 
motion, so the Earth observer does not measure any change in 
the diameter. 

Solution
The length L of the spacecraft, as measured by the observer on 
Earth, is 






















 = 26 m 

Both the astronaut and the observer on Earth measure the same 
value for the diameter of the spacecraft: Diameter = 21 m 

Problem solving insight The proper length L0 is always larger 
than the contracted length L.

3) Additional problem 36, Cutnell pg. 879. 
Two spaceship A and B are exploring a new planet. Relative to 
this planet, spaceship A has a speed of 0.60c, and spaceship B 
has a speed of 0.80c. What is the ratio DA/DB of the values for 
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the planet’s diameter that each spaceship measures in a 
direction that is parallel to its motion?

Solution

Length contraction occurs along the line of motion, hence both 
spaceship observe length contraction on the diameter of the 
planet. The contracted length measures by a moving observer is 

inversely proportional to the Lorentz factor . Hence,








































 .

4)  The Energy Equivalent of a Golf Ball (Cutnell, pg 866) 
A 0.046-kg golf ball is lying on the green. (a) Find the rest 
energy of the golf ball. (b) If this rest energy were used to 
operate a 75-W light bulb, for how many years could the bulb 
stay on?

Reasoning
The rest energy E0 that is equivalent to the mass m of the golf 
ball is found from the relation E0 = mc

2. The power used by the 
bulb is 75 W, which means that it consumes 75 J of energy per 
second. If the entire rest energy of the ball were available 
for use, the bulb could stay on for a time equal to the rest 
energy divided by the power. 

Solution
(a) The rest energy of the ball is 

E0 = mc
2 = (0.046 kg)(3.0  108 m/s)2 = 4.1  1015 J

(b) This rest energy can keep the bulb burning for a time t given by 
t = Rest energy/ Power = 4.1  1015 J/75 W = 5.5  1013 s = 1.7 
million years! 

5)  A High-Speed electron (Cutnell pg. 867) 
An electron (mass = 9.1  10-31 kg) is accelerated to a speed of 
0.9995c in a particle accelerator. Determine the electron’s (a) 
rest energy, (b) total energy, and (c) kinetic energy in MeV 

(a)   


(b)  Total energy of the traveling electron,











 














(c)  The kinetic energy = E – E0 = 15.7 MeV 

6)  The Sun Is Losing Mass (Cutnell, pg 868) 
The sun radiates electromagnetic energy at the rate of 3.92
1026 W. (a) What is the change in the sun's mass during each 
second that it is radiating energy? (b) The mass of the sun is 
1.99  1030 kg. What fraction of the sun's mass is lost during 
a human lifetime of 75 years? 

Reasoning
Since a W = I J/s the amount of electromagnetic energy radiated 
during each second is 3.92 1026 J. Thus, during each second, 

the sun's rest energy decreases by this amount. The change E0
in the sun's rest energy is related to the change m in its 

mass by E0= m c2.
Solution
(a) For each second that the sun radiates energy, the change in 
its mass is m = E0/c

2 = 3.92 1026 J/(3 108 m/s)2 = (4.36 109)
kg. Over 4 billion kilograms of mass are lost by the sun during 
each second.

(b)  The amount of mass lost by the sun in 75 years is 

m =(4.36 109)kg 107 s/year) ) = 1019 kg 
Although this is an enormous amount of mass, it represents only 
a tiny fraction of the sun's total mass: 

m/m = 1.0 1019 kg/1.99 1030 kg = 5.0 10-12
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7)  The Speed of a Laser Beam (Cutnell, pg 871) 
Figure below shows an intergalactic cruiser approaching a 
hostile spacecraft. The velocity of the cruiser relative to the 
spacecraft is vCS = +0.7c. Both vehicles are moving at a 
constant velocity. The cruiser fires a beam of laser light at 
the enemy. The velocity of the laser beam relative to the 
cruiser is vLC = +c. (a) What is the velocity of the laser beam 
vLS relative to the renegades aboard the spacecraft? (b) At what 
velocity do the renegades aboard the spacecraft see the laser 
beam move away from the cruiser? 

Reasoning and Solution 

(a) Since both vehicles move at a constant velocity, each 
constitutes an inertial reference frame. According to the speed 
of light postulate, all observers in inertial reference frames 
measure the speed of light in a vacuum to be c. Thus, the 
renegades aboard the hostile spacecraft see the laser beam 
travel toward them at the speed of light, even though the beam 
is emitted from the cruiser, which itself is moving at seven-
tenths the speed of light. 

More formally, we can use Lorentz transformation of 
velocities to calculate vLS. We will take the direction as +ve 
when a velocity is pointing from left to right. We can take 
view that the hostile spacecraft is at rest (as the 
stationary frame, O) while the cruiser is approaching it with 
velocity vCS = + 0.7c (according to our choice of the sign). 
In this case, the cruiser is the moving frame, O’. The light 
beam as seen in the moving frame O’ is vLC = +c. We wish to 
find out what is the speed of this laser beam from O point of 
view, e.g. what vLS is. 

We may like to identify vLS, vLC and vCS with the definitions 

used in the Lorentz formula: 

















 . In fact, a little 

contemplation would allow us to make the identification that, 
with our choice of frames (that the hostile spacecraft as the 
stationary frame): vLC  ux’ = +c; vCS  u = + 0.7c and
vLS = ux = the speed of laser beam as seen by the stationary 
frame O (the quantity we are seeking). Hence, we have 
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
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




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















 

















, i.e. the laser 

beam is seen, from the view point of the hostile spacecraft, 
to be approaching it with a velocity +c (+ve means the 
velocity is from left to right). 

(b) The renegades aboard the spacecraft see the cruiser approach 
them at a relative velocity of vCS = +0.7c, and they also see 
the laser beam approach them at a relative velocity Of vLS +c. 
Both these velocities are measured relative to the same 
inertial reference frame-namely, that of the spacecraft. 
Therefore, the renegades aboard the spacecraft see the laser 
beam move away from the cruiser at a velocity that is the 
difference between these two velocities, or +c - (+0.7c) = 
+0.3c. The relativistic velocity-addition formula, is not 
applicable here because both velocities are measured relative 
to the same inertial reference frame (the spacecraft's 
reference frame). The relativistic velocity-addition formula 
can be used only when the velocities are measured relative to 
different inertial reference frames. 

8)  The Relativistic Momentum of a High-Speed Electron (Cutnell, pg 
865)
The particle accelerator at Stanford University is three 
kilometers long and accelerates electrons to a speed of 0.999 
999 999 7c, which is very nearly equal to the speed of light. 
Find the magnitude of the relativistic momentum of an electron 
that emerges from the accelerator, and compare it with the non-
relativistic value. 

Reasoning and Solution 

The magnitude of the electron’s relativistic momentum can be 

obtained from p = m0v = 
 Ns, where 


  kg, 
















 m/s. The 

relativistic momentum is greater than the non-relativistic 

momentum by a factor of 














.

9) Resnick and Halliday, Sample problem 37-8, pg. 1047. 
The most energetic proton ever detected in the cosmic rays 
coming to Earth from space had an astounding kinetic energy of 
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3.0 x 1020 eV. (a) What were the proton’s Lorentz factor  and 
speed v (both relative to the ground-based detector)?

Solution
 


   

  


  



  
   

  

        

   

   

     

    

    

  
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Tutorial 2 

Matter and Wave; Blackbody radiation 

Conceptual Questions 

1. What is ultraviolet catastrophe? What is the significance 
of it in the development of modern physics? (My own 
question)

ANS
The classical theory explanation of the blackbody 
radiation by Rayleigh-Jeans fails in the limit (or
equivalently, when frequency ), i.e.   at 
The failure prompted Planck to postulate that the energy 
of electromagnetic waves is quantised (via h  as 
opposed to the classical thermodynamics description 
( ). With Planck�s postulate, radiation now has 
particle attributes instead of wave. 

2. What assumptions did Planck make in dealing with the 
problem of blackbody radiation? Discuss the consequences 
of the assumptions.

ANS
Planck made two new assumptions: (1) Radiation oscillator 
energy is quantized and (2) they emit or absorb energy in 
discrete irreducible packets. The �oscillator� here 
actually refers to the molecules or atoms that made up the 
walls of the blackbody cavity. These assumptions 
contradict the classical idea of energy as continuously 
divisible.

3. The classical model of blackbody radiation given by the 
Rayleigh-Jeans law has two major flaws. Identify them and 
explain how Planck’s law deals with them.

ANS






 



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

4. What are the most few distinctive physical characteristics, 
according to your point of view, that exclusively 
differentiate a classical particle from a wave? Construct 
a table to compare these two.

ANS (my suggestions) 

Particle Wave 
Complete localized Cannot be confined to any 

particular region of space. 
A wave can be 
�simultaneously everywhere� 
at a given instance in time 

Mass and electric charge can 
be identified with infinite 
precision

No mass is associated with a 
wave.

Energy carried by a particle 
is concentrated in it and is 
not spreading over the 
boundary that define its 
physical location 

Energy carried by wave 
spreads over an infinite 
regions of space along the 
direction the wave 
propagates

Momentum and position can be 
identified with infinite 
precision.

