
  

Chapter 1

The Schroedinger Equation



  

Classical Mechanics
 Classical Mechanics uses Newton laws to 

describe the state of motion of a mechanical 
system.

 Knowledge of initial conditions are necessary 
to completely predict the future motion.

 Force is the cause of the motion. 
 Potential is conveniently used instead of force
 “Give me the potential” and I will tell you how 

the system evolve in time



  

Wave function, not particle

 In QM, the physical entity (e.g. particle) is 
represented by the wavefunction Ψ

 Ψ is governed by the Schroedinger 
equation (SE).

 Solving the SE for special cases of 
various potential U(x), and abstract 
physical information from the solution 
is the major objectives of ZCT 205.



  

The time-dependent Schroeding 
Equation

Ψ, ψ are pronounced as /ˈsaɪ/, /ˈpsaɪ/



  

 Time evolution of the WF, i.e., the LHS, is determined 
by the action of kinetic energy and potential energy 
operators on the WF (the RHS).

 H is known as the hamiltonian

 Given (1) initial condition Ψ(x,0) and (2) the 
potential V, the SE completely determines the 
time evolution of Ψ.

LHS:−i ℏ ∂
∂ t

Ψ
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∂2

∂ x2
+U )Ψ

H= ( K+U )Ψ



  

                Time-evolution of the wavefunction

                            Kinetic energy

                           Potential energy

“Anatomy of the SE”



  

Statistical Interpretation

                    = the probability density to find a 
particle at location x

 To be more precise: 

                                   probability of finding
  the particle between a and b at time t.

                              

∣Ψ(x ,t )∣
2

∫a

b
∣Ψ( x , t)∣

2
dx



  

∫a

b
∣Ψ( x , t)∣

2
dx



  

Inherent indeterminancy

 Even we know everything about the wave 
function and the equation governing it, we 
still can not predict with certainty the 
outcome of a simple experiment to measure 
the position. QM only offers statistical 
information about the possible results.



  

WF  collapse

 Wave function collapse due to a 
measurement act.

 Two distinct kinds of physical entity: that 
before and after a measurement.



  

Quantum Zeno effect
 Particle before measurement is governed by SE, and 

the wavefunction is evolving in time. This state has 
inherent indeterminancy.

 Once it is measured, the system is forced into a 
definite state and stop evolving in time, and will stay in 
the measured state, at least right immediately the WF 
collapses.

 The system is completely determined and loss the 
indeterminancy, at least temporarily after the 
measurement.

 If the measurement process is persistently carried out 
on the system, it will stay at that last measured state – 
QZE. 



  



  

Histogram



  

Discrete probability
 j = age; N(j) number of persons with integer 

age j.

N=∑ N ( j )

P ( j )=
N ( j)
N

∑ P ( j )=∑ P ( j )=1

〈 j〉=∑ j P ( j ) 〈 j2
〉=∑ j2 P ( j )

〈 f ( j )〉=∑ f ( j ) P ( j )



  

Discrete probability

 “spread” in the distribution (histrogram)

σ 2=〈 ( Δj )2〉 ;
Δj=j−〈 j 〉

σ=√σ2



  

“Normalised” version of the 
histogram

 N(j) vs. j        ⟶     ρ(j) vs. j
 where ρ(j) = N(j)/N
 The histogram ρ(j) vs. j is the normalised 

version of histogram      N(j) vs. j
 Δj = 1,  interval between two successive j
 For discrete distribution, normalisation is 

stated as : 
 ρ(j) is PDF

∑ ρ ( j ) Δj=1



  

Genetic expectation value in 
discrete distribution



 In terms of discrete PDF, 

〈Q〉=∑ ρ ( j ) Q ( j ) Δj



  

Continuous variable
 If j is a continuous variable x,

∫
−∞

∞

ρ( x)dx=1 ρ(x )=
N (x)

∫−∞

∞

N (x )dx
=

N (x )

N



  

Example

 This example illustrates the application of 
PDF.

 Suppose I drop a rock off a cliff of height h. 
As it falls. I snap a million photographs, at 
random intervals. On each picture I  
measure the distance the rock has fallen. 
Question: What is the average of all these 
distances? That is to say, what is the time 
average of the distance traveled? 



