Chapter 2

Time-independent Schroedinger Equation

To solving TDSE, first solve TISE

$$
i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial^2 x} + V\Psi
$$

 Assume *V*=*V*(*x*) only so that we can use separation of variables method

Separation of variables $i\hbar\frac{1}{\varphi}\frac{d\varphi}{dt}=-\frac{\hbar^2}{2m}\frac{1}{\psi}\frac{d^2\psi}{dx^2}+V(x){\rm{ }}\nonumber \\ =E$ LHS is a function of t alone while the RHS is a function of x alone. Equation 2.4 is true only if both sides equal to a *constant*. We will call this constant E $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$ $\frac{d\varphi}{dt} = -\frac{iE}{\hbar}\varphi$

The solution to the time-dependent part

$$
\varphi(t) = e^{-iEt/\hbar}
$$

Exercise: Show this.

TISE $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$

The main tasks in ZCT 205 is to learn how to solve this equation for different types of *V*(*x*).

Stationary states

Solutions to the TDSE in the form of

$$
\Psi(x,t) = \psi(x)e^{-iEt/\hbar}
$$

are said to be "stationary states".

$$
|\Psi(x,t)|^2 = \Psi^* \Psi = \psi^* e^{+iEt/\hbar} \psi e^{-iEt/\hbar} = |\psi(x)|^2
$$

$$
\langle Q(x,p) \rangle = \int \Psi^* Q\left(x, -i\hbar \frac{d}{dx}\right) \Psi dx = \int \psi^* Q\left(x, -i\hbar \frac{d}{dx}\right) \psi dx
$$

For a particle in a stationary state, every expectation value is constant in time. So is its probability density function $|\Psi(x,t)|^2$

Why is *t* drops out in stationary states?

t drops out from $|\Psi(x,t)|^2$ and $\langle Q(x,p) \rangle$ for stationary states because these states take on the particular separable form

$$
\Psi(x,t) = \psi(x)e^{-iEt/\hbar}
$$

Stationary state is a solution to TDSE, but the inverse is not necessarily so

Note: It is possible for the solutions to TDSE to take a form other than $\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$

For example, $\Psi(x, t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$ is also a solution. But this solution is not a stationary state.

 \mathbf{I} A stationary state is a solution to TDSE; but a solution to TDSE is not necessarily a stationary state.

Hamiltonian

• The operator for total energy (an observable) is Hamiltonian

$$
\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)
$$

• The expectation value for total energy

$$
\langle H \rangle = \int \psi^*(\hat{H}\psi) dx
$$

Time independent SE in terms of Hamiltonian

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi
$$

$$
\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)
$$

$$
\hat{H}\psi = E\psi
$$

Note: *E* is the separable constant
introduced during the separation of
variables procedure

Expectation value of *H*

By definition, the expectation value of *H* is the expected total energy

$$
\langle H \rangle = \int \psi^*(\hat{H}\psi) dx = E \int |\psi|^2 dx = E.
$$

The separable constant *E* actually is the expected total energy.

Variance of *H*

$$
\sigma_H^2 = \langle H^2 \rangle - \langle H \rangle^2 = E^2 - E^2 = 0
$$

No 'spread' in the measured value of total energy for a particle in stationary state.

Measurements of the total energy is certain to return the same value *E*.

Stationary states are states of definite total energy.

Contrast this to other observables, such as *p*, *x*, where the variances in general are non-zero.

In the case of e.g., *p*, stationary states are not states of definite momentum.

TISE has infinite many separable solutions, each with a different constant, *Eⁱ*

$$
\Psi_1(x,t) = \psi_1(x)e^{-iE_1t/\hbar}, \Psi_2(x,t) = \psi_2(x)e^{-iE_2t/\hbar}, \cdots
$$

are known as "the allowed energies" (separable constants)

The solutions in the form

۱

$$
\psi_n(x)e^{-\frac{iE_nt}{\hbar}}
$$

are sometimes referred to as the "eigenstates" or eigensolutions, and *E* n "eigenenergies"

Linear combination of the separable solutions (eigensolutions) is also a solution

$$
\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}
$$

This is known as "the total solution", the most general form of solution to the TISE.

Show that the total solution is a solution to the TDSE

$$
\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}
$$

\nA solution to
\n
$$
i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial^2 x} + V\Psi
$$

To completely solve the TISE

• Amounts to finding the coefficients c_{n} in that match the initial condition, usually in the form of an initial spatial profile of the *wave* function, $\Psi(x,t=0) = f(x)$

$$
\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}
$$

Procedures

• 1. Solve the TISE for the complete set of stationary states

 \bullet

 $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}+V(x)\psi=E\psi$ $\{\psi_1(x), \psi_2(x), \cdots\}$ ${E_1, E_2, \dots}$

Procedures

• 2. Find the general solution at $t = 0$, i.e., $\Psi(x,0)=\sum_{n=0}^{\infty}c_n\psi_n(x)$ • by finding the coefficients c_{n} that fit the initial and boundary conditions.

 \mathbf{x} \vert "initial profile"

Procedures

3. Once all the c_n are found, the general time-dependent solution is obtained $\mbox{a}\mbox{s}$

$$
\Psi(x,t) = \sum_{n=0}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar} = \sum_{n=0}^{\infty} c_n \Psi_n(x,t)
$$
\n(2.7)

Example: Non-stationary states

Suppose a particle starts out in a linear combination of just two Example 2.1 stationary states:

$$
\Psi(x, 0) = c_1 \psi_1(x) + c_2 \psi_2(x).
$$

(To keep things simple I'll assume that the constants c_n and the states $\psi_n(x)$ are *real.*) What is the wave function $\Psi(x, t)$ at subsequent times? Find the probability density, and describe its motion.

Solution

the wave function $\Psi(x, t)$ at subsequent times $\Psi(x, t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$

where E_1 and E_2 are the energies associated with ψ_1 and ψ_2

the probability density is time-dependent $|\Psi(x, t)|^2 = (c_1 \psi_1 e^{iE_1 t/\hbar} + c_2 \psi_2 e^{iE_2/\hbar}) (c_1 \psi_1 e^{-iE_1 t/\hbar} + c_2 \psi_2 e^{-iE_2/\hbar})$ $= c_1^2 \psi_1^2 + c_2^2 \psi_2^2 + 2c_1 c_2 \psi_1 \psi_2 \cos[(E_2 - E_1)t/\hbar].$

Comment 1

• The state

 $\Psi(x, t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$

• is not a stationary state (why is this so?)