Wavelength and position of a 
wave cannot be 
simultaneously measured to 
infinite precision, they 
must obey the classical wave 
uncertainty relation x

There is not definition of 
wavelength for a particle 

There is not definition of 
momentum for waves 

Does not undergo diffraction 
and interference 

Waves undergo diffraction 
and interference 





 (others)  (others) 

Problems

1. For a blackbody, the total intensity of energy radiated 
over all wavelengths, I, is expected to rise with 
temperature. In fact one find that the total intensity 
increases as the fourth power of the temperature. We call 

this the Stefan’s law:   , where  is the Stefan’s 

constant        How does the total intensity of 
thermal radiation vary when the temperature of an object 
is doubled?

ANS

Intensity of thermal radiation I T4. Hence, when T is
double, ie. T 2T, I I�(2)4 = 16I, i.e. the total 

intensity of thermal radiation increase by 16 times. 

2. (Krane, pg. 62) 

In the spectral distribution of blackbody radiation, the 

wavelength max at which the intensity reaches its maximum 
value decreases as the temperature is increased, in 
inverse proportional to the temperature:   . This is 
called the Wein’s displacement law. The proportional 
constant is experimentally determined to be 


    

(a) At what wavelength does a room-temperature (T = 
20oC) object emit the maximum thermal radiation?

(b) To what temperature must we heat it until its peak 
thermal radiation is in the red region of the 
spectrum?

(c) How many times as much thermal radiation does it 
emit at the higher temperature? 

ANS
(a) Converting to absolute temperature, T = 293 K, and 

from Wien's displacement law, 
    

max = 2.898×10-3 m·K/293K = 9.89 m

(b)  Taking the wavelength of red light to be =650 nm,
 we again use Wien's displacement law to find T:

T = 2.898×10-3 m·K/650×10-9 m = 4460 K 
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(c) Since the total intensity of radiation is 
proportional to T4, the ratio of the total thermal 
emissions will be 










 









Be sure to notice the use of absolute (Kelvin) 
temperatures.

3. Show that the spectral distribution derived by Planck, 

 






Bhc k T

hcT
e

 reduces to the Rayleigh-Jeans law, 

  

 Bck TT  in the long wavelength limit. 

ANS
In long wavelength limit, Bhc k T , the exponential term 
is approximated to







 


Bhc k T

B B B

hc hc hce
k T k T k T

. Hence, substituting 

Bhc k T

B

hce
k T

 into the Planck�s distribution, we have 

 
  

 


   


 

B

B B
hc k T

BB

hc k T ck Thc hc hcT
hce hchc

k Tk T

,

which is nothing but just the RJ�s law.



Tutorial 3 

Photoelectricity, Compton scatterings, pair-
production/annihilation, X-rays 

Conceptual Questions 

1. What is the significance of the Compton wavelength of a given 
particle (say an electron) to a light that is interacting with the 
particle? (Own question)

ANS

The Compton wavelength (a characteristic constant depend
solely on the mass of a given particle) characterises the length 
scale at which the quantum property (or wave) of a given particle 
starts to show up. In an interaction that is characterised by a 
length scale larger than the Compton wavelength, particle behaves 
classically. For interactions that occur at a length scale 
comparable than the Compton wavelength, the quantum (or, wave) 
nature of the particle begins to take over from classical physics.

In a light-particle interaction, if the wavelength of the light is 
comparable to the Compton wavelength of the interacting particle, 
light displays quantum (granular/particle) behaviour rather than 
like a wave.

2. Why doesn’t the photoelectric effect work for free electron? (Krane, 
Question 7, pg 79)

ANS (verify whether the answer make sense) 

Essentially, Compton scattering is a two-body process. The free 
electron within the target sample (e.g. graphite) is a unbounded 
elementary particle having no internal structure that allows the 
photons to be `absorbed’. Only elastic scattering is allowed here.

Whereas PE effect is a inelastic scattering, in which the 
absorption of a whole photon by the atom is allowed due to the 
composite structure (the structure here refers the system of the 
orbiting electrons and nuclei hold together via electrostatic 
potential) of the atom. A whole photon is allowed to get absorbed 
by the atom in which the potential energy acts like a medium to 
transfer the energy absorbed from the photon, which is then 
`delivered’ to the bounded electrons (bounded to the atoms) that 
are then `ejected’ out as photoelectrons. 

3. How is the wave nature of light unable to account for the observed 
properties of the photoelectric effect? (Krane, Question 5, pg 79)

ANS
See lecture notes 
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4. In the photoelectric effect, why do some electrons have kinetic 
energies smaller than Kmax?
(Krane, Question 6, pg 79)

ANS

By referring to Kmax = h  - , Kmax corresponds to those electrons 
knocked loose from the surface by the incident photon whenever h  > 
. Those below the surface required an energy greater than  and so 
come off with less kinetic energy. 

5. Must Compton scattering take place only between x-rays and free 
electrons? Can radiation in the visible (say, a green light) 
Compton scatter a free electron? (My own question) 

ANS
In order to Compton scatter the electron, the wavelength of the 
radiation has to be comparable to the Compton wavelength of the 
electron. If such criterion is satisfied the cross section (the 
probability for which a scattering process can happen) of Compton 
scattering between the radiation and the electron would be highly 
enhanced. It so happen that the Compton wavelength of the electron, 

  




 
 is ~ the order the X-rays’,     , hence X-

rays’ Compton scattering with electrons is most prominent compared 
to radiation at other wavelengths. This means that at other 

wavelength (such as in the green light region, where   ) the 

cross section of Compton scattering would be suppressed. 

Problems

1. The diameter of an atomic nucleus is about 10×10-15 m. Suppose you 
wanted to study the diffraction of photons by nuclei. What energy 
of photons would you choose? Why? (Krane, Question 1, pg 79)

Solution
Diffraction of light by the nucleus occurs only when the wavelength 
of the photon is smaller or of the order of the size of the nucleus, 
 ~ D (D = diameter of the nucleus). Hence, the minimum energy of 
the photon would be E = hc/  ~ hc/D ~ 120 MeV. 

2. Photons from a Light Bulb (Cutnell, pg884) 
In converting electrical energy into light energy, a sixty-watt 
incandescent light bulb operates at about 2.1% efficiency. Assuming 
that all the light is green light (vacuum wavelength 555 nm), 
determine the number of photons per second given off by the bulb. 

Reasoning
The number of photons emitted per second can be found by dividing 
the amount of light energy emitted per second by the energy E of 
one photon. The energy of a single photon is E = hf. The frequency 
of the photon is related to its wavelength  by  = c/ .



Solution
At an efficiency of 2.1%, the light energy emitted per second by a 
sixty-watt bulb is (0.021)(60.0 J/s)=1.3 J/s. The energy of a 
single photon is

E = hc/ (6.63×10-34Js)(3×108 m/s)/555×10-9 nm = 3.58×10-19 J 

Therefore, number of photons emitted per second =
1.3 J/s/ (3.58×10-19 J/photon) = 3.6×1018 photon per second 

3. Ultraviolet light of wavelength 350 nm and intensity 1.00 W/m2 is 
directed at a potassium surface. (a) Find the maximum KE of the 
photoelectrons. (b) If 0.50 percent of the incident photons produce 
photoelectrons, how many are emitted per second if the potassium 
surface has an area of 1.00 cm2? (Beiser, pg. 63)

Solution

(a) The energy of the photons is, EP =hc/  = 3.5eV. The
work function of potassium is 2.2 eV. So, 
KE = hv -  = 3.5 eV - 2.2 eV = 5.68 10-19 J

(b) The photon energy in joules is 5.68 10-19 J. Hence
the number of photons that reach the surface per second is
np = (E/t)/Ep = (E/A)(A)/Ep

 =(1.00 W/m2)(1.00 10-4 m2)/5.68 10-19 J

 = 1.76 1014photons/s
The rate at which photoelectrons are emitted is therefore ne = 
(0.0050)np = 8.8 1011 photoelectrons/s 

4. The work function for tungsten metal is 4.53 eV. (a) What is the 
cut-off wavelength for tungsten?  (b) What is the maximum kinetic 
energy of the electrons when radiation of wavelength 200.0 nm is 
used? (c) What is the stopping potential in this case? (Krane, pg. 
69)

Solution

(a) The cut-off frequency is given by 



 ,

in the uv region 

(b) At the shorter wavelength, 





 






(c) The stopping potential is just the voltage corresponding to 

  


 


 V

5. X-rays of wavelength 10.0 pm (1 pm = 10-12 m) are scattered from a 
target. (a) Find the wavelength of the x-rays scattered through 45o.
(b) Find the maximum wavelength present in the scattered x-rays. (c) 
Find the maximum kinetic energy of the recoil electrons. (Beiser, 
pg. 75)
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Solution

(a) The Compton shift is given by   , and so 

 


  pm

(b)  is a maximum when   = 2, in which case,  =

10.0 pm + 4.9 pm = 14.9 pm 
(c) The maximum recoil kinetic energy is equal to the

difference between the energies of the incident and scattered 
photons, so 

KEmax = h(  - ')= hc(



)=40.8 eV 

6. Gautreau and Savin, page 70, Q 9.28 

A photon of wavelength 0.0030  in the vicinity of a heavy nucleus 
produces an electron-positron pair. Determine the kinetic energy of 
each of the particles if the kinetic energy of the positron is 
twice that of the electron.

Solution:
From (total relativistic energy before) = (total relativistic 
energy after),

 



  

   
 


  

 


      



  

7. Gautreau and Savin, page 71, Q 9.32 

Annihilation occurs between an electron and positron at rest, 
producing three photons. Find the energy of the third photon of the 
energies of the two of the photons are 0.20 MeV and 0.30 MeV. 

