
Solution scheme to ZCT 205 final examination, academic ses-
sion 2011/12, School of Physics, USM
Instruction: Answer Five (5) out of Seven (7) questions given. Each ques-
tion carries 20 marks.

1. (a) i. Explain what is “wave function collapse”.

Solution:
Various explanation can be accepted. But the answer has to
contain essential information relevant to address the question
asked in a no-nonsence manner. Answer that beats around
the bush will not be considered.
4 marks

ii. A system is initially prepared to be in a mixed state Ψ =
a1Ψ1 + a2Ψ2, where Ψ1,Ψ2 are eigenstates. When a measure-
ment is done on the system, what is the probability to find
the measured system in state Ψ1?

Solution:

The probability is |a|2. Just present the answer without the
need to derive them.
2 marks

iii. If the system is measured to be in state Ψ1, what is the prob-
ability that a subsequent measurement on it results in state
Ψ2?
Solution:
The probability is 0. Just present the answer without the
need to derive them.
2 marks

(b) At t = 0, a particle of mass m is in the state

Ψ(x, 0) = Ae−amx2/~,

where A and a are positive real constants.

i. Find A.

Solution:
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∫ ∞

−∞
|Ψ(x, 0)|2dx = 1

⇒
∫ ∞

−∞
|Ae−amx2/~|2dx = 1

⇒ 2A2

∫ ∞

0

e−2amx2/~dx = 1

Let y = x
√
2am/~ so that

⇒ 2A2√
2am/~

∫ ∞

0

e−y2dy = 1∫∞
0
e−y2dy is the error function,∫ ∞

0

e−y2dy = lim
x→+∞

2√
π
erf(x) =

2√
π
.

⇒ A =

(
2ma

π~

)1/4

ii. Calculate the expectation value of x, where x is the position.
Solution:
〈x〉 =

∫∞
−∞ Ψ∗xΨdx =

∫∞
−∞Ae−amx2/~xAe−amx2/~dx = A2

∫∞
−∞ e−2amx2/~xdx.

This is an integration over an odd function, hence 〈x〉 =
A2

∫∞
−∞ e−2amx2/~xdx = 0.

Note that it is not necessary to carry out the integration ex-
plicitly to obtain the correct answer to this question.
6 marks

iii. Calculate the expectation value of p, where p is the momen-
tum.

〈p〉 =
∫ ∞

−∞
Ψ∗ i

~
d

dx
Ψdx =

∫ ∞

−∞
Ae−amx2/~ i

~
d

dx
Ae−amx2/~dx =

i

~
A2

∫ ∞

−∞
e−amx2/~(−2amx/~)e−amx2/~dx.

This is an integration over an odd function, hence 〈p〉 = 0.
Alternatively, one can use the relation 〈p〉 = d

dt
〈x〉 1

m
to infer

that 〈p〉 is zero as 〈x〉 is zero.
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Note that it is not necessary to carry out the integration ex-
plicitly to obtain the correct answer to this question.
3 marks

(12 marks)

2. (a) i. What are the physical implications if ~ = 0?
Solution
A simple answer is: There will be no quantum effect. (Other
reasonably argued answers will also be considered). (4 marks)

ii. State Ehrenfest’s theorem. Give an example of it.

d〈p〉
dt

= −〈∂V
∂x

〉

(4 marks)

(b) i. Prove mathematically that if the wave function is normalised
at t = 0, the normalisation will be guaranteed for all t > 0.

Solution

Suppose the wavefunction is normalised at t = 0,∫ ∞

−∞
|Ψ(x, 0)|2dx = 1.

At later time t, the probability density is |Ψ(x, t)|2. In or-
der to prove that above statement, we need to show that∫∞
−∞ |Ψ(x, t)|2dx is a constant in time, so that it always equals
to the constant value since t = 0, which is 1. To prove that∫∞
−∞ |Ψ(x, t)|2dx is constant in time, you need to show

d

dt

∫ ∞

−∞
|Ψ(x, t)|2dx = 0

Some steps leading to this proof:

d

dt

∫ ∞

−∞
|Ψ(x, t)|2dx = 0

6 marks
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ii. Prove that 〈p〉, which is defined via 〈p〉 = m d
dt
〈x〉 is given by

〈p〉 =
∫

Ψ∗~
i

∂

∂x
Ψ.

Solution

Using integration-by-parts and applying the boundary condi-
tion that the wave function vanishes at infinity, (limits of the
the integration will be suppressed for the sake of brevity)

d

dt
〈x〉 =

∫
x
∂

∂t
|Ψ|2dx = · · · = −i~

2m

∫ (
Ψ∗∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx = · · ·

=
1

m

∫
Ψ∗

(
~
i

∂

∂x
Ψ

)
dx ≡ 〈p〉

m
.