The state $\Psi(x, t)$, also a solution to the TDSE, is formed by a linear combination of two TISE solutions $ψ_1$, $ψ_2$ with weights c_1^1 and $c_{_2}$.

Although $\psi_{_1}$ and $\psi_{_2}$ are stationary states by themselves, the linear combination of them is not.

$\psi(x, t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$

- The state is a "mixed" state.
- It oscillates between the two states $\psi_1(x)e^{-iE_1t/\hbar}$ and $\psi_2(x)e^{-iE_2t/\hbar}$
- at an angular frequency *ω= ΔE* \hbar = $|E_2 - E_1|$ \hbar

Another mathematical property of TISE

*Problem 2.2 Show that E must exceed the minimum value of $V(x)$, for every normalizable solution to the time-independent Schrödinger equation. What is the classical analog to this statement? Hint: Rewrite Equation 2.5 in the form

$$
\frac{d^2\psi}{dx^2}=\frac{2m}{\hbar^2}[V(x)-E]\psi;
$$

if $E < V_{\text{min}}$, then ψ and its second derivative always have the same sign—argue that such a function cannot be normalized.

Proof
\n
$$
\frac{d^2 \psi(x)}{dx^2} = \frac{-2m}{\hbar} [E - V(x)] \psi(x)
$$
\n• If $E < V_{min}$,
\n
$$
\frac{d^2 \psi(x)}{dx^2} = +k^2 \psi(x), \text{where } k^2 \text{ some positive real value}
$$
\nCase I: $\psi(x) > 0$ \nConcave upwards \nCase II: $\psi(x) < 0$ \nConcave downwards

Proof

In all possible cases, $\psi(x)$ will shoot to positive or negative infinity as x increase $\Rightarrow \psi(x)$ would not be normalised

Infinite square well

$$
\frac{d^2 \psi(x)}{dx^2} = \frac{-2m}{\hbar} \left[E - V(x) \right] \psi(x)
$$

$$
V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}
$$

Solution

 $\psi(x)$ outside the infinite well is zero.

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi
$$

$$
\begin{cases}\n0 \le x \le a, V \\
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi\n\end{cases}
$$

$$
V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}
$$

or

$$
\frac{d^2\psi}{dx^2} = -k^2\psi, \text{ where } k \equiv \frac{\sqrt{2mE}}{\hbar}; k^2 \ge 0
$$

The general solution

$$
\frac{d^2\psi}{dx^2} = -k^2\psi, \text{ where } k \equiv \frac{\sqrt{2mE}}{\hbar}; k^2 \ge 0
$$

 E , must be positive WHY? *k* is real and positive

$$
\psi(x) = C_1 e^{ikx} + C_2 e^{-ikx}
$$

Do you know how to show this?

$$
= A \sin kx + B \cos kx
$$

Use Euler relation

The general solution

$$
\frac{d^2\psi}{dx^2} = -k^2\psi, \text{ where } k \equiv \frac{\sqrt{2mE}}{\hbar}; k^2 \ge 0
$$

 E , must be positive WHY? *k* is real and positive

$$
\psi(x) = C_1 e^{ikx} + C_2 e^{-ikx}
$$

Do you know how to show this?

$$
= A \sin kx + B \cos kx
$$

Use Euler relation

The general solution

$$
\psi(x) = A \sin kx + B \cos kx
$$

$$
\psi(x) = 0 \text{ for } x \le 0, x \ge a
$$

The arbitrary constants *A*, *B* are fixed by the boundary conditions of the problem. $\begin{cases} 0, & \text{if } 0 \leq x \leq a \end{cases}$

$$
\psi(x = 0) = \psi(x = a) = 0
$$
\n
$$
\psi(0) = A \sin 0 + B \cos 0 = B
$$
\n
$$
B = 0
$$
\n
$$
\psi(x) = A \sin kx
$$
\nFigure 2.2: The infinite square well potent

The constant *k* is quantised due to the boundary condition

$$
\psi(x) = 0 \text{ for } x \le 0, x \ge a
$$

\n
$$
\psi(x) = A \sin kx
$$

\n
$$
\psi(a) = A \sin ka = 0
$$

\nSince $A \ne 0$
\n
$$
ka = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \cdots
$$

\n
$$
k \ne 0
$$

\n
$$
k_n = \frac{n\pi}{a}, \text{ with } n = 1, 2, 3, \cdots
$$

\nFigure 2.2: The infinite square well poten

The allowed energies

$$
k_n = \frac{n\pi}{a}, \text{ with } n = 1, 2, 3, \cdots
$$

the possible values of E are

$$
E_n = p_n^2 / 2m = \frac{\hbar^2 k_n^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2} \quad \text{for } n \text{ is a positive integer, and}
$$

$$
\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)
$$

1. ψ_n are alternately even and odd, with respect to the center of the well (i.e., $x = a/2$).

2. As *n* increases, each successive states has one more node.

The TISE solutions are mutually orthogonal

 $\int \psi_m(x)^* \psi_n(x) dx = \delta_{mn}$

Exercise: Proof this

This is a very important properties used repeatedly in many subsequent calculations

Kronecker delta function

$$
\delta_{mn} = \begin{cases} 0, & \text{if } m \neq n \\ 1, & \text{if } m = n \end{cases}
$$

The TISE solutions are complete

Any other function *f*(*x*) can be expressed as linear combination of $\{\psi_{n}(x)\}$:

$$
f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x) = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{a}x\right)
$$

This is analogous to the three Cartesian unit vectors $\left|\, \hat{X}\,,\, \hat{\bm{{y}}}\,,\hat{Z}\,\right|$

for which any vector can be expressed as linear combination of them

$$
\widetilde{r} = x\,\hat{x} + y\,\hat{y} + z\,\hat{z}
$$

Fourier's trick

Given any function *f*(*x*) expressed in the form of the linear combination

$$
f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x)
$$

The coefficients *c* can be projected out *n* via $c_n = \int \psi_n(x)^* f(x) dx$