Solution:
From conservation of energy, 2(0.511 MeV) = 0.20 MeB + 0.30 MeV = 
E3 or E3 = 0.522 MeV 

8. Gautreau and Savin, page 71, Q 9.33 
How Many positrons can a 200 MeV photon produce? 

Solution:
The energy needed to produce an electron-positron pair at rest is 
twice the rest energy of an electron, or 1.022 MeV. Therefore,
Maximum number of positrons =

(200 MeV) 
 

 
 



Tutorial 4 
Wave particle duality  de Brolie postulate, Heisenberg Uncertainty 

principle 

Conceptual Questions 

1. What difficulties does the uncertainty principle cause in 
trying to pick up an electron with a pair of forceps? (Krane, 
Question 4, pg. 110) 

ANS 
When the electron is picked up by the forceps, the position of 
the electron is ``localised’ (or fixed), i.e. x = 0. 
Uncertainty principle will then render the momentum to be 

highly uncertainty. In effect, a large p means the electron 
is ``shaking’’ furiously against the forceps’ tips that tries 
to hold the electron ``tightly’’.  

2. An electron and a proton both moving at nonrelativistic speeds 
have the same de Broglie wavelength. Which of the following 
are also the same for the two particles?  
(a) speed  (b) kinetic energy  (c) momentum   
(d) frequency 

ANS 

(c). According to de Broglie’s postulate, 
 

 
, two 

particles with the same de Broglie wavelength will have the 
same momentum p = mv. If the electron and proton have the same 
momentum, they cannot have the same speed (a) because of the 
difference in their masses. For the same reason, because K =

p2/2m, they cannot have the same kinetic energy (b). Because 
the particles have different kinetic energies, Equation 

 

 
 tells us that the particles do not have the same 

frequency (d).  

3. The location of a particle is measured and specified as being 
exactly at x = 0, with zero uncertainty in the x direction.
How does this affect the uncertainty of its velocity component 
in the y direction?
(a) It does not affect it.  
(b) It makes it infinite.  
(c) It makes it zero.  

ANS 
(a). The uncertainty principle relates uncertainty in position 
and velocity along the same axis. The zero uncertainty in 
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position along the x axis results in infinite uncertainty in 
its velocity component in the x direction, but it is unrelated 
to the y direction.

4. You use a large potential difference to accelerate particles 
from rest to a certain kinetic energy.  For a certain 
potential difference, the particle that will give you the 
highest resolution when used for the application as a 
microscope will be a) an electron, b) a proton, c) a neutron, 
or d) each particle will give you the same resolution under 
these circumstances. (Serway QQ) 

ANS 

(b). The equation  = h/(2mq V)1/2 determines the wavelength 
of a particle.  For a given potential difference and a given 
charge, the particle with the highest mass will have the 
smallest wavelength, and can be used for a microscope with the 
highest resolution.  Although neutrons have the highest mass, 
their neutral charge would not allow them to be accelerated 
due to a potential difference.  Therefore, protons would be 
the best choice.  Protons, because of their large mass, do not 
scatter significantly off the electrons in an atom but can be 
used to probe the structure of the nucleus.   

5. Why was the demonstration of electron diffraction by Davisson 
and Germer and important experiment? (Serway, Q19, pg. 1313) 

ANS 
The discovery of electron diffraction by Davisson and Germer 
was a fundamental advance in our understanding of the motion 
of material particles. Newton’s laws fail to properly describe 
the motion of an object with small mass. It moves as a wave, 
not as a classical particle. Proceeding from this recognition, 
the development of quantum mechanics made possible describing 
the motion of electrons in atoms; understanding molecular 
structure and the behavior of matter at the atomic scale, 
including electronics, photonics, and engineered materials; 
accounting for the motion of nucleons in nuclei; and studying 
elementary particles. 

6. If matter has wave nature why is this wave-like character not 
observed in our daily experiences? (Serway, Q21, pg. 1313) 

ANS 
Any object of macroscopic size—including a grain of dust—has 
an undetectably small wavelength and does not exhibit quantum 
behavior. 



Problems

1. Beiser, pg. 100, example 3.3 

An electron has a de Broglie wavelength of 2.00 pm. Find its 
kinetic energy and the phase and the group velocity of its de 
Broglie waves.  

Solution 
(a) First calculate the pc of the electron 

pc = hc/  = 1.24 keV.nm / 2.00 pm = 620 keV 
 

 The rest energy of the electron is E0=511 keV, so the 
KE of the electron is  
KE = E – E0 = [E0

2-(pc)2]1/2 – E0 = … 292 keV 

(b) The electron’s velocity is to be found from 

  

 

  

 

      


    



 


 





    

 

 

 

 
 

 
  

2. Find the de Broglie wave lengths of (a) a 46-g ball with a 
velocity of 30 m/s, and (b) an electron with a velocity of 107

m/s (Beiser, pg. 92) 

Solution 
(a) Since v << c, we can let m = mo. Hence

 = h/mv = 6.63 10-34 Js/(0.046 kg)(30 m/s) 
= 4.8 10-34 m   

The wavelength of the golf ball is so small compared with 
its dimensions that we would not expect to find any wave 
aspects in its behaviour. 

(b) Again v << c, so with m = mo = 9.1 10-31 kg, we have 

 = h/mv = 6.63 10-34 Js/(9.1 10-31 kg)(107 m/s)
= 7.3 10-11 m   

The dimensions of atoms are comparable with this figure - 
the radius of the hydrogen atom, for instance, is 5.3 10-11 m.
It is therefore not surprising that the wave character of 
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moving electrons is the key to understanding atomic 
structure and behaviour. 

3. The de Broglie Wavelength (Cutnell, pg. 897) 
An electron and a proton have the same kinetic energy and are 
moving at non-relativistic speeds. Determine the ratio of the 
de Broglie wavelength of the electron to that of the proton.  

ANS

Using the de Broglie wavelength relation p = h/  and the fact 
that the magnitude of the momentum is related to the kinetic 
energy by p = (2mK)1/2, we have 

h/p = h/(2mK)1/2

Applying this result to the electron and the proton gives  

e/ p = (2mpK)
1/2/(2meK)

1/2

 = (mp/me)
1/2 = (1.67  kg/9.11  kg)1/2 = 42.8 

As expected, the wavelength for the electron is greater 
than that for the proton. 

4. Find the kinetic energy of a proton whose de Broglie 
wavelength is 1.000 fm = 1.000 10-15 m, which is roughly the 
proton diameter (Beiser, pg. 92) 

ANS 
A relativistic calculation is needed unless pc for the proton 
is much smaller than the proton rest mass of Eo = 0.938 GeV.

So we have to first compare the energy of the de Broglie wave 
to Eo:

E = pc = 






 GeV, c.f. Eo = 0.938 GeV. Since 

the energy of the de Broglie wave is larger than the rest mass 
of the proton, we have to use the relativistic kinetic energy 
instead of the classical K = p2/2m expression.  

The total energy of the proton is  


  =
   =1.555 GeV.

The corresponding kinetic energy is 
KE = E - Eo = (1.555 - 0.938) GeV = 0.617 GeV = 617 MeV 



5. A hydrogen atom is 5.3 10-11 m in radius. Use the uncertainty 
principle to estimate the minimum energy an electron can have 
in this atom. (Beiser, pg 114) 

ANS 

Here we find that with x = 5.3 10-11 m.

p


= 9.9 10-25 Ns.  

An electron whose momentum is of this order of magnitude 
behaves like a classical particle, an its kinetic energy is 
K = p2/2m  (9.9 10-25 Ns)2/2 9.110-31 kg = 5.4 10-19 J, which is 
3.4 eV. The kinetic energy of an electron in the lowest energy 
level of a hydrogen atom is actually 13.6 eV. 

6. A measurement established the position of a proton with an 

accuracy of  m. Find the uncertainty in the proton’s 
position 1.00 s later. Assume v << c. (Beiser, pg. 111) 

ANS 

Let us call the uncertainty in the proton’s position x0  at 
the time t = 0. The uncertainty in its momentum at this time 

is therefore 
 

 . Since v << c, the momentum uncertainty 

is    and the uncertainty in the proton’s 

velocity is 
  


 . The distance x of the proton 

covers in the time t cannot be known more accurately than  

 


 . Hence   is inversely proportional to  :

the more we know about the proton’s position at t = 0 the les 

we know about its later position at t. The value of   at t = 

1.00 s is 











 m. This is 3.15 

km! What has happened is that the original wave group has 
spread out to a much wider one because the phase velocities of 
the component wave vary with wave number and a large range of 
wave numbers must have been present to produce the narrow 
original wave  

7. Broadening of spectral lines due to uncertainty principle: An 
excited atom gives up it excess energy by emitting a photon of 
characteristic frequency. The average period that elapses 
between the excitation of an atom and the time is radiates is 
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1.0 10-8 s. Find the inherent uncertainty in the frequency of 
the photon. (Beiser, pg. 115) 

ANS 

The photon energy is uncertain by the amount 










 




  J. The corresponding 

uncertainty in the frequency of light is 



Hz. This 

is the irreducible limit to the accuracy with which we can 
determine the frequency of the radiation emitted by an atom. 
As a result, the radiation from a group of excited atoms does 
not appear with the precise frequency . For a photon whose 

frequency is, say,   Hz,  .



Conceptual Questions 

1. What is the ONE essential difference between the Rutherford 
model and the Bohr’s model? (My own question) 

ANS 
Rutherford’s model is a classical model, in which EM wave will 
be radiated rendering the atom to collapse. Whereas the Bohr’s 
model is a semi-classical model in which quantisation of the 
atomic orbit happens. 