(6 marks)

3. (a) i. Explain what are stationary states.

Solution
Stationary states are states with definite energy. Their prob-
ability densities and expectation values are time-independent.
If a system comprised of only one stationary state, it is cer-
tainly to get energy of that state when a measurement is
made.
4 marks

ii. In solving QM problems, you are given a (time-independent)
potential V (x) and the starting wave function Ψ(x, 0). Your
task is to find the wave function, Ψ(x, t), for any subsequent
time t by solving the (time-dependent) Schroedinger equation.
Describe qualitatively your step-by-step strategy to obtain the
solution Ψ(x, t).

Solution

A. First solve the time-independent Schroedinger equations
for the complete set of stationary states, {ψ1(x), ψ2(x), · · · },
each with its own associated energy {E1, E2, · · · }.
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B. Find the general solution at t = 0, i.e., Ψ(x, 0) =
∑∞

n=0 cnψn(x)
by finding the coefficients cn that fit the initial and bound-
ary conditions.

C. Once all the cn are found, the general time-dependent
solution is obtained as

Ψ(x, t) =
∞∑
n=0

cnψn(x)e
−itEn/~ =

∞∑
n=0

cnΨn(x, t)

4 marks

(b) i. The time-independent Schroedinger equation yields an infinite
collection of solutions {ψ1(x), ψ2(x), · · · }, where

Ψ1(x, t) = ψ1(x)e
−iE1t/~,Ψ2(x, t) = ψ2(x)e

−iE2t/~, · · ·

with each Ψn(x, t) is associated with the energy En. Show
that the linear combination of solutions,

Ψ(x, t) =
∞∑
n=1

cnψn(x)e
−itEn/~

is itself a solution.

Solution

TISE says

HΨ(x, t) = i~
∂Ψ(x, t)

∂t
(1)

Look that the LHS of Eq (1):

HΨ(x, t) =
∞∑
n=0

cnHψn(x)e
−itEn/~. (2)

Also, TDSE says

Hψn(x) = Enψ(x).

Slot the TDSE into Eq. (2), we have

HΨ(x, t) =
∞∑
n=0

cnHψn(x)e
−itEn/~ =

∞∑
n=0

cnEnψn(x)e
−itEn/~

(3)
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Now look at the RHS of Eq (1):

i~
∂Ψ(x, t)

∂t
= i~

∂

∂t

∞∑
n=0

cnψn(x)e
−itEn/~

= i~
∞∑
n=0

cn

(
∂ψn(x)

∂t
e−itEn/~ + ψn(x)

∂e−itEn/~

∂t

)
= i~

∞∑
n=0

cnψn(x)(−iEn/~)e−itEn/~

=
∞∑
n=0

cnEnψn(x)e
−itEn/~ (4)

Comparing Eq. (4) with Eq. (3), we proved that indeed Ψ(x, t) =∑∞
n=1 cnψn(x)e

−itEn/~ is a solution to the TISE. (8 marks)

ii. Suppose a particle starts out in a linear combination of sta-
tionary states:

Ψ(x, 0) = c1ψ1(x) + c2ψ2(x),

where c1, c2 are constants. What is the wave function Ψ(x, t)
at subsequent times?
Solution The wave function at subsequent time is obatained
by simply tagging the exponential factor to each time-independent
solutions,

Ψ(x, t) = c1ψ1(x)e
−iE1t/~ + c2ψ2(x)e

−iE2t/~.

(4 marks)

4. (a) i. Consider a particle in an infinite square well. Explain the
mathematical origin that give rise to the quantisation of the
energies.
Solution
The quantisation of energy in an infinite square well arises due
to the boundary conditions that demand Ψ(x = 0) = Ψ(x =
a) = 0.
(4 marks)

ii. Explain why a particle in an infinite square well can not have
zero energy, E = 0.
Solution
This is because E = 0 implies that the particle is totally at
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rest, and hence violate the Uncertainty principle ∆x∆px ≥
~/2.
Frist optional answer: E = 0 implies the solution to the TISE
is trivial. This is uncaapetable because it is not normalisable
and violate the Born’s probabilistic interpretation of to the
wave function.

Second optional answer: In TISE, ∂2

∂x2Ψ(x) ∝ [V (x)−E]Ψ(x).
As a result, in order for the wavefunction to be normalised,
it is necessary that E > Vmin. For infinite quantum well,
Vmin = 0. Hence, it follows that E > 0 ⇒ E 6= 0.

(4 marks)

(b) The infinite square well is given by

V (x) =

{
0, if 0 ≤ x ≤ a

∞, otherwise

i. Sketch the graph for V (x).

