Chapter 1

he Schroedinger Equation



Classical Mechanics

Classical Mechanics uses Newton laws to
describe the state of motion of a mechanical
system.

Knowledge of initial conditions are necessary
to completely predict the future motion.

Force Is the cause of the motion.
Potential is conveniently used instead of force

“Glve me the potential” and | will tell you how
the system evolve In time



Wave function, not particle

* In QM, the physical entity (e.g. particle) is
represented by the wavefunction W

* Y is governed by the Schroedinger
equation (SE).

* Solving the SE for special cases of
various potential U(x), and abstract
physical information from the solution
Is the major objectives of ZCT 205.



The time-dependent Schroeding
Equation
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W, wy are pronounced as /'sai/, /'psai1/
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* Time evolution of the WF, I.e., the LHS, Is determined

by the action of kinetic energy and potential energy
operators on the WF (the RHS).
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* His known as the hamiltonian
* Given (1) initial condition W(x,0) and (2) the

potential V, the SE completely determines the
time evolution of Y.




“Anatomy of the SE”
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MW Time-evolution of the wavefunction

h? 0*U Kinetic energy
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VU Potential energy



Statistical Interpretation

2 o . .
‘111 (x , L )‘ = the probability density to find a
particle at location x

* To be more precise:

b
‘ fa W x, t)‘2 dx probability of finding
* the particle between a and b at time t.




FIGURE 1.2: A typical wave function. The shaded area represents the probability of
finding the particle between a and b. The particle would be relatively likely to be found
near A, and unlikely to be found near B.



Inherent indeterminancy

* Even we know everything about the wave
function and the equation governing it, we
still can not predict with certainty the
outcome of a simple experiment to measure
the position. QM only offers statistical
iInformation about the possible results.



WF collapse

* Wave function collapse due to a
measurement act.

* Two distinct kinds of physical entity: that
before and after a measurement.



Quantum Zeno effect

Particle before measurement is governed by SE, and
the wavefunction is evolving in time. This state has
Inherent indeterminancy.

Once it is measured, the system is forced into a
definite state and stop evolving in time, and will stay In
the measured state, at least right immediately the WF
collapses.

The system is completely determined and loss the
Indeterminancy, at least temporarily after the
measurement.

If the measurement process is persistently carried out
on the system, it will stay at that last measured state —
QZE.



FIGURE 1.3: Collapse of the wave function: graph of |¥|* immediately after a
measurement has found the particle at point C.



Histogram
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FIGURE 1.4: Histogram showing the number of people, N(j), with age j, for the
distribution in Section 1.3.1.



Discrete probability

* | = age; N(j) number of persons with integer
age J.
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Discrete probability

* “spread” in the distribution (histrogram)

o =A% ;
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“Normalised” version of the

histogram
VONEN NG = <) V5l
where o(j) = N()/N

The histogram p(j) vs. j is the normalised
version of histogram N(j) vs. J

Aj = 1, interval between two successive j

For discrete distribution, normalisation iIs
stated as : ) pljlAj=1

o(j) is PDF



Genetic expectation value In
discrete distribution

* |n terms of discrete PDF,

Q)= pljlQljl4j



Continuous variable
* If j is a continuous variable x,

1 = /Z p(x)dz,
@) = [ apa)da.
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Example

* This example illustrates the application of
PDF.

* Suppose | drop a rock off a cliff of height h.
As It falls. | snap a million photographs, at
random intervals. On each picture |
measure the distance the rock has fallen.
Question: What Is the average of all these
distances? That is to say, what Is the time
average of the distance traveled?



Calculate p(x)

P = At/T; Ax width of the snapshot; A
particle falling through Ax will be
captured at a probabillity P.

Derive p(x) using classical
mechanics, and from there you can
determine <x>

‘xat time t

Hits ground x=h when t=T=v(2h/g)
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Calculate p(x)

By definition, P = p(x
= Equate P = At/T= p(x

From Newton's law,
x=(1/2)gt*; t= V(2x/g); dx = gt dt

In the Iimit At-->0,
= dt/T=(dx/gt)/V(2h/g) = p(x)dx
p(x) = (1/2)V(hx)

Ime t

Hits ground x=h when t=T=v(2h/g)
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p(x)

p(x) = (1/2)V(hx)

r /h 1 ; 1 ( ‘
€Tr) = €T Tr =
0 2Whr 2Wh \3



What's the point of the example?

* Knowing the PDF of a system allows you to
abstract averaged dynamical information from
It.



Sguare-integrable

/ (2, t)|2dr < oo

U(x,t) must go to zero faster than 1/4/|z| as x| — oc.