2. Conventional spectrometers with glass components do not 

transmit ultraviolet light (

 380 nm). Explain why non of the 

lines in the Lyman series could be observed with a 
conventional spectrometer. (Taylor and Zafiratos, pg. 128) 

ANS 

For Lyman series, nf = 1. According to 
 

 
 , the 

wavelength corresponding to ni = 2 in the Lyman series is 

predicted to be 



=



=121.5 nm. Similarly, for 

ni = 3, one finds that =102 nm, and inspection of 


 

 
  shows that the larger we take n, the smaller 

the corresponding wavelength. Therefore, all lines in the 
Lyman series lie well into the ultraviolet and are 
unobservable with a conventional spectrometer.  

3. Does the Thompson model fail at large scattering angles or at 
the small scattering angle? Why? (Krane, Questions 1, pg. 173) 

ANS 
Thompson model fails at large angle (but is consistent with 
scattering experiments at small angle). Thompson model 
predicts that the average scattered angle is given by a small 

value of   ~ 1
o. However, in the experiment, alpha particles 

are observed to be scattered at angle in excess of 90o. This 
falsifies Thompson model at large angle.  

4. In which Bohr orbit does the electron have the largest 
velocity? Are we justified in treating the electron non-
relativistically? (Krane, Questions 6. pg. 174)
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ANS 

The velocity in an orbit n is given by v = h/2 mnr0, which 
means that the velocity is inversely proportional to the n
number. Hence the largest velocity corresponds to the n = 1 
state,  
v(n =1)/c = h/2c mr0

= 6.63 10-34/2 (9.1 10-31)(0.53 10-10)/c
 = 0.007. 
Hence, nonrelativistic treatment is justified.  

5. How does a Bohr atom violate the 


  uncertainty relation? 

(Krane, Question 11, pg. 174)

ANS 
The uncertainty relation in the radial direction of an 

electron in a Bohr orbit is 
 . However, in the Bohr 

model, the Bohr orbits are assumed to be precisely known 

(= 
 ) for a given n. This tantamount to  , which must 

render the momentum in the radial direction to become infinite. 
But in the Bohr atom the electron does not have such radial 
motion caused by this uncertainty effect. So in this sense, 
the discrete Bohr orbit violates the uncertainty relation 


 .

Problem

1. If we assume that in the ground of the hydrogen the position 
of the electron along the Bohr orbit is not known and not 
knowable, then the uncertainty in the position is about 


   m, (a) what is the magnitude of the momentum of 

the electron at the ground state? (b) What is the 
corresponding quantum uncertainty in the momentum? (Ohanian, 
pg. 152) 

ANS 

(a) Angular momentum, |L|  |p|r = n . Hence, in the ground 

state, |p| = /r0 = 
 Ns

(b) 




 

 

2. Serway and Mosses, Problem 13(a), page 148 
What value of n is associated with the Lyman series line in 
hydrogen whose wavelength is 102.6 nm? 

Solution: 



102.6 nm 
9

2 1 2 1 21 1
102.6 10 m

1 11 2.99 3R RR n
n R R

3. Serway and Moses, Problem 22 
Find the potential energy and kinetic energy of an electron in 
the ground state of the hydrogen atom. 

Solution: 
2 2

2
mv keE K U

r


2 21
2 2
mv ke

r


21
2 2

ke UE
r



2 2 13.6 eV 27.2 eVU E  13.6 eV 27.2 eV 13.6 eVK E U 

4. Serway and Moses, Problem 21 
Calculate the longest and shortest wavelengths for the Paschen 
series. (b) Determine the photon energies corresponding to 
these wavelengths. 

Solution

(a) For the Paschen series; 2 2
i

1 1 1
3

R
n

; the maximum 

wavelength corresponds to i 4n , 2 2
max

1 1 1
3 4

R ;

max 1 874.606 nm . For minimum wavelength, in ,

2
min

1 1 1
3

R ; min
9 820.140 nm
R

.

 1874.606 nm
19

min
0.662 7 nm

1.6 10 J eV

hchc
, 820.140 nm

19
min

1.515 nm
1.6 10 J eV

hchc

5. Hydrogen atoms in states of high quantum number have been 
created in the laboratory and observed in space. (a) Find the 
quantum number of the Bohr orbit in a hydrogen atom whose 
radius is 0.0199 mm. (b) What is the energy of a hydrogen atom 
in this case? (Beiser, pg. 133)

Solution 

(a) From 
 , we have 











 

(b) From 




 eV, we have 


 eV = -0.000072 eV. 

Such an atom would obviously be extremely fragile and 
be easily ionised (compared to the kinetic energy of 

the atom at temperature T, kT ~ (1.38  J/K) (300 K) 
=0.03 eV)
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6. (a) Find the frequencies of revolution of electrons in n = 1 
and n = 3 Bohr orbits. (b) What is the frequency of the photon 
emitted when an electron in the n = 2 orbit drops to an n = 1 
orbit? (c) An electron typically spends about 10-8 s in an 
excited state before it drops to a lower state by emitting a 
photon. How many revolutions does an electron in an n = 2 Bohr 
orbit make in 10-8 s? (Beiser, pg. 137)

Solution 

(a) Derive the frequency of revolution from scratch: Forom 
Bohr’s postulate of quantisation of angular momentum, L
= (mv)r = nh/2 , the velocity is related to the radius 
as v = nh/2mr . Furthermore, the quantised radius is 
given in terms of Bohr’s radius as rn = n

2r0. Hence, v = 
h/2 mnr0.

The frequency of revolution f = 1/T (where T is the 
period of revolution) can be obtained from v = 2 r/T = 
2 n2r0 f. Hence, f = v/2 r = (h/2 mnr0)/2 r = h/4 2mn3(r0)

2.

For n = 1, f1 = h/4
2m(r0)

2 = 6.56   Hz.

For n = 2, f2 = h/4
2m(2)3(r0)

2 = 6.56  /8 Hz = 8.2  .

(b) 










 
 

















=  Hz. The frequency is intermediate between f1
and f2.

(c) The number of revolutions the electron makes is N = f2 
= (8.2  )   = 8.2   rev.



Conceptual Questions 

1) The speed of light in water is c/n, where n = 1.33 is the index 
of refraction of water. Thus the speed of light in water is 
less than c. Why doesn’t this violate the speed of light 
postulate?

ANS
The constancy of light postulate only applies to light 
propagating in vacuum. So, a light propagating in a medium 
which is otherwise could still has a travelling speed other 
than c.

2) What is the significance of the negative result of Michelson-
Morley experiment? 

ANS
The negative result of the MM experiment contradicts with the 
prediction of the absolute frame (the Ether frame) of reference, 
in which light is thought to propagate with a speed c. In the 
Ether postulate, the speed of light that is observed in other 
initial reference frame (such as the Earth that is moving at 
some constant speed relative to the Absolute frame), according 
to the Galilean transformation, would be different than that of 
the Ether frame. In other words, the MM negative result 
provides the first empirical evidence to the constancy of light 
postulate by Einstein. 

3) Is it possible to have particles that travel at the speed of 
light?

ANS
Particle travelling at the speed of light would have an 

infinite mass, as per 










 . Hence it is physically not 

possible to supply infinite amount of energy to boost a 
particle from rest to the speed of light.

 4) What is the twin-paradox? What is the solution to the paradox? 

ANS
Refer to page 43-44, Krane. 
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PROBLEMS

1) Space Travel (from Cutnell and Johnson, pg 861,863) 
Alpha Centauri, a nearby star in our galaxy, is 4.3 light-years 
away. If a rocket leaves for Alpha Centauri and travels at a 
speed of v = 0.95c relative to the Earth, (i) by how much will 
the passengers have aged, according to their own clock, when 
they reach their destination? ii) What is the distance between 
Earth and Alpha Centauri as measured by the passengers in the 
rocket? Assume that the Earth and Alpha Centauri are stationary 
with respect to one another. 

Figure: (a) As measured by an observer on the earth, the distance to 

Alpha Centauri is L0, and the time required to make the trip is t.
(b) According to the passenger on the spacecraft, the earth and 
Alpha Centauri move with speed v relative to the craft. The 
passenger measures the distance and time of the trip to be L and t0
respectively, both quantities being less than those in part (a). 

Reasoning
The two events in this problem are the departure from Earth and 
the arrival at Alpha Centauri. At departure, Earth is just 
outside the spaceship. Upon arrival at the destination, Alpha 
Centauri is just outside. Therefore, relative to the passengers,
the two events occur at the same place - namely, 'just outside 
the spaceship. Thus, the passengers measure the proper time 

interval t0 on their clock, and it is this interval that we 
must find. For a person left behind on Earth, the events occur 
at different places, so such a person measures the dilated time 

interval t rather than the proper time interval. To find t we 
note that the time to travel a given distance is inversely 
proportional to the speed. Since it takes 4.3 years to traverse 
the distance between earth and Alpha Centauri at the speed of 
light, it would take even longer at the slower speed of v = 
0.95c. Thus, a person on earth measures the dilated time 

interval to be t = (4.3 years)/0.95 = 4.5 years. This value 



can be used with the time-dilation equation to find the proper 

time interval t0.

Solution
Using the time-dilation equation, we find that the proper time 
interval by which the Passengers judge their own aging is 

t0 = t (1-v2/c2) = 4.5 years (1-0.952) = 1.4 years.