  

Calculate ρ(x) 

P = Δt/T;  Δx width of the snapshot; A 
particle falling through Δx will be 
captured at a probability P.

Derive ρ(x)  using classical 
mechanics, and from there you can 
determine  <x>

x at time t

x=0

Hits ground x=h when t=T=√(2h/g)



  

Calculate ρ(x) 
By definition, P = ρ(x)Δx
Equate P = Δt/T= ρ(x)Δx

From Newton's law, 
x= (1/2)gt2 ; t= √(2x/g); dx = gt dt 

In the limit Δt-->0, 
P = dt/T=(dx/gt)/√(2h/g) = ρ(x)dx
ρ(x) = (1/2)√(hx)

x at time t

x=0

Hits ground x=h when t=T=√(2h/g)



  

ρ(x) = (1/2)√(hx)



  

What's the point of the example?

● Knowing the PDF of a system allows you to 
abstract averaged dynamical information from 
it.



  

Square-integrable



  

Normalisation

Normalisation condition is preserved in all time t. 
If the WF is normalised at t=0, it is normalised for the 
rest of the time.



  

Normalisation is time-independent. 
Proove it.

.



  

Example

(d) What is the probability of finding the particle to the left of a? 
Check your result in the limiting cases b = a and b = 2a.
 
(e) What is the expectation value of x?



  



  

Measuring the expectation value

  The expectation value is the average of 
repeated measurements on an ensemble of 
identically prepared systems, not the 
average of repeated measurements on one 
and the same system.



  

Measuring momentum

 Calculate the expectation value of the 
momentum of a particle described by Ψ

〈 p 〉=m
d 〈 x 〉

dt



  

Observables are represented as 
operators in QM



  

Axiom: For any generic dynamical 
observable

Example: 



  

1-D Wave
  A wave well defined in wavelength (σλ  1) ≪

is ill-defined in location (σx   1), and vice ≫
versa.



  



  

de Broglie postulate
 The wavelength of Ψ is related to the  

momentum of the particle by the de Broglie 
formula



  

Heisenberg’s uncertainty principle



  

Simulation of wave packet using 
Mathematica

http://www2.fizik.usm.my/tlyoon/teaching/Z
CT205_1112/wave.nb

(i) adding many waves of different wavelength results in a 
wave packet, 
(ii) the wave packet’s “spread” in x (the “width” of the wave 
packet) is inversely proportional to the “spread” in wave 
number (∆k = N

k
∆) of the waves that are used to form the 

wave packet.



  

Example
 A particle of mass m is in the state 

 where A and a are positive real constants.
 (a) Find A.
 (b) For what potential energy function V (x) does Ψ 

satisfy the Schroedinger equation?
 (c) Calculate the expectation values of x, x2 , p and 

p2 .

 (d) Find σ
x
 and σ

p
. Is their product consistent with 

the uncertainty principle?



  

Hint



  

(a) Find A
● Use normalisation condition. Cast the 

integral into the form of erf(x)

∣Ψ∣
2 =Ψ

*
Ψ=(A exp[−a (mx2

ℏ )+iht ])
*

⋅(A exp [−a (mx2

ℏ )+iht ])
= A2 exp [−2a (mx 2

ℏ )]



  

∫−∞

∞

A2 exp [−( 2am
ℏ ) x2]dx=1

∫−∞

∞

A2 exp [−( 2am
ℏ ) x2]dx=2A2∫0

∞

exp(− y 2
)dx

y2=
2ma

ℏ
x2 , y=√ 2ma

ℏ
x , dy=√ 2ma

ℏ
dx

2A2

√ 2ma
ℏ

⋅√
π
2
⋅√ 2

π∫0

∞

exp (− y2
)dy=

2A2

√ 2ma
ℏ

⋅√
π
2
=1

 A=(ma
πℏ )

1
4



  

●(b) For what potential energy function V (x) does Ψ 
satisfy the Schroedinger equation?



  



  
Check it yourself to verify that, indeed, the solutions you 
obtain do obey Heisenberg's Uncertainty Principle, 



  

A2 exp [−2a (mx2

ℏ )]



  

Tutorial to submit online

Please scan your hand-written answer and 
submit the solution to these tutorial questions 

online to E-learning 



  

Prove this:
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