- 3. Lee, B.S. Getaran dan Gelombang, USM, 1989.
- 4. Jenkins, F.A. & White, H.E. Fundamentals of Optics (4th Ed.), McGraw-Hill, 2001
- 5. Chatar Singh. Optik, USM, 1991.
- 6. Hecht E. Optics, Addison-Wesley, 2001.

ZCT 104/3 Physics IV (Modern Physics)

Special Relativity: Reference frames, invariance of Newton's dynamics. Galilean transformation, invariance for other laws. Michelson-Morley experiment. Postulates of special relativity. Lorentz transformation. Relativistic kinematics and dynamics. Einstein formula.

Introduction to modern ideas in Physics: Blackbody radiation, Planck's law. Photoelectric effect, Compton effect, X-rays. Wave-particle duality, de Broglie waves. Old atomic models. Alpha-scattering, Rutherford model. Old quantum theory and the Bohr model of the atom. Energy levels of the atom and atomic spectra. Excitation and the Franck-Hertz experiment. Bohr's Correspondence Principle.

Course Expectation:

After completing this course students should

- (i) Understand the historical development of special theory of relativity and quantum theory during the early years in the 21th century.
- (ii) Understand the basic ideas in special theory of relativity and quantum theory
- (iii) Understand the conceptual differences between classical physics and modern physics in modeling the law of physics.

Be prepared for more advanced course in quantum mechanics.

Ref.	1.	Concepts of Modern Physics, 6th ed. by Athur Beiser, McGraw-
Books:		Hill (2002).

- Modern Physics, 2nd ed., by Kenneth Krane, John Wiley & Sons (1995)
- 3. Modern Physics, 3rd ed., by Serway, Moses and Moyer, Thomson (2005).