Thus, the people aboard the rocket will have aged by only 1.4 
years when they reach Alpha Centauri, and not the 4.5 years an 
earthbound observer has calculated.

Both the earth-based observer and the rocket passenger agree 
that the relative speed between the rocket and earth is v = 
0.95c. Thus, the Earth observer determines the distance to 

Alpha Centauri to be L0 = v t = (0.95c)(4.5 years) = 4.3 light-
years. On the other hand, a passenger aboard the rocket finds 
the distance is only L = 

v t0 = (0.95c)(l.4 years) = 1.3 light-years. The passenger, 
measuring the shorter time, also measures the shorter distance 
- length contraction. 

Problem solving insight 

In dealing with time dilation, decide which interval is the 
proper time interval as follows: (1) Identify the two events 
that define the interval. (2) Determine the reference frame in 
which the events occur at the same place; an observer at rest 

in this frame measures the proper time interval t0.

2) The Contraction of a Spacecraft (Cutnell, pg 863) 

An astronaut, using a meter stick that is at rest relative to a 
cylindrical spacecraft, measures the length and diameter of the 
spacecraft to be 82 and 21 m respectively. The spacecraft moves 
with a constant speed of v = 0.95c relative to the Earth. What 
are the dimensions of the spacecraft, as measured by an 
observer on Earth? 

Reasoning
The length of 82 m is a proper length Lo since it is measured 
using a meter stick that is at rest relative to the spacecraft. 
The length L measured by the observer on Earth can be 
determined from the length-contraction formula. On the other 
hand, the diameter of the spacecraft is perpendicular to the 
motion, so the Earth observer does not measure any change in 
the diameter. 
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Solution
The length L of the spacecraft, as measured by the observer on 
Earth, is 






















 = 26 m 

Both the astronaut and the observer on Earth measure the same 
value for the diameter of the spacecraft: Diameter = 21 m 

Problem solving insight The proper length L0 is always larger 
than the contracted length L.

3) Additional problem 36, Cutnell pg. 879. 
Two spaceship A and B are exploring a new planet. Relative to 
this planet, spaceship A has a speed of 0.60c, and spaceship B 
has a speed of 0.80c. What is the ratio DA/DB of the values for 
the planet’s diameter that each spaceship measures in a 
direction that is parallel to its motion?

Solution

Length contraction occurs along the line of motion, hence both 
spaceship observe length contraction on the diameter of the 
planet. The contracted length measures by a moving observer is 
inversely proportional to the Lorentz factor . Hence,








































 .

4) The Relativistic Momentum of a High-Speed Electron (Cutnell, pg 
865)
The particle accelerator at Stanford University is three 
kilometers long and accelerates electrons to a speed of 0.999 
999 999 7c, which is very nearly equal to the speed of light. 
Find the magnitude of the relativistic momentum of an electron 
that emerges from the accelerator, and compare it with the non-
relativistic value. 
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Reasoning and Solution 

The magnitude of the electron’s relativistic momentum can be 

obtained from p = m0v = Ns, where 

kg,




  
















 m/s. The 

relativistic momentum is greater than the non-relativistic 

momentum by a factor of 
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5) The Energy Equivalent of a Golf Ball (Cutnell, pg 866)
A 0.046-kg golf ball is lying on the green. (a) Find the rest 
energy of the golf ball. (b) If this rest energy were used to 
operate a 75-W light bulb, for how many years could the bulb 
stay on?

Reasoning
The rest energy E0 that is equivalent to the mass m of the golf 
ball is found from the relation E0 = mc

2. The power used by the 
bulb is 75 W, which means that it consumes 75 J of energy per 
second. If the entire rest energy of the ball were available 
for use, the bulb could stay on for a time equal to the rest 
energy divided by the power. 

Solution
(a) The rest energy of the ball is 

E0 = mc
2 = (0.046 kg)(3.0  108 m/s)2 = 4.1  1015 J

(b) This rest energy can keep the bulb burning for a time t
given by 

t = Rest energy/ Power = 4.1  1015 J/75 W = 5.5  1013 s = 1.7 
million years! 

6) A High-Speed electron (Cutnell pg. 867) 

An electron (mass = 9.1  10-31 kg) is accelerated to a speed of 
0.9995c in a particle accelerator. Determine the electron’s (a) 
rest energy, (b) total energy, and (c) kinetic energy in MeV 

(a)   


(b)  Total energy of the traveling electron,
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(c)  The kinetic energy = E – E0 = 15.7 MeV 

7) The Sun Is Losing Mass (Cutnell, pg 868)

The sun radiates electromagnetic energy at the rate of 3.92
1026 W. (a) What is the change in the sun's mass during each 
second that it is radiating energy? (b) The mass of the sun is 
1.99  1030 kg. What fraction of the sun's mass is lost during 
a human lifetime of 75 years? 

Reasoning
Since a W = I J/s the amount of electromagnetic energy radiated 
during each second is 3.92 1026 J. Thus, during each second, 

the sun's rest energy decreases by this amount. The change E0
in the sun's rest energy is related to the change m in its 
mass by E0= m c2.

Solution
(a) For each second that the sun radiates energy, the change in 
its mass is

m = E0/c
2 = 3.92 1026 J/(3 108 m/s)2 = (4.36 109) kg. 

Over 4 billion kilograms of mass are lost by the sun during 
each second.

(b)  The amount of mass lost by the sun in 75 years is 
m =(4.36 109)kg 107 s/year) ) = 1019 kg 

Although this is an enormous amount of mass, it represents only 
a tiny fraction of the sun's total mass: 

m/m = 1.0 1019 kg/1.99 1030 kg = 5.0 10-12



8) Figure below shows the top view of a spring lying on a 
horizontal table. The spring is initially unstrained. Suppose 
that the spring is either stretched or compressed by an amount 
x from its unstrained length, as part (b) of the drawing shows. 
Has the mass of the spring changed? If so, is the change 
greater, smaller, or the same when the spring is stretched 
rather than compressed? (Cutnell, pg 868) 

(a) This spring is 
unstrained. (b) When the 
spring is either 
stretched or compressed 
by an amount x, it gains 
elastic potential energy 
and hence, mass.

Reasoning and Solution

Whenever a spring is stretched or compressed, its elastic 
potential energy changes. The elastic potential energy of an 
ideal spring is 
equal to 1/2kx2 where k is the spring constant and x is the 
amount of stretch or compression. Consistent with the theory of 
special relativity, any change in the total energy of a system, 
including a 
change in the elastic potential energy, is equivalent to a 
change in the mass of the system. Thus, the mass of a strained 
spring is greater than that of an unstrained spring. 
Furthermore, since the elastic potential energy depends on x2,
the increase in mass of the spring is the same whether it is 
compressed or stretched, provided the magnitude of x is the 
same in both cases. The increase is exceedingly small because 
the factor c2 is so large. 
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9) The Speed of a Laser Beam (Cutnell, pg 871)
Figure below shows an intergalactic cruiser approaching a hostile 
spacecraft. The velocity of the cruiser relative to the spacecraft 
is vCS = +0.7c. Both vehicles are moving at a constant velocity. The 
cruiser fires a beam of laser light at the enemy. The velocity of 
the laser beam relative to the cruiser is vLC = +c. (a) What is the 
velocity of the laser beam vLS relative to the renegades aboard the 
spacecraft? (b) At what velocity do the renegades aboard the 
spacecraft see the laser beam move away from the cruiser? 

Reasoning and Solution 

(a) Since both vehicles move at a constant velocity, each 
constitutes an inertial reference frame. According to the 
speed of light postulate, all observers in inertial reference 
frames measure the speed of light in a vacuum to be c. Thus, 
the renegades aboard the hostile spacecraft see the laser 
beam travel toward them at the speed of light, even though 
the beam is emitted from the cruiser, which itself is moving 
at seven-tenths the speed of light. 

More formally, we can use Lorentz transformation of 
velocities to calculate vLS. We will take the direction as +ve 
when a velocity is pointing from left to right. We can take 
view that the hostile spacecraft is at rest (as the 
stationary frame, O) while the cruiser is approaching it with 
velocity vCS = + 0.7c (according to our choice of the sign). 
In this case, the cruiser is the moving frame, O’. The light 
beam as seen in the moving frame O’ is vLC = +c. We wish to 
find out what is the speed of this laser beam from O point of 
view, e.g. what vLS is. 

We may like to identify vLS, vLC and vCS with the definitions 

used in the Lorentz formula: 











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



 . In fact, a little 

contemplation would allow us to make the identification that, 
with our choice of frames (that the hostile spacecraft as the 
stationary frame): vLC  ux’ = +c; vCS  u = + 0.7c and
vLS = ux = the speed of laser beam as seen by the stationary 
frame O (the quantity we are seeking). Hence, we have 
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, i.e. the laser 

beam is seen, from the view point of the hostile spacecraft, 
to be approaching it with a velocity +c (+ve means the 
velocity is from left to right). 

(b)  The renegades aboard the spacecraft see the cruiser approach 
them at a relative velocity of vCS = +0.7c, and they also see 
the laser beam approach them at a relative velocity Of vLS +c. 
Both these velocities are measured relative to the same 
inertial reference frame-namely, that of the spacecraft. 
Therefore, the renegades aboard the spacecraft see the laser 
beam move away from the cruiser at a velocity that is the 
difference between these two velocities, or +c - (+0.7c) = 
+0.3c. The relativistic velocity-addition formula, is not 
applicable here because both velocities are measured relative 
to the same inertial reference frame (the spacecraft's 
reference frame). The relativistic velocity-addition formula 
can be used only when the velocities are measured relative to 
different inertial reference frames. 