Proof

$$
c_n = \int \psi_n(x)^* f(x) dx
$$

This can be simply proven by making use of the orthogonality of the TISE solutions

$$
\int \psi_m(x)^* \psi_n(x) dx = \delta_{mn}
$$

The stationary states of the particle in the infinite quantum well

 The stationary states associated with the TISE solution are

$$
\Psi_n(x,t) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-itE_n/\hbar}
$$

With eigenenergies

$$
E_n = n^2 \frac{\pi^2 \hbar^2}{2ma^2}
$$

The most general solution

• The most general solution to the TDSE is a linear combination of stationary states:

$$
\Psi(x,t) = \sum_{n=1}^{\infty} c_n \Psi_n(x,t)
$$

$$
= \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-itE_n/\hbar}
$$

Check that indeed $\Psi(x, t)$ is a solution to the TDSE.

The coefficients *c n*

 c_n in Ψ(*x*, *t*) can be obtained if the initial condition ("initial profile") is given (in the form of a specific form Ψ(*x*, *t=*0) = *f*(*x*)

$$
c_n = \int \psi_n(x)^* f(x) dx = \int_{-\infty}^{\infty} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) f(x) dx
$$

$$
= \sqrt{\frac{2}{a}} \int_0^a \sin\left(\frac{n\pi}{a}x\right) f(x) dx
$$

E xample
A particle in the infinite square well has the initial wave function

 $\Psi(x, 0) = Ax(a - x), \quad (0 \le x \le a).$

Normalisation

$$
1 = \int_0^a |\Psi(x, 0)|^2 dx = |A|^2 \int_0^a x^2 (a - x)^2 dx = |A|^2 \frac{a^5}{30}
$$

$$
A = \sqrt{\frac{30}{a^5}}
$$

 $\tilde{\tilde{x}}$

 \boldsymbol{a}

The coefficients
$$
c_n
$$

$$
c_n = \int \psi_n(x)^* f(x) dx = \int_{-\infty}^{\infty} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) f(x) dx
$$

f(*x*) here plays the role of the initial profile

$$
f(x) \equiv \Psi(x,0) = Aa(a-x)
$$

Coefficient
$$
C_n = \int \psi_n(x)^* f(x) dx = \sqrt{\frac{2}{a}} \int_0^a \sin\left(\frac{n\pi}{a}x\right) f(x) dx
$$

\n
$$
c_n = \sqrt{\frac{2}{a}} \int_0^a \sin\left(\frac{n\pi}{a}x\right) \sqrt{\frac{30}{a^5}} x(a-x) dx
$$

\n
$$
= \frac{2\sqrt{15}}{a^3} \left[a \int_0^a x \sin\left(\frac{n\pi}{a}x\right) dx - \int_0^a x^2 \sin\left(\frac{n\pi}{a}x\right) dx \right]
$$

\n
$$
= \frac{2\sqrt{15}}{a^3} \left\{ a \left[\left(\frac{a}{n\pi} \right)^2 \sin\left(\frac{n\pi}{a}x\right) - \frac{ax}{n\pi} \cos\left(\frac{n\pi}{a}x\right) \right]_0^a \right\}
$$

\n
$$
- \left[2 \left(\frac{a}{n\pi} \right)^2 x \sin\left(\frac{n\pi}{a}x\right) - \frac{(n\pi x/a)^2 - 2}{(n\pi/a)^3} \cos\left(\frac{n\pi}{a}x\right) \right]_0^a \right\}
$$

\n
$$
= \frac{2\sqrt{15}}{a^3} \left[-\frac{a^3}{n\pi} \cos(n\pi) + a^3 \frac{(n\pi)^2 - 2}{(n\pi)^3} \cos(n\pi) + a^3 \frac{2}{(n\pi)^3} \cos(0) \right]
$$

\n
$$
= \frac{4\sqrt{15}}{(n\pi)^3} [\cos(0) - \cos(n\pi)]
$$

\n
$$
= \begin{cases} 0, & \text{if } n \text{ is even,} \\ 8\sqrt{15}/(n\pi)^3, & \text{if } n \text{ is odd.} \end{cases}
$$

Final answer

$$
\Psi(x,t) = \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-itE_n/\hbar}
$$
\n
$$
c_n = \begin{cases} 0, & \text{if } n \text{ is even,} \\ 8\sqrt{15}/(n\pi)^3, & \text{if } n \text{ is odd.} \end{cases} E_n = n^2 \frac{\pi^2 \hbar^2}{2ma^2}
$$

$$
\Psi(x,t) = \sqrt{\frac{30}{a}} \left(\frac{2}{\pi}\right)^3 \sum_{n=1,3,5,..} \frac{1}{n^3} \sin\left(\frac{n\pi}{a}x\right) e^{-in^2 \pi^2 \hbar t / 2ma^2}
$$

Interpretation of *c n*

 Every time you measure the observable energy of a quantum particle in state *Ψ*, you will obtain a discrete number $E_{\scriptscriptstyle n}$. $|c_{\scriptscriptstyle n}|^2$ is the probability of getting the particular value *E n* when you make a measurement.

Normalisation of *c n*

 The probability when summed over all allowed states *n* must be normalised:

$$
\sum_{n=1}^{\infty} |c_n|^2 = 1
$$

Exercise: Proof this relation for any arbitrary *t*-dependent state $\Psi(x, t)$

Proof of normalisation of *c n*

• Use $\int |\Psi(x,t)|^2 = 1$ and $\int \psi_n^*(x) \psi_m(x) dx = \delta_{mn}$ to prove ∞

$$
\sum_{n=1}^{\infty} |c_n|^2 = 1
$$

Expectation value of the energy $\langle H \rangle = \sum |c_n|^2 E_n$ $n=0$

This can be proven via

\n- (1) the definition
$$
\langle H \rangle = \int \Psi^* H \Psi
$$
\n- (2) the TISE in terms of Hamiltonian, $H\Psi_n = E_n\Psi_n$
\n- (3) $\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}$
\n

Note that the expectation value of energy is a constant. This is a manifestation of conservation of energy in QM.