Solution (2 marks)

Figure 1: The infinite square well potential

ii. Write down the Schroedinger equation for particle in the in-
finite square well.

Solution

− ~2

2m

d2ψ

dx2
= Eψ,
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or
d2ψ

dx2
= −k2ψ, where k ≡

√
2mE

~
; k2 ≥ 0

(2 marks)

iii. What is the boundary conditions for the wave function in the
infinite square well?

Solution
Ψ(x = 0) = Ψ(x = a) = 0
(2 marks)

iv. What is the most general solution to the Schroedinger equa-
tion for particle in the infinite square well?
Solution
The most general solution for

d2ψ

dx2
= −k2ψ

is
Ψ(x) = A sin(kx) +B cos(kx)

(2 marks)

v. Based on your answers to 4(b)iii, 4(b)iv, show that the allowed
energies of E are given by
Solution

Impose BC Ψ(x = 0) = 0 into

Ψ(x) = A sin(kx) +B cos(kx)

gives

Ψ(0) = B cos(k0̇) = 0

Implying B = 0.
Impose BC Ψ(x = a) = 0 into

Ψ(a) = A sin(ka) = 0

gives

k = kn =
nπ

a
, n = ±1,±2, · · · .

Since k ≡
√
2mE
~ ,⇒ En = n2 π2~2

2ma2
.

(4 marks)
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5. (a) i. State the (spatial) region which is considered “forbidden” for
an one-dimensional classical harmonic oscillator as far as en-
ergy is concerned.
[Nyatakan rantau (dalam ruang kedudukan) yang merupakan
rantau terlarang bagi pengayun harmonik klasik satu dimensi,
di mana hanya pertimbangan tenaga diambil kira.]

ii. List the essential differences between a classical and a quan-
tum harmonic oscillator (QHO) (list them in a table com-
prised of two columns for easy comparison).
[Senaraikan perbezaan-perbezaan mustahak di antara pengayun
harmonik klasik dan pengayun harmonik kuantum (untuk memu-
dahkan perbandingan, senaraikan perbezaan-perbezaan dalam
bentuk jadual mengandungi dua lajur.)]

(8 marks)

(b) Consider the time-independent Schroedinger equation (TISE) for
a 1D quantum harmonic oscillator expressed in the form

[Pertimbangkan persamaan Schroedinger tak tersandar-masa un-
tuk pengayun harmonik satu dimensi dalam bentuk]

d2ψ

dξ2
= (ξ2 −K)ψ, (5)

where [di mana]

ξ = x

√
mω

~
,

K ≡ 2E

~ω
.

ω a constant characterising the angular frequency and m the mass
of the oscillator.

[ω pemalar yang mencirikan frekuensi sudut, dan m jisim pen-
gayun.]

i. Assume the solution can be expressed in terms of ψ(ξ) =
h(ξ)e−ξ2/2, show that the TISE can be cast into the form

d2h

dξ2
− 2ξ

dh

dξ
+ (K − 1)h = 0.
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ii. The solution for the equation in 5(b)i can be obtained via a
power series method by assuming the solution as a series in
the form of
[Penyelesaian kepada persamaan dalam 5(b)i boleh diperolehi
melalui kaedah siri kuasa dalam bentuk]

h(ξ) =
∞∑
j=0

ajξ
j.

Show that the coefficients aj obey
[Tunjukkan bahawa koefisien-koefisien aj mematuhi]

∞∑
j=0

[(j + 1)(j + 2)aj+2 − 2jaj + (K − 1)aj] ξ
j = 0

for all powers of j. [untuk semua kuasa j.]

(12 marks)

6. (a) i. Consider two functions f(x), g(x), both belong to Hilbert
space. Define the inner product of them.
Solution
〈f |g〉 =

∫∞
−∞ f(x)∗g(x)dx

(4 marks)

ii. Explain what it means by the statement “a set of functions is
complete”.

Solution

A set of functions {ψn(x)} is complete if any other functions
f(x) can be expressed as a linear combination of them:

f(x) =
∞∑
n=1

cnψn(x)

(4 marks)

(b) The Schroedinger equation says

i~
∂Ψ

∂t
= HΨ,

where H is the Hamiltonian.

10



Show that
d

dt
〈Q〉 = i

~
〈[Ĥ, Q̂]〉+ 〈∂Q̂

∂t
〉,

where Q̂ is the Hermitian operator representing a generic ob-
servable.

Solution

d

dt
〈Q〉 = d

dt
〈Ψ|Q̂Ψ〉 = 〈∂Ψ

∂t
|Q̂Ψ〉+ 〈Ψ|∂Q̂

∂t
Ψ〉+ 〈Ψ|Q̂∂Ψ

∂t
〉.