10) Mass and Energy (Cutnell, pg 873)
The rest energy E0 and the total energy E of three particles, 
expressed in terms of a basic amount of energy E' = 5.98  10-10

J, are listed in the table below. The speeds of these particles 
are large, in some cases approaching the speed of light. For 
each particle, determine its mass and kinetic energy. 

 Rest  Total 
 Particle Energy Energy
 ___________________________ 

 a E' 2E'
 b E' 4E'
 c 5E' 6E'

 ___________________________ 

Concept Questions and Answers
Given the rest energies specified in the table, what is the 
ranking (largest first) of the masses of the particles? 

Answer
The rest energy is the energy that an object has when its speed 
is zero. According to special relativity, the rest energy E0 and 
the mass m are equivalent. Thus, the rest energy is directly 
proportional to the mass. From the table it can be seen that 
particles a and b have identical rest energies, so they have 
identical masses. Particle c has the greatest rest energy, so 

190





it has the greatest mass. The ranking of the masses, largest 
first, is c, then a and b. 

What is the ranking (largest first) of the kinetic energies of 
the particles? 

According to special relativity, the kinetic energy is the 
difference between the total energy E and the rest energy E0, so 
KE = E - E0. Therefore, we can examine the table and determine 
the kinetic energy of each particle in terms of E'. The kinetic 
energies of particles a, b, and c are, respectively, 2E' - E' = 
E', 4E' - E' = 3E', and 6E' - 5E' = E'. The ranking of the 
kinetic energies, largest first, is b, then a and c. 

Solution

(a)  The mass of particle a can be found from its rest energy E0 = 
mc2. Since E0 = E' (see the table), its mass is 
ma = E'/c

2 = 5.98 10-10 J/(3 108 m/s)2 = 6.64 10-27 kg

In a similar manner, we find that the masses of particles b and 
c are 

mb = 6.64 10-27 kg, mc = 33.2 10-27 kg,

As expected, the ranking is mc > ma = mb

(b)  The kinetic energy KE of a particle is KE = E - E0. For particle 
a, its total energy is E = 2E' and its rest energy is E0 = E',
so its kinetic energy is

KEa = 2E' - E' = E' = 5.98 10-10 J. 

The kinetic energies of particles b and c can be determined in 
a similar fashion: 

KEb = 17.9 10-10 J, KEc = 5.98 10-10 J 

As anticipated, the ranking is KEb > KEa = KEc.
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Conceptual Questions 

1. Explain in your own words the essential differences 
between the concept of wave from that of particle (Own 
question)

ANS
Particle is finite in size and is localised both in space 
and time, whereas wave is not.

2. What is ultraviolet catastrophe? What is the significance 
of it in the development of modern physics? (Own question) 

ANS
The classical theory explanation of the blackbody 
radiation by Rayleigh-Jeans fails in the limit  (or 
equivalently, when frequency ), i.e.   at 

The failure prompted Planck to postulate that the 
energy of electromagnetic waves is quantised (via

= h ) as opposed to the classical thermodynamics 
description (  = kT). With Planck’s postulate, radiation 
now has particle attributes instead of wave.

3. What is the significance of the Compton wavelength of a 
given particle? What does the Compton wavelength of a 
particle mean to light that interacts with it? (Own 
question)

ANS
The Compton wavelength (a characteristic constant depend 
solely on the mass of a given particle) characterises the 
length scale at which the quantum property (or wave) of a 
given particle starts to show up. In an interaction that 
is characterised by a length scale larger than the 
Compton wavelength, particle behaves classically. For 
interaction that occurs at a length scale comparable or 
smaller than the Compton wavelength, the quantum (or, 
wave) nature starts of the particle begins to take over 
from classical physics.

In a light-particle interaction, if the wavelength of the 
light is comparable to the Compton wavelength of the 
interacting particle, light displays quantum 
(granular/particle) behaviour rather than as a wave.

4. How does the Rayleigh scattering could be explained by 

the Compton scattering relation,  ? In the 

-ray region, which effect, Compton scattering or 
Rayleigh scattering is dominant? Explain. (Own question)
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ANS
Rayleigh scattering refers to unresolved peaks of the 
scattered x-ray, ie.  , which is due to the 
extremely small Compton wavelength of the whole ATOM, as 

seen by the x-ray   0, where M = mass of the 

atom (instead of me << M).

5. Why doesn’t the photoelectric effect work for free 
electron? (Krane, Question 7, pg 79)

ANS (to be verified) 
Essentially, Compton scattering is a two-body process. 
The free electron within the target sample (e.g. graphite) 
is a unbounded elementary particle having no internal 
structure that allows the photons to be `absorbed’. Only 
elastic scattering is allowed here.

Whereas PE effect is a inelastic scattering, in which the 
absorption of a whole photon by the atom is allowed due 
to the composite structure (the structure here refers the 
system of the orbiting electrons and nuclei hold together 
via electrostatic potential) of the atom. A whole photon 
is allowed to get absorbed by the atom in which the 
potential energy acts like a medium to transfer the 
energy absorbed from the photon, which is then 
`delivered’ to the bounded electrons (bounded to the 
atoms) that are then `ejected’ out as photoelectrons. 

6. How is the wave nature of light unable to account for the 
observed properties of the photoelectric effect? 
(Krane, Question 5, pg 79)

ANS
See lecture notes 

7. In the photoelectric effect, why do some electrons have 
kinetic energies smaller than Kmax?
(Krane, Question 6, pg 79)

ANS

By referring to Kmax = h  - , Kmax corresponds to those 
electrons knocked loose from the surface by the incident 
photon whenever h  > . Those below the surface required 

an energy greater than  and so come off with less 
kinetic energy. 

Problems

1. The diameter of an atomic nucleus is about 10×10-15 m. 
Suppose you wanted to study the diffraction of photons by 
nuclei. What energy of photons would you choose? Why? 
(Krane, Question 1, pg 79)
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 ANS 
Diffraction of light by the nucleus occurs only when the 
wavelength of the photon is smaller or of the order of 
the size of the nucleus,  ~ D (D = diameter of the 
nucleus). Hence, the minimum energy of the photon would 
be E = hc/  ~ hc/D ~ 120 MeV. 

2. How does the total intensity of thermal radiation vary 
when the temperature of an object is doubled? (Krane, 
Question 4, pg 79)

ANS

Intensity of thermal radiation I T4. Hence, when T is 
double, ie. T 2T, I I’(2)4 = 16I, i.e. the total 
intensity of thermal radiation increase by 16 times. 

3. Photons from a Light Bulb (Cutnell, pg884) 
In converting electrical energy into light energy, a 
sixty-watt incandescent light bulb operates at about 2.1% 
efficiency. Assuming that all the light is green light 
(vacuum wavelength 555 nm), determine the number of 
photons per second given off by the bulb. 

Reasoning
The number of photons emitted per second can be found by 
dividing the amount of light energy emitted per second by 
the energy E of one photon. The energy of a single photon 
is E = hf. The frequency of the photon is related to its 
wavelength  by  = c/ .

Solution
At an efficiency of 2. 1%, the light energy emitted per 
second by a sixty-watt bulb is (0.021)(60.0 J/s)=1.3 J/s. 
The energy of a single photon is

E = hc/

(6.63×10-34Js)(3×108 m/s)/555×10-9 nm = 3.58×10-19 J 

Therefore,
Number of photons emitted per second =
1.3 J/s/ 3.58×10-19 J/photon  = 3.6×1018 photon per second 

4. Ultraviolet light of wavelength 350 nm and intensity 1.00 
W/m2 is directed at a potassium surface. (a) Find the 
maximum KE of the photoelectrons. (b) If 0.50 percent of 
the incident photons produce photoelectrons, how many are 
emitted per second if the potassium surface has an area 
of 1.00 cm2? (Beiser, pg. 63)

(a) The energy of the photons is, EP =hc/  = 3.5eV. The
work function of potassium is 2.2 eV. So, 
KE = hv -  = 3.5 eV - 2.2 eV = 5.68 10-19 J

(b) The photon energy in joules is 5.68 10-19 J. Hence
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the number of photons that reach the surface per 
second is
 np  = (E/t)/Ep = (E/A)(A)/Ep

=(1.00 W/m2)(1.00 10-4 m2)/5.68 10-19 J
= 1.76 1014photons/s

The rate at which photoelectrons are emitted is 
therefore

ne = (0.0050)np = 8.8 1011 photoelectrons/s 

5. (Krane, pg. 62) 
(a) At what wavelength does a room-temperature (T = 20oC)

object emit the maximum thermal radiation?
(b) To what temperature must we heat it until its peak 

thermal radiation is in the red region of the 
spectrum?

(c) How many times as much thermal radiation does it 
emit at the higher temperature? 

ANS
(a) Converting to absolute temperature, T = 293 K, and 

from Wien's displacement law,

max 2.898×10-3 m·K 

max = 2.898×10
-3 m·K/ 293K = 9.89 m

(b) Taking the wavelength of red light to be =650 nm,
we again use Wien's displacement law to find T:

T = 2.898×10-3 m·K/650×10-9 m = 4460 K 

(c) Since the total intensity of radiation is 
proportional to T4, the ratio of the total thermal 
emissions will be 
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



Be sure to notice the use of absolute (Kelvin) 
temperatures.