Expectation value of the energy $\langle H \rangle = \sum |c_n|^2 E_n$ $n=0$ $c_n =$ $E_n = n^2 \frac{\pi^2 \hbar^2}{2m a^2}$ $\langle H \rangle = \sum_{n=1,3,5,...}^{\infty} \left(\frac{8\sqrt{15}}{n^3 \pi^3} \right)^2 \frac{n^2 \pi^2 \hbar^2}{2m a^2} = \frac{480 \hbar^2}{\pi^4 m a^2} \sum_{n=1,3,5,...}^{\infty} \frac{1}{n^4} = \frac{5 \hbar^2}{m a^2}$

Use Murray Spiegel or revisit your ZCA 110 for the series sum

$$
\sum_{n=1,3,5,\cdots} \tfrac{1}{n^4}
$$

Online resource

 Murray Spiegel, Mathematical Handbook of Formulas and Tables (Schaum's outline series)

• https://archive.org/details/MathematicalHandbook

Check your common sense

Is $\langle H \rangle$ larger, equal or smaller than the ground state energy $E_1 = \frac{\pi^2 \hbar^2}{2ma^2}$?

Explain why.

TISE for a 1D harmonic oscillator

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi}{2x^2} + \frac{1}{2}m\omega^2x^2\psi = E\psi
$$

Change variable from *x* to ξ (ξ is pronounced as "/ˈzaɪ/, /ˈksaɪ/". I prefer to pronounce it "cacing")

$$
\xi = x \sqrt{\frac{m\omega}{\hbar}}
$$

$$
\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi \qquad K \equiv \frac{2E}{\hbar\omega}
$$

Solving $\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi$

- Strategy:
- First solve it in the *ξ* → ∞ limit.
- Then use the info of the solution in this limit to solve the more general case of intermediate ξ .

$$
\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi
$$

$$
\frac{d^2\psi}{d\xi^2} = \xi^2\psi
$$

Dropping the *B* coefficient

$$
\frac{d^2\psi}{d\xi^2} = \xi^2 \psi
$$

$$
\psi(\xi) = Ae^{-\xi^2/2} + Be^{+\xi^2/2}
$$

Prove this

What is *B*?

The *B* term blows up as |*ξ*| → ∞, hence has to be dropped in order to preserve normalisability.

As such,
$$
\psi(\xi) \sim e^{-\xi^2/2}
$$
 at large ξ

In the intermediate range of *ξ*

$$
\psi(\xi) = h(\xi)e^{-\xi^2/2}
$$

where the (yet unknown) functions *h*(*ξ*) behave in such a way that

$$
\psi(\xi) \sim e^{-\xi^2/2}
$$
 at large ξ

Recast the TISE

$$
\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi
$$

$$
\psi(\xi) = h(\xi)e^{-\xi^2/2}
$$
Show this

$$
\frac{d^2h}{d\xi^2} - 2\xi\frac{dh}{d\xi} + (K - 1)h = 0.
$$

Solving $\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + (K - 1)h = 0$.

Power series method

$$
h(\xi) = \sum_{j=0}^{\infty} a_j \xi^j
$$

What we really want are the values of the coefficients *a^j* for all *j*.

Solving
$$
\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + (K - 1)h = 0.
$$

Differentiating *h*(*ξ*) with respect to *ξ* once and twice, then substitute the results back into $\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + (K - 1)h = 0$

Recursion formula

Setting

$$
[(j+1)(j+2)a_{j+2} - 2ja_j + (K-1)a_j] = 0
$$

$$
a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)}a_j
$$

The recursion formula allows us to obtain all *a^j* based on two "seed" coefficients (unknown at this stage), $a_{_0}$ and $a_{_1}$. a_0 generate all even coefficients $a_j, j = 2, 4, 6, \cdots$ a_1 generate all odd coefficients $a_j, j = 3, 5, 7, \cdots$

Recursion formula

$$
a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)} a_j
$$

Example: $j=1: a_3=$ $(2·1+1-K)$ $(1+1)(1+2)$ $a_1=$ $(3 - K)$ 6 *a*1 $j=2: a_4=$ $(2.4+1-K)$ $(2+1)(2+2)$ a_2 = (5−*K*) $\frac{16}{12}a_2=$ (5−*K*) 12 (1−*K*) 2 *a*0 $j=0: a_2=$ $(2·0+1-K)$ $(0+1)(0+2)$ $a_0=$ $(1-K)$ 2 *a*0 $j=3: a_5=$ $(2·5+1-K)$ $(3+1)(3+2)$ a_2 = (11−*K*) $\frac{(11)(11)}{20}a_3=$ (11−*K*) 20 $(3-K)$ 6 *a*1

 $a_{_{\rm even}}$ is in terms of $a_{_{\rm 0}}$

 a_{odd} is in terms of a_{1}

The solution *h*(*ξ*) as sum of two parts with definite parity

$$
h(\xi) = h_{even}(\xi) + h_{odd}(\xi),
$$

$$
h_{even}(\xi) \equiv a_0 + a_2 \xi^2 + a_4 \xi^4 + \cdots,
$$

$$
h_{odd}(\xi) \equiv a_1 + a_3 \xi^3 + a_5 \xi^5 + \cdots.
$$

 a_0, a_1 are to be fixed by normalisation

Odd and even solutions. Looks familiar?

 $=(a_0 \xi^0 + a_2 \xi^2 + a_4 \xi^4 + ...) + (a_1 \xi^1 + a_3 \xi^3 + a_5 \xi^5 + ...)$

Constraint

Constraint has to be imposed on

$$
a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)} a_j
$$

so that $\psi(\xi) = h(\xi)e^{-\xi^2/2}$ does not blow up in the $\xi \to \infty$ limit

How to design such a constraint?

Introducing the non-negative integer n

$$
a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)} a_j
$$

Introduce a non-negative integer *n* to truncate the series

$$
h(\xi) = \sum_{j=0}^{\infty} a_j \xi^j
$$

beyond the *n*-term.