Combine it with the Shroedinger equation

∂Ψ

∂t
=

1

i~
ĤΨ,

d

dt
〈Q〉 = 〈 1

i~
ĤΨ|Q̂Ψ〉+ 〈∂Q̂

∂t
〉+ 1

i~
〈Ψ|Q̂ĤΨ〉

= − 1

i~
〈Ψ|ĤQ̂Ψ〉+ 〈∂Q̂

∂t
〉+ 1

i~
〈Ψ|Q̂ĤΨ〉

= +
1

i~

(
〈Ψ|Q̂ĤΨ〉 − 〈Ψ|ĤQ̂Ψ〉

)
+ 〈∂Q̂

∂t
〉

= +
1

i~
〈Ψ|

(
Q̂Ĥ − ĤQ̂

)
Ψ〉+ 〈∂Q̂

∂t
〉

=
i

~
〈[Ĥ, Q̂]〉+ 〈∂Q̂

∂t
〉 (6)

(8 marks)

i.ii. Prove that the eigenvalues of a hermitian operator Q̂ is real.
Solution
The eigenvalue equation for an operator Q is

Q̂f = qf.

Since Q is a Hermitian operator,

〈f |Q̂f〉 = 〈Q̂f |f〉.

It then follows that

q〈f |f〉 = q∗〈f |f〉.

So, q = q∗, and hence q is real. QED

(4 marks)
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7. (a) i. The allowed energies of a hydrogen atom are given by En =
−E0/n

2, where n = 1, 2, 3, · · · , E0 = 13.6eV the ground state
energy. Explain qualitatively what will happen to the solu-
tions of the time-independent Schroedinger equation if the
constant E, as appear in the TISE, is not equal to any of the
discretised values −E0/n

2.

ii. Usually the Schroedinger equation for a hydrogen atom is
solved in spherical coordinates using separation of variable
method to split the solution into a radial part and an angular
part. In principle one can also solve the Schroedinger equation
for hydrogen atom in Cartesian coordinate system by splitting
the solution into x-,y- and z- parts instead. Explain why is
the latter approach less convenient than the former.
[Biasanya persamaan Schroedinger bagi atom hidrogen disele-
saikan dalam koordinat-koordinat sfera dan memakai kaedah
pemisahan pembolehubah untuk membelahkan penyelesaian kepada
bahagian jejarian dan bahagian sudutan. Secara prinsipnya
kita juga boleh menyelesaikan persamaan Schroedinger bagi
atom hidrogen dalam sistem koordinat Carte dengan membe-
lahkan penyelesaian kepada bahagian-bahagian x−, y− dan
z−. Terangkan mengapa pendekatan yang terkemudian tidak
semudah berbanding dengan pendekatan yang terdahulu.]

(8 marks)

(b) Consider the 3D hydrogen atom which potential is defined by the
Coulombic form

[Pertimbangkan atom hidrogen dalam tiga dimensi yang mana ke-
upayaannya ditakrifkan dalam bentuk Coulomb ]

V (r) = − e2

4πε0r
.

Using separation of variable method and by splitting the solution
ψ(r) in spherical coordinates into the separable form ψ(r, θ, φ) =
R(r)Y (θ, φ) (and by denoting the separation of variable constant
as `(`+ 1)),

[Dengan kaedah pemisahan pembolehubah serta membelahkan penye-
lesaian ψ(r) dalam koordinat-koordinat sfera kepada bentuk ter-
pisah ψ(r, θ, φ) = R(r)Y (θ, φ) (dan menwakili pemalar pemisahan
pembolehubah sebagai `(`+ 1)), ]
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i. shows that the radial function R(r) obeys the equation
[tunjukkan bahawa fungsi jejarian R(r) mematuhi persamaan
]

1

R

d

dr

(
r2
dR

dr

)
− 2mr2

~2
[V (r)− E] = `(`+ 1).

ii. Shows that the angular parts obey the equation
[Tunjukkan bahawa bahagian sudutan mematuhi persamaan]

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

(
∂2Y

∂φ2

)]
= −`(`+ 1).

(12 marks)
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Appendix

• Integration by parts:∫ b

a

f(x)g′(x)dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

g(x)f ′(x)dx.

• Time-dependent Schroedinger equation in 1D:

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t).

• Time-independent Schroedinger equation in 1D:

− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x) = Eψ(x).

• Time-independent Schroedinger equation in 3D:

− ~2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r).

• In spherical coordinates the Laplacian ∇2 takes the form

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
.

• Error function is defined as erf(x) = 2√
π

∫ x

0
e−u2

du. In the limit x →
±∞, erf(x) → ±1.

• Expectation value for an observation Q̂ is defined as

〈Q〉 =
∫

Ψ∗Q̂Ψdx.

14