U(x,t) — 0 as |z|] — o0



Normalisation

/ W (x,t)|*dx = 1

o0

d 0.@)
= (/Do \Il(a:,,t)zda:) =0

Normalisation condition is preserved in all time t.
If the WF Is normalised at t=0, it iIs normalised for the
rest of the time.



Normalisation Is time-independent.
Proove It.

d 0.@)
= (/Do lIJ(a:jt)Qda:) =0



Example

A=, it 0 < x < a,
WU(x,0) = Aggigj ifa <2 <b,
l 0, otherwise,

(a) Normalize U (that is, find A in terms of a and b).

(b) Sketch W¥(z,0) as a function of x
(c) Where is the particle most likely to be found, at ¢ = 07

(d) What is the probability of finding the particle to the left of a?
Check your result in the limiting cases b = a and b = 2a.

(e) What is the expectation value of x?



L if 0 < x < a,

W(x,0) = A%j if a < x <b,
0, otherwise,
N3
A+

| a b X
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P=1 i b=a, Vv
P=1/2if b=2a. Vv
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Measuring the expectation value

* The expectation value Is the average of
repeated measurements on an ensemble of
identically prepared systems, not the
average of repeated measurements on one
and the same system.



Measuring momentum

* Calculate the expectation value of the
momentum of a particle described by W

d{x)
dt

() :/ x|V (z, t)|*dx.

o0

(p)=m



Observables are represented as
operators in QM

— v v
i(az) = /az U|Pdy = - = zh (\P*a——a \If)dilﬁ—“°
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Axiom: For any generic dynamical
observable

(Q(z,p)) = /\IJ*Q (:cj ?(%) Udz

Example:




1-D Wave

* A wave well defined in wavelength (ox» < 1)
IS Ill-defined In location (ox > 1), and vice

vVersa.
\,‘!\W\) 1in A& space

A
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FIGURE 1.7: A wave with a (fairly) well-defined wavelength, but an ill-defined

position,
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FIGURE 1.8: A wave with a (fairly) well-defined position, but an ill-defined wave-
length.



de Broglie postulate

* The wavelength of ¥ Is related to the
momentum of the particle by the de Broglie
formula



Helsenberg’s uncertainty principle

h
OO0 P = —

2



Simulation of wave packet using
Mathematica

http://www?2.fizik.usm.my/tlyoon/teaching/Z
CT205 1112/wave.nb

() adding many waves of different wavelength results in a

wave packet,
(1) the wave packet’s “spread” in x (the “width” of the wave

packet) is inversely proportional to the “spread” in wave
number (Ak = N A) of the waves that are used to form the

wave packet.



Example

A particle of mass m is in the state

U(z,t) = Ae—elma®/R)+it
where A and a are positive real constants.
(a) Find A.

(b) For what potential energy function V (x) does ¥
satisfy the Schroedinger equation?

(c) Calculate the expectation values of x, x*, p and
p* .

(d) Find o, and g,.lIs their product consistent with
the uncertainty principle?
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(a) FInd A

 Use normalisation condition. Cast the

integral into the form of erf(x)

P =y y=

=A° exp

—2a

Aexp

2
mx

h

Aexp

—d

mx

+iht
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*(b) For what potential energy function V (x) does ¥
satisfy the Schroedinger equation?

oW A 2amax
T gl . — -
ot iatad ox h j

82_@:_2&1% llllmaqj :_2am 1_2@771332 T
012 h 0x h h

Plug these into the Schrodinger equation,
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?/hm —h2 5m 352 | VlII 2 :
amt am.
U = th(—2a)V A 1 \J
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V(x) = 2ma*z?.




(r) = / z|¥|*dx = | 0. |Odd integrand. |
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Check it yourself to verity that, indeed, the solutions you
obtain do obey Heisenberg's Uncertainty Principle,
h

Op0p — —






Tutorial to submit online

Please scan your hand-written answer and
submit the solution to these tutorial questions
online to E-learning



2. Prove that for a wave function that is the solution to the Schroedinger ec
tion, the normalisation of the wave function is time-independent,

% ( / Z ]\D(xjt)ﬁda;) )

Prove this:

h O
— /& Wdz.
P) 1 Ox &




Problem 1.17 A particle is represented (at time + = 0) by the wave function

Ala* — x%), if —a < x < +a.

W(x,0) = 0, otherwise.

(a) Determine the normalization constant A.
(b) What is the expectation value of x (at time + = 0)?

(c) What is the expectation value of p (at time + = 0)? (Note that you cannot
get it from p = md(x)/dt. Why not?)

(d) Find the expectation value of x*.
(e) Find the expectation value of p’.

(f) Find the uncertainty in x (o).



Problem 1.16 Show that
o0
i Ui dx =0
dt J o

for any two (normalizable) solutions to the Schrodinger equation, Wy and 5.
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