If there exist a non-negative integer *n* such that

$$
K=2n+1
$$

then, for any
$$
j \ge n
$$

\n
$$
a_{2+n} = \frac{(2n+1)-K}{(n+1)(n+2)} a_n = 0
$$

Note: $a_{_{2+n}}$ =0 but not $a_{_{n}}$

In other words, if $K = 2n + 1$, then ...

- For any given odd n*,*
- a_m = 0 for all odd m, m > n
- Example: If *n*=3, a_1, a_3 *3* ; a_5, a_7, a_9 n
 $a_5, a_7, a_9, ...$
 $\underbrace{a_5, a_7, a_9, ...}_{=0}$ *,*...
- a_n even terms are not affected by $K = 2n + 1$ if n is odd. 0 =0
In other words, if $K = 2n + 1$, then ...

- For a given even n*,*
- $a_k = 0$ for all even k, $k > n$
- Example: If $n = 4$, a_0 , a_2 , *a* , $k > n$
 a_0, a_2, a_4 a_4 ; a_6 , a_8 , a_{10} 0 $a_{6}, a_{8}, a_{10}, \ldots$
=0 *,* .. . $=0$
- a_n odd terms are not affected by $K = 2n + 1$ if n is even.

Further condition to be imposed "by hand"

 As an independent consideration, we have to impose another condition by hand on a_j to $\mathsf{make} \ \psi(\xi)$ well behaved in the limit $\xi \rightarrow \infty$:

> a_{0} = 0 if *n* is odd (hence, all even a_{i} = 0) a_{1} = 0 if *n* is even (hence, all odd a_{i} = 0)

The values of a_0 or a_1 are not important; only the relatives values of a_j are

- The absolute values of a_{0} or a_{1} are not important.
- Only the relative values of a_j with respect to a_0 or a_{1} are.

Normalisation

$$
\psi_n(\xi) = e^{-\xi^2/2} h_n(\xi)
$$

We can normalise the solution $\overline{\psi}_n(\bar{\xi})$ for a particular *n* via

$$
\int |\psi_n(\xi)|^2 dx = 1
$$

This in turn will fix the value of a_0 (in the case n is even) or a_1 (in the case n is odd) for that particular n value.

Some examples of the solutions Ψ_n

 \cdot Ψ_{n} for the first few odd and even integers are shown in the next two slides.

$$
\psi_n(\xi) = e^{-\xi^2/2} h_n(\xi)
$$

Even n

\n
$$
\psi_{n}(\xi) = e^{-\xi^{2}/2} h_{n}(\xi)
$$
\nn=0

\n
$$
A_{n} = 0.751126
$$

\n
$$
B_{n}(\xi) = 1
$$
\n
$$
B_{n} = 0.531126
$$

\n
$$
\psi_{n}(\xi) = 0.751126 e^{-0.5 \xi^{2}}
$$

\n
$$
h_{n}(\xi) = 0.531126 e^{-0.5 \xi^{2}}
$$

\n
$$
\psi_{n}(\xi) = 0.531126 e^{-0.5 \xi^{2}}
$$

\n
$$
A_{n} = 0.459969
$$

\n
$$
A_{n}(\xi) = 1 - 4 \xi^{2} + \frac{4 \xi^{4}}{3}
$$

\n
$$
\psi_{n}(\xi) = 0.459969 e^{-0.5 \xi^{2}}
$$

\n
$$
1 - 4 \xi^{2} + \frac{4 \xi^{4}}{3}
$$

Odd n	$\psi_n(\xi) = e^{-\xi^2/2} h_n(\xi)$											
$A_n = 1.06225$												
$h_n(\xi) = \xi$	$h_{n-1}(\xi) = 1.06225 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.30099$										
$h_{n-1} = 5$	$h_{n-1} = 1.45455$	$h_{n-1} = 1.45455$	$h_{n-1} = 1.30099 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.45455$								
$h_{n-1} = 1.45455$	$h_{n-1} = 1.30099 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.30099 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.45455 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.30099 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.45455 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.30099 e^{-0.5 \xi^2}$	$h_{n-1} = 1.45455 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.45455 e^{-0.5 \xi^2} \xi$	$h_{n-1} = 1.45455 e^{-0.5 \xi^$			

Checking whether ψ is well behaved in the limit $\xi \rightarrow \infty$

Using Mathematica code, we verify that,

$$
\psi_n(\xi) = e^{-\xi^2/2} h_n(\xi)
$$

indeed converges to zero at the limit $|\xi|$ $\rightarrow \infty$

Quantisation of energy

- $K = 2n + 1$;
- $K = 2E/(h\omega)$
- *E=*(*n* + 1/2)♄*ω*

Mathematica code for QHO

The code, download-able from

www2.fizizk.usm.my/tlyoon/teaching/ZCT205_13 14/QHO.nb

shows you how to generate the QHO solution using Mathematica

- Numerically, if *E* assume a value other that allowed, (say $E = 0.49$ ħ ω or 0.51 ħ ω), the solution *ψ*(ξ) will blow beyond the the furthest nodes.
- See also QHO.nb

Exercise

 Assume *n* is 1, write down *h*(*ξ*), hence the stationary wave function, $\psi_{1}^{} \left(x \right)$.

 Assume *n* is 2, write down *h*(*ξ*), hence the stationary wave function, $\psi_{2}^{\prime}\left(x\right)$.

Hermite polynomial,
$$
H_n(\xi)
$$

$$
\psi_n(x) = h_n(\xi)e^{-\xi^2/2} = \frac{1}{\sqrt{2^n n!}}H_n(\xi)e^{-\xi^2/2}
$$

TABLE 2.1: The first few Hermite polynomials, $H_n(\xi)$.

$$
H_0 = 1,
$$

\n
$$
H_1 = 2\xi,
$$

\n
$$
H_2 = 4\xi^2 - 2,
$$

\n
$$
H_3 = 8\xi^3 - 12\xi,
$$

\n
$$
H_4 = 16\xi^4 - 48\xi^2 + 12,
$$

\n
$$
H_5 = 32\xi^5 - 160\xi^3 + 120\xi.
$$

Rodrigues formula

$$
H_n(\xi) = (-1)^n e^{\xi^2} \left(\frac{d}{d\xi}\right)^n e^{-\xi^2}
$$

Recursion relation

 $H_{n+1}(\xi) = 2\xi H_n(\xi) - 2nH_{n-1}(\xi)$

Exercise

- Derive H_1 , H_2 , H_3 from the Rodrigues formula.
- Derive H_3 , H_4 from H_1 , H_2 using the recursion relation.
- As a check, the function $H₃$ derived using both methods must agree.