6. The work function for tungsten metal is 4.53 eV. (a) What 
is the cut-off wavelength for tungsten?  (b) What is the 
maximum kinetic energy of the electrons when radiation of 
wavelength 200.0 nm is used? (c) What is the stopping 
potential in this case? (Krane, pg. 69)

ANS
(a) The cut-off frequency is given by 





 , in the uv region 

(b) At the shorter wavelength,
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


 




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(c) The stopping potential is just the voltage 

corresponding to 




 


 V

7. X-rays of wavelength 10.0 pm (1 pm = 10-12 m) are 
scattered from a target. (a) Find the wavelength of the 
x-rays scattered through 45o. (b) Find the maximum 
wavelength present in the scattered x-rays. (c) Find the 
maximum kinetic energy of the recoil electrons. (Beiser, 
pg. 75)

Solution
(a) The Compton shift is given by

  , and so 

pm 


 

(b)  is a maximum when   = 2, in which case, 

 = 10.0 pm + 4.9 pm = 14.9 pm 

(C) The maximum recoil kinetic energy is equal to the
difference between the energies of the incident and 
scattered photons, so 

KEmax = h(  - ')= hc(



)=40.8 eV 
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Conceptual Questions 

1. What difficulties does the uncertainty principle cause in 
trying to pick up an electron with a pair of forceps? 
(Krane, Question 4, pg. 110) 

ANS
When the electron is picked up by the forceps, the position 
of the electron is ``localised’ (or fixed), i.e. x = 0. 
Uncertainty principle will then render the momentum to be 
highly uncertainty. In effect, a large p means the 
electron is ``shaking’’ furiously against the forceps’ tips 
that tries to hold the electron ``tightly’’.

2. Is it possible for vphase to be greater than c?  Can vgroup be
greater than c? (Krane, Question 12, pg. 111) 

ANS
Is it possible for vphase to be greater than c but not so for 
vgroup. This is because the group velocity is postulated to 
be associated with the physical particle. Since a physical 
particle (with mass) can never move greater than the speed 
of light (according to SR), so is vgroup.

3. Why is it important for a wave function to be 
normalised? Is an unrenomalised wave function a 
solution to the Schrodinger equation? (Krane, Question 2, 
pg. 143) 

 ANS 
Due to the probabilistic interpretation of the wave 
function, the particle must be found within the region in 
which it exists. Statistically speaking, this means that 
the probability to find the particle in the region where it 
exists must be 1. Hence, the square of the wave function, 
which is interpreted as the probably density to find the 
particle at an intervals in space, integrated over all 
space must be one in accordance with this interpretation. 
Should the wave function is not normalised, that would lead 
to the consequence that the probability to find the 
particle associated with the wave function in the 
integrated region where the particle is suppose to be in is 
not one, which violates the probabilistic interpretation of 
the wave function.

A wave function that is not normalised is also a solution 
to the Schrodinger equation. However, in order for the wave 
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function to be interpreted in  accordance to the 
probabilistic interpretation (so that the wave function 
could has a physical meaning) it must be normalised.

4. How would the solution to the infinite potential well be 
different if the width of the well is extended from L to L
+ x0, where x0 is a nonzero value of x? How would the 
energies be different?
(Krane, Question 7, pg. 143) 

ANS
The form of the solutions to the wave functions inside the 
well remains the same. They still exist as stationary 
states described by the same sinusoidal functions, except 
that in the expressions of the observables, such as the 
quantised energies and the expectation values, the 
parameter L be replaced by L + x0. For the quantised 
energies, they will be modified as per










 






 .

5. The infinite quantum well, with width L, as defined in the 
lecture notes is located between x = 0 and x = L. If we 
define the infinite quantum well to be located between x = 
-L/2 to x = +L/2 instead (the width remains the same, L),
find the solution to the time-independent Schrodinger 
equation. Would you expect the normalised constant to the 
wave function and the energies be different than that 
discussed in the notes? Explain. (Brehm and Mullin, pg. 234 
- 237)

ANS
By applying the boundary conditions that the solution must 
vanish at both ends, i.e.   , the 
solution takes the form 




















  for 







This question is tantamount to re-analyse the same physical 
system in a shifted coordinates, x x – L/2. The 
normalisation and energies shall remain unchanged under the 
shift of coordinate system x x – L/2. Both of these 
quantities depends only on the width of the well but not on 
the coordinate system used.
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Problems

1. Find the de Broglie wave lengths of (a) a 46-g ball with a 
velocity of 30 m/s, and (b) an electron with a velocity of 
107 m/s (Beiser, pg. 92) 

ANS
(a) Since v << c, we can let m = mo. Hence 

 = h/mv = 6.63 10-34 Js/(0.046 kg)(30 m/s) 
= 4.8 10-34 m

The wavelength of the golf ball is so small compared with 
its dimensions that we would not expect to find any wave 
aspects in its behaviour. 

(b) Again v << c, so with m = mo = 9.1 10-31 kg, we have 

 = h/mv = 6.63 10-34 Js/(9.1 10-31 kg)(107 m/s)
= 7.3 10-11 m

The dimensions of atoms are comparable with this figure - 
the radius of the hydrogen atom, for instance, is 5.3 10-11 m.
It is therefore not surprising that the wave character of 
moving electrons is the key to understanding atomic 
structure and behaviour. 

2. The de Broglie Wavelength (Cutnell, pg. 897) 
An electron and a proton have the same kinetic energy and 
are moving at non-relativistic speeds. Determine the ratio 
of the de Broglie wavelength of the electron to that of the 
proton.

ANS

Using the de Broglie wavelength relation p = h/  and the
fact that the magnitude of the momentum is related to the 
kinetic energy by p = (2mK)1/2, we have 

h/p = h/(2mK)1/2

Applying this result to the electron and the proton gives

e/ p = (2mpK)
1/2/(2meK)

1/2

 = (mp/me)
1/2 = (1.67 kg/9.11 kg)  1/2 = 42.8 

As expected, the wavelength for the electron is greater 
than that for the proton. 



3. Find the kinetic energy of a proton whose de Broglie 
wavelength is 1.000 fm = 1.000 10-15 m, which is roughly the 
proton diameter (Beiser, pg. 92) 

ANS

A relativistic calculation is needed unless pc for the 
proton is much smaller than the proton rest mass of Eo = 
0.938 GeV.

So we have to first compare the energy of the de Broglie 
wave to Eo:

E = pc = 






 GeV, c.f. Eo = 0.938 GeV. Since 

the energy of the de Broglie wave is larger than the rest 
mass of the proton, we have to use the relativistic kinetic 
energy instead of the classical K = p2/2m expression.

The total energy of the proton is


  =
   =1.555 GeV.

The corresponding kinetic energy is 

KE = E - Eo = (1.555 - 0.938) GeV = 0.617 GeV = 617 MeV 

4. An electron is in a box 0.10 nm across, which is the order
of atomic dimensions. Find its permitted energies. (Beiser, 
pg. 106) 

ANS

Here m = 9.1 10-31 kg and L = 1 10-10 m, so that the permitted 
electron energies are













 J = 38n2 eV. 

The minimal energy the electron can have is 38 eV, 
corresponding to n = 1. The sequence of energy levels 

continues with  = 152 eV,  = 342 eV, = 608 eV and 

so on. If such a box existed, the quantisation of a 
trapped electron’s energy would be a prominent feature 
of the system. (And indeed energy quantisation is 
prominent in the case of an atomic electron.)

  

5. A 10-g marble is in a box 10 cm across. Find its permitted 
energies.
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ANS

With m = 1.0 10-2 kg and L = 1.0 10-1 m,













 J

The minimum energy the marble can have is 5.5 10-64 J,
corresponding to n = 1. A marble with this kinetic energy 
has a speed of only 3.3 10-31 m/s and therefore cannot be 
experimentally distinguished from a stationary marble. A 
reasonable speed a marble might have is, say, 1/3 m/s -
which corresponds to the energy level of quantum number n = 
1030! The permissible energy levels are so very close 
together, then, that there is no way to determine whether 
the marble can take on only those energies predicted by








 or any energy whatever. Hence in the domain of 

everyday experience, quantum effects are imperceptible, 
which accounts for the success of Newtonian mechanics in 
this domain. 

6. A hydrogen atom is 5.3 10-11 m in radius. Use the uncertainty 
principle to estimate the minimum energy an electron can 
have in this atom. (Beiser, pg 114) 

 ANS 

Here we find that with x = 5.3 10-11 m.

p


= 9.9 10-25 Ns.

An electron whose momentum is of this order of magnitude 
behaves like a classical particle, an its kinetic energy is 
K = p2/2m  (9.9 10-25 Ns)2/2 9.110-31 kg = 5.4 10-19 J 
which is 3.4 eV. The kinetic energy of an electron in the 
lowest energy level of a hydrogen atom actually 13.6 eV. 