Features of the QM solutions for the harmonic oscillator I

1. $|\psi_n|^2 \neq 0$ outside the harmonic well

Features of the QM solutions for the harmonic oscillator II

2. In the odd states, probability to find the oscillator is always zero at the center $(x = 0)$ of the potential.

Features of the QM solutions for the harmonic oscillator III: Correspondence principle

3. As $n \to \infty$, $|\psi_n(x)|^2$ behaves much like what is expected of a classical harmonic oscillator.

The correspondence principle: in the $n \to \infty$ limit, results of a quantum calculation must reduce to that of classical calculation.

Equivalent to setting $a \rightarrow \infty$ in infinite quantum well

The time-independent solution $\psi_k(x) = Ae^{ikx} + Be^{-ikx}$

But no boundary condition (as in the case of infinite quantum well).

Hence, *E* is not quantised (so is *k*).

This is an essential difference between a 'confined' system and a free particle.

The time-dependent "stationary" solution is a traveling plane wave $\Psi_k(x,t) = \psi_k(x)e^{-itE/\hbar} = \psi_k(x)e^{-\frac{it\hbar k^2}{2m}}$ $= Ae^{ik(x-\frac{\hbar k}{2m}t)} + Be^{-ik(x+\frac{\hbar k}{2m}t)}$

Compactly,

- $\Psi_k(x, t) = A e^{ik(x \frac{\hbar k}{2m}t)};$ $k \equiv \pm \frac{\sqrt{2mE}}{\hbar}$, with
- $\begin{cases} k > 0 \Rightarrow$ traveling to the positive direction
 $k < 0 \Rightarrow$ traveling to the negative direction

Normalisation of the traveling wave "stationary" solution

$$
\int_{-\infty}^{\infty} \Psi_k^* \Psi_k dx \to \infty
$$

SHOW THIS! IT"S EASY

Disturbing !!! A stationary state is one which has a definite energy. But since the state Ψ_k can't be normalised, there is nothing such as a free particle with a definite energy.

Total solution to the TDSE

• To properly interpret

$$
\Psi_k(x,t) = A e^{ik(x - \frac{\hbar k}{2m}t)}
$$

 we must look at the total solution instead of just the individual stationary solution per se.

$$
\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k)\psi_k(x,t)e^{-itE/\hbar}dk
$$

Compare this with as in the case of quantised E_{n} (confined system)

$$
\Psi(x,t) = \sum_{\text{all } n} c_n \psi_n(x) e^{-itE_n/\hbar}
$$

Comparison

Quantised system \vert Free particle

$$
\Psi(x,t) = \sum_{\text{all } n} c_n \psi_n(x) e^{-itE_n/\hbar}
$$

$$
E_n, k_n \text{(discrete)}
$$

$$
\sum_n c_n(\cdots)
$$

1

 c_n

$$
x)e^{-itE_n/\hbar} \Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k)\psi_k(x,t)e^{-itE/\hbar}dk
$$

(discrete) $E, k \text{ (continuous)}$
 $C_n \frac{1}{\sqrt{2\pi}}\phi(k)dk$
 $C_n(\cdots) \int_{-\infty}^{\infty} (\cdots)\phi(k)dk$

A new factor introduced $\frac{1}{\sqrt{2\pi}}$ A flew factor introduced $\sqrt{2\pi}$ introduced for the sake of later convenience (so that it is consistent with the definition of Fourier transformation)

Normalisable Normalisable

A free particle must be represented as a wave packet (so that it remains normalisable)

• A free particle cannot be in a "stationary state" $\Psi_k(x,t) = \psi_k(x)e^{-itE/\hbar}$ as it is not normalisable.

• But
$$
\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) \psi_k(x,t) e^{-itE/\hbar} dk
$$

is normalisable.

- Hence, a free particle must be represented as a wave packet in the form of $\Psi(x,t)$
- Note that $\Psi(x,t)$ has a large spread of wave number *k* (hence a large spread in energy *E*).

Plancherel's theorem

$$
f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx} dk \Leftrightarrow F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx.
$$

$F(k)$ is the Fourier transform of $f(x)$ $f(x)$ inverse Fourier transform of $F(k)$

$$
\text{Finding } \phi(k)
$$
\n
$$
\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.
$$
\n
$$
\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int \phi(k) e^{ikx} dk
$$

given $f(x) \equiv \Psi(x,0)$ we want to know what $\phi(k)$ is

A classic Fourier transformation problem

$$
\phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x,0)e^{-ikx}dx
$$

Example

$$
\Psi(x,0) = \begin{cases} A, & \text{if } -a < x < a, \\ 0, & \text{otherwise,} \end{cases}
$$

Find
$$
\Psi(x, t)
$$
.
\n
$$
\Psi(x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.
$$

This amounts to finding $\ \phi(k)$

Normalisation

$$
\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.
$$

$$
\phi(k) = \frac{1}{\sqrt{a\pi}} \frac{\sin(ka)}{k}
$$

$$
= \frac{1}{\pi \sqrt{2a}} \int_{-\infty}^{\infty} \frac{\sin(ka)}{k} e^{i(kx - \frac{\hbar k^2}{2m}t)} dk
$$

 $\Psi(x,t)$ begins to spread in width as $t > 0$

Description in x-space vs.
\n**Description in k-space**
\n
$$
\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k)e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.
$$
\n
$$
\phi(k) = \frac{1}{\sqrt{a\pi}} \frac{\sin(ka)}{k}
$$
\n
$$
\phi(k)
$$
 describes the free particle (at $t = 0$) in terms of $k = p/\hbar$
\n
$$
\Psi(x,0)
$$
 describes
\nthe free particle (at $t = 0$) in terms of position, x.

 \mathbf{t}

is associated with a large spread in momentum space. i.e., $\sigma_k \to \infty$.

When time evolution is switched on

www2.fizik.usm.my/tlyoon/teaching/ZCT205_1314/freeparticle.nb

In position space

$$
\sigma_x(t=0) = 2a \longrightarrow \sigma_x(t \to \infty) \to \infty
$$

In momentum space

defined (large spread in *k*)

Wavelength better defined

$$
\sigma_k(t=0) \to \infty \longrightarrow \sigma_k(t \to \infty) \to 2\pi/a
$$

the HUP is in action

 $\sigma_{k} \sigma_{k} \geq \hbar/2\pi$

Continuous vs. discrete energy solutions

Two different kind of TISE solutions $ψ(x)$ (stationary states):

- 1. $\psi_{n}(x)$, renormalisable, labeled by a discrete index n (QHO, infinite well.) $\Psi(x,t) = \sum_{n=0}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}$
- 2. ψ_{k} (x), non-renormalisable, labeled by continuous variable k, as in the free particle. $\Psi(x,t) = \int_{k=-\infty}^{k=\infty} \phi(k)\psi_k(x)e^{-i\frac{\hbar k^2}{2m}t}dk$

What's the difference?

• What is the difference between a discretely indexed $\psi_{\scriptscriptstyle \parallel}(\mathsf{x})$ and a continuously indexed *ψk* (x)?

- $ψ_n(x)$: bound states
- $ψ$ _k(x): scattering states

In QUANTUM mechanics, a particle can exist in a region where *E* > *V*, because |Ψ(*x*,*t*)|2 could be non-zero in such a classically forbidden region.

Features of the QM solutions for the harmonic oscillator I

1. $|\psi_n|^2 \neq 0$ outside the harmonic well

Classifying bound or scattering states in QM

$$
\begin{aligned} \left(E < [V(-\infty) \text{ and } V(+\infty)] \Rightarrow \text{ bound state.} \\ \left(E > [V(-\infty) \text{ or } V(+\infty)] \Rightarrow \text{ scattering state.} \right. \end{aligned}
$$

Use the criteria to determine which state Ψ is in a given potential

QHO is a bound state Infinite quantum well is a bound state Free particle is a scattering state

Finite quantum well $V(x)$ $-a$ a x $-V_o$

 Ψ_n a bound state if $-V_0 < E < 0$ Ψ a scattered state if *E* > 0 What state Ψ is if $E < -V_0$?

Ψ a scattered state for all allowed *E.* Can you tell why? What state Ψ is if $E < -V_0$?

Exercise: What is the dimension of the Dirac delta function? Hint: refer to the normalisation equation of it.

Can Ψ in a bound state? Can Ψ in scattered state?

Bound or scattering state?

- If $E > 0$: scattering state
- \cdot If $E < 0$: bound state
- Convince yourself that these are true

Solving SE in Dirac delta potential

$$
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} - \alpha\delta(x)\psi = E\psi
$$

- The solution depends on whether *E* > 0 or *E* < 0
- We will consider only the case with *E* < 0 in ZCT 205

Solving SE in Dirac delta potential

 $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}-\alpha\delta(x)\psi=E\psi$

To solve the TISE for three different regions:

$$
-\infty < x < 0
$$

\n0 > x > \infty
\nx=0

 \bullet

$$
X \neq 0
$$

$$
\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi \equiv \kappa^2\psi
$$

$$
\kappa \equiv \sqrt{\frac{-2mE}{\hbar^2}}
$$

$$
\kappa \text{ is real and positive (since } E < 0 \text{ by assumption)}
$$

The general solution for the left of *x*=0 region−∞*<x<*0

$$
\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi \equiv \kappa^2\psi
$$

$$
\psi(x) = Ae^{-\kappa x} + Be^{\kappa x}
$$

A has to be set to zero so that $\psi(x)$ remains finite as $x \to -\infty$

$$
\psi(x) = Be^{\kappa x}, \ x < 0
$$

The general solution for the right of *x*=0 region 0*<x<*∞

$$
\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi \equiv \kappa^2\psi
$$

$$
\psi(x) = Fe^{-\kappa x}, \ x > 0
$$

Solution at *x*=0

- The solution to the TISE must obey the following boundary conditions strictly:
	- 1. ψ is always continuous
	- 2. $\frac{d\psi}{dx}$ is continuous except at points where the potential is infinite
- BD1: solutions left to *x*=0 and right to *x*=0 have to match at $x = 0$:

Solution at *x*=0

1.
$$
\psi
$$
 is always continuous
solutions left to x=0 and right to x=0 have to
matched at x = 0:

$$
\lim_{x \to 0^-} \psi(x) = \lim_{x \to 0^+} \psi(x)
$$

$$
\psi(x=0) = F = B
$$

$$
\psi(x) = \begin{cases} Be^{\kappa x}, x \le 0\\ Be^{-\kappa x}, x \ge 0, \end{cases}
$$

Normalisation

$$
\psi(x) = \begin{cases} Be^{\kappa x}, x \le 0\\ Be^{-\kappa x}, x \ge 0, \end{cases}
$$

Normalisation gives the value of $B = \sqrt{\kappa}$

SHOW THIS

BD II, at the vicinity of $x = 0$, -ε≤ *x* ≤ε

2. $\frac{d\psi}{dx}$ is continuous except at points where

the potential is infinite

This BD gives rise to energy quantisation

$$
\lim_{\epsilon \to 0} -\frac{\hbar^2}{2m} \int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{dx^2} dx + \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} V(x) \psi(x) dx
$$

$$
= \lim_{\epsilon \to 0} E \int_{-\epsilon}^{+\epsilon} \psi(x) dx
$$

The first term in the LHS

 $\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{dx^2} dx$ $=\lim_{\epsilon\to 0}\left(\frac{d\psi(x)}{dx}\right) - \frac{d\psi(x)}{dx}\right) \equiv \Delta$

DO YOU SEE HOW TO GO FROM LINE 1 TO LINE 2? NEED TO RECALL ZCA 110 !