7. A measurement established the position of a proton with an 

accruracy of m. Find the uncertainty in the 
proton’s position 1.00 s later. Assume v << c. (Beiser, pg. 
111)



ANS

Let us call the uncertainty in the proton’s position x0  at 
the time t = 0. The uncertainty in its momentum at this 
time is therefore



 
 . Since v << c, the momentum uncertainty is 

 and the uncertainty in the proton’s velocity 

is

 

  


 . The distance x of the proton covers in 

the time t cannot be known more accurately than

 


 . Hence   is inversely proportional to 

: the more we know about the proton’s position at t

= 0 the les we know about its later position at t. The 
value of  at t = 1.00 s is 

















 m

This is 3.15 km! What has happened is that the original 
wave group has spread out to a much wider one because the 
phase velocities of the component wave vary with wave 
number and a large range of wave numbers must have been 
present to produce the narrow original wave

8. Broadening of spectral lines due to uncertainty principle: 
An excited atom gives up it excess energy by emitting a 
photon of characteristic frequency. The average period that 
elapses between the excitation of an atom and the time is 
radiates is 1.0 10-8 s. Find the inherent uncertainty in the 
frequency of the photon. (Beiser, pg. 115) 

 ANS 
The photon energy is uncertain by the amount 











 




  J 

The corresponding uncertainty in the frequency of light is 





Hz.

This is the irreducible limit to the accuracy with which we 
can determine the frequency of the radiation emitted by an 
atom. As a result, the radiation from a group of excited 
atoms does not appear with the precise frequency . For a 

photon whose frequency is, say,  Hz,   . In 

practice, other phenomena such as the doppler effect 

196





contribute more ian this to the broadening of spectral 
lines.

9. If we assume that in the ground of the hydrogen the 
position of the electron along the Bohr orbit is not known 
and not knowable, then the uncertainty in the position is 

about  m, (a) What is the magnitude of the 

momentum of the electron at the ground state? (b) What is 
the corresponding quantum uncertainty in the momentum? 
(Ohanian, pg. 152)


 

ANS

(a) Angular momentum, |L|  |p|r = n . Hence, in the 

ground state, |p| = /r0 = Ns

(b) 




 

  Ns.

10. Show that   is  solution to the time-
independent Schrodinger equation. 

ANS
Taking the partial derivative of wrp to x,










  (1)

The total energy of the particle is

E = K + U = p2/2m + U = 








 + U


  
 .

Hence, Eq. (1) becomes 




 

 
. This shows that 

  is the solution to the Schrodinger equation. 

11. Consider a quantum particle trapped in an infinite well 
with width a. Assuming that the particle is in the ground 
state, calculate the expectation values of its position <x>
and <x2>. Obtain the uncertainty in its position, x, given 



by standard statistical definition, x = <x2> - <x>2. (Brehm 
and Mullin, pg.265) 

 ANS 
The solution of the ground state wave function for a 

particle in an infinite box is 





 


 .





















 
























 






. Likewise,























 








 




















 













x = <x2> - <x>2 = 


























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Conceptual Questions 

1. What is the ONE essential difference between the 
Rutherford model and the Bohr’s model? (Own question) 

ANS
Rutherford’s model is a classical model, in which EM 
wave will be radiated rendering the atom to collapse. 
Whereas the Bohr’s model is a semi-classical model in 
which quantisation of the atomic orbit happens. 

2. Conventional spectrometers with glass components do 

not transmit ultraviolet light (

 380 nm). Explain 

why non of the lines in the Lyman series could be 
observed with a conventional spectrometer. (Taylor and 
Zafiratos, pg. 128) 

ANS
For Lyman series, nf = 1. According to 


 

 
 , the wavelength corresponding to ni = 2 

in the Lyman series is predicted to be 




= 


=121.5 nm. Similarly, for ni = 3, one 

finds that =102 nm, and inspection of 
 

 


shows that the larger we take n, the smaller the 
corresponding wavelength. Therefore, all lines in the 
Lyman series lie well into the ultraviolet and are 
unobservable with a conventional spectrometer.

3. Does the Thompson model fail at large scattering 
angles or at the small scattering angle? Why? (Krane, 
Questions 1, pg. 173) 

ANS
Thompson model fails at large angle (but is consistent 
with scattering experiments at small angle). Thompson 
model predicts that the average scattered angle is 



given by 





 
 





 . One can estimate 

the order of   in an atomic scattering experiment: R

~ 0.1 nm (a typical atomic radius), N ~ 104 (no. of 
collisions in the target metal foil), kinetic energy 
of the alpha particle, mv2 ~ 10 MeV, z = 2 (charge of 
alpha particle); Z ~ 79 for gold. Putting in all 
figures, one expects that alpha particle is scattered 
only for a small scattering angle of   ~ 1

o. However, 

in the experiment, alpha particles are observed to be 
scattered at angle in excess of 90o. This falsifies 
Thompson model at large angle.

4. In which Bohr orbit does the electron have the largest 
velocity? Are we justified in treating the electron 
non-relativistically? (Krane, Questions 6. pg. 174)

ANS

The velocity in an orbit n is given by v = h/2 mnr0,
which means that the velocity is inversely 
proportional to the n number. Hence the largest 
velocity corresponds to the n = 1 state,

v(n =1)/c = h/2c mr0
= 6.63 10-34/2 (9.1 10-31)(0.53 10-10)/c

 = 0.007. 
Hence, nonrelativistic treatment is justified.

5. How does a Bohr atom violate the 


  uncertainty 

relation? (Krane, Question 11, pg. 174)

 ANS 
The uncertainty relation in the radial direction of an 

electron in a Bohr orbit is 
 . However, in the 

Bohr model, the Bohr orbits are assumed to be 

precisely known (= ) for a given n. This 

tantamount to , which must render the momentum in 
the radial direction to become infinite. But in the 
Bohr atom the electron does not have such radial 
motion caused by this uncertainty effect. So in this 





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sense, the discrete Bohr orbit violates the 

uncertainty relation 


 .

Problem

1. Hydrogen atoms in states of high quantum number have 
been created in the laboratory and observed in space. 
(a) Find the quantum number of the Bohr orbit in a 
hydrogen atom whose radius is 0.0199 mm. (b) What is 
the energy of a hydrogen atom in this case? (Beiser, 
pg. 133)0

 ANS 

(a) From , we have 
 











 

(b) From 




 eV, we have 


 eV = -0.000072 

eV. Such an atom would obviously be extremely 
fragile and be easily ionised (compared to the 
kinetic energy of the atom at temperature T, kT ~

(1.38 J/K) (300 K) =0.03 eV)

2. (a) Find the frequencies of revolution of electrons in 
n = 1 and n = 3 Bohr orbits. (b) What is the frequency 
of the photon emitted when an electron in the n = 2 
orbit drops to an n = 1 orbit? (c) An electron 
typically spends about 10-8 s in an excited state 
before it drops to a lower state by emitting a photon. 
How many revolutions does an electron in an n = 2 Bohr 
orbit make in 10-8 s? (Beiser, pg. 137)

 ANS 

(a) Derive the frequency of revolution from scratch: 
Forom Bohr’s postulate of quantisation of angular 
momentum,

L = (mv)r = nh/2 , the velocity is related to the 
radius as v = nh/2mr . Furthermore, the quantised 
radius is given in terms of Bohr’s radius as rn = n

2r0.
Hence, v = h/2 mnr0.
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The frequency of revolutionm f = 1/T (where T is the 
period of revolution) can be obtained from v = 2 r/T = 
2 n2r0 f. Hence, f = v/2 r = (h/2 mnr0)/2 r = 

h/4 2mn3(r0)
2.

For n = 1, f1 = h/4
2m(r0)

2 = 6.56  Hz.
For n = 2, f2 = h/4

2m(2)3(r0)
2 = 6.56 /8 Hz = 

8.2 .




 (b)












 















=

s. The frequency is intermediate between f 1

and f2.

(c) The number of revolutions the electron makes is N

= f2   = (8.2 )  = 8.2  rev.  

3. Consider a positronium atom consisting of a positron 
and electron revolving about their common centre of 
mass, which lies halfway between them. (a) If such a 
system were a normal atom, how would its emission 
spectrum compared to that of hydrogen atom? (b) What 
would be the electron-positron separation, r, in the 
ground state orbit of positronium? (Eisberg, pg. 106)

ANS
(a)  The emission spectrum is described by the general 

form of 
 

 
 , where 









 , the 

reduced mass of the positronium is 





 








.

Compared to the emission spectrum of hydrogen, which 

is given by 
 

 
 . Hence we have 








 




. That is, the spacing 

between the spectral lines in the positronium is 
doubled as compared to the corresponding spacing in 
that of the hydrogen.
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(b) The ground state radius is











 











4. Ordinary hydrogen atom contains about one part in 6000 
of deuterium, or heavy hydrogen. This is a hydrogen 
atom whose nucleus contains a proton and a neutron. 
How does the doubled nuclear mass affect the atomic 
spectrum? (Eisberg, pg 102) 

ANS

The reduced mass is 






 




. The numerical 

ratio






 











 

















 is the same for 

both limits 2M >> m (for deuterium) or M >> m (for 
hydrogen). Hence the double nuclear mass does not 
affect the atomic spectrum in a significant sense. To 
be more quantitative, the ratio 



 =


 




= 




. The nuclear mass 

to the atomic spectrum only cases a 0.03% shift to the 
wavelengths of the spectral lines.

5. A muonic atom contains a nucleus of charge e and a 
negative muon, -, moving about it. The - is an 
elementary particle with charge –e and a mass 207 
times as large as an electron. (a) Calculate the 
biding energy of the muonic atom. (b) What is the 
wavelength of the first line in the Lyman series for 
such an atom? (Eisberg, pg. 106) 

ANS

(a)  















. The energy

levels are given by 




 




 







 

 . Hence the 

biding energy is    =1407.6

eV.
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(b) 


 




























,

where 











  . The first line in 

Lyman series correspond to ni = 2, nf = 1. Hence 
this wavelength is given by 
















  cm-1, or 

 nm

200