Show $\int_{-\epsilon}^{+\epsilon} \frac{d^2\psi}{dx^2} dx = \left(\frac{d\psi(x)}{dx}\bigg|_{\epsilon} - \frac{d\psi(x)}{dx}\bigg|_{-\epsilon}\right)$

$$
\int F(x) dx = [F(x) dx]_{-\epsilon}^{\epsilon} = [F(\epsilon) - F(-\epsilon)] dx
$$

$$
\int F(x) dx = (F(\epsilon) - F(-\epsilon)) dx
$$

Now, let
$$
F(x) = \frac{df(x)}{dx}
$$

$$
\int \left(\frac{df(x)}{dx}\right) dx = \left(\frac{df}{dx}(\epsilon) - \frac{df}{dx}(-\epsilon)\right) dx
$$

By definition, the differential d*f*(*x*) is

$$
df(x) = \frac{df(x)}{dx} \cdot dx
$$

Geometrical interpretation of differential, d*f*(x)

df (*x*)=lim $f(x+Δx) - f(x) =$ $df(x)$ $\frac{f(x)}{dx}$ ·*dx*

$$
\int \left(\frac{df(x)}{dx}\right)dx = \left(\frac{df}{dx}(e) - \frac{df}{dx}(-e)\right)dx = \left[df(x)\right]_{-e}^{e}
$$

$$
= f(e) - f(-e)
$$
Now, let $f(x) = \frac{d\psi(x)}{dx}$
$$
\int \frac{d}{dx} \left(\frac{d\psi(x)}{dx}\right)dx = \frac{d\psi}{dx}(e) - \frac{d\psi}{dx}(-e)
$$

$$
\Delta = \left(\frac{d\psi(x)}{dx}\right)_{e}^{e} - \frac{d\psi(x)}{dx}\Big|_{-e}
$$

The second term

$$
\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} V(x)\psi(x)dx
$$

=
$$
\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} -\alpha \delta(x)\psi(x)dx = -\alpha \psi(0)
$$

The last term

$$
\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} \psi(x) dx = 0
$$

Putting everything together

 $\lim_{\epsilon \to 0} -\frac{\hbar^2}{2m} \int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{dx^2} dx + \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} V(x) \psi(x) dx$ $\int = \lim_{\epsilon \to 0} E \int_{-\epsilon}^{+\epsilon} \psi(x) dx$ \hbar^2 + $(-\alpha \psi(0)) = 0$ $2m$ $\frac{\hbar^2}{2m}\Delta = \alpha\sqrt{\kappa}$

Quantisation of E shown, finally

 Ω

$$
E = -\frac{m\alpha^2}{2\hbar^2}
$$

Only a single bounded state

No higher energy states like in the case of QHO or infinite quantum well

The Finite Square Well

$$
V(x) = \begin{cases} -V_0, \text{ for } -a \le x \le a, \\ 0, \text{ for } |x| > a, \\ V_0 \text{ is a positive constant} \end{cases}
$$

Bound state solution, $-V_0 < F < 0$

Three regions: $x \leq -a, -a < x < a, x \geq a$

 $\begin{aligned} \n\vert x &< -a \\ \n\frac{d^2 \psi}{dx^2} &= \kappa^2 \psi \n\end{aligned}$ $x \geq a$ $-a < x < a$ $\frac{d^2\psi}{dx^2} = -l^2\psi$ $\frac{d^2\psi}{dx^2} = \kappa^2\psi$ $\kappa = \sqrt{-\frac{2mE}{\hbar^2}}$ $\kappa = \sqrt{-\frac{2mE}{\hbar^2}}$ $l = \sqrt{\frac{2m(E+V_0)}{\hbar^2}}$

Bound state solutions

 $x < -a$ $x \geq a$ $\frac{d^2\psi}{dx^2} = \kappa^2\psi$ $-a < x < a$ $\frac{d^2\psi}{dx^2} = \kappa^2\psi$ $\frac{d^2\psi}{dx^2} = -l^2\psi$ $\begin{vmatrix} \frac{d^2\psi}{dx^2} = \kappa^2\psi \ \psi(x) = Fexp(-\kappa x) - Gexp(\kappa x) \end{vmatrix}$ $\psi(x) = A \exp(-\kappa x) + B \exp(\kappa x)$ $G = 0$ $A = 0$ $\psi(x) = F \exp(-\kappa x)$ $\psi(x) = B \exp(\kappa x)$ $\psi(x) = C \sin(lx) + D \cos(lx)$

Symmetric potential

- Since the potential is even, $V(x) = V(-x)$,
- the solutions must be either even or odd $\psi(x) = \psi(-x)$ $\psi(x) = -\psi(-x)$

To prove this statement, first we have to show that Ψ(-*x*) is a solution to the TISE if $V(-x) = V(-x)$ with energy E

To show Ψ(-*x*) is a solution to the TISE with energy *E*, the following must be true:

> − \hbar 2m d^2 dx^2 $(ANYTHING) + V(x)(ANYTHING) = E \cdot (ANYTHING);$ *whereANYTHING* $\equiv \psi(-x)$

$$
-\frac{\hbar}{2m}\frac{d^{2}}{dx^{2}}(ANYTHING) + V(x)(ANYTHING) = E \cdot (ANYTHING);
$$

whereANYTHING $\equiv \psi(-x)$ $\models Q. (1)$

• To prove EQ. (1), begin from an TISE

$$
-\frac{\hbar}{2m}\frac{d^2}{dx^2}\psi(x)+V(x)\psi(x)=E\psi(x)
$$
\n
$$
\begin{aligned}\n\frac{d}{dx} &= \frac{dx'}{dx}\frac{d}{dx'} = (-1)\frac{d}{dx'}
$$
\n
$$
\frac{d^2}{dx^2} &=...=(-1)^2\frac{d^2}{dx'^2} = \frac{d^2}{dx'^2}
$$
\n
$$
-\frac{\hbar}{2m}\frac{d^2}{dx'^2}\psi(x') + V(x')\psi(x') = E\psi(x')
$$
\n
$$
-\frac{\hbar}{2m}\frac{d^2}{dx^2}\psi(-x) + V(-x)\psi(-x) = E\psi(-x)
$$
\nSince $V(x) \to V(x)$ \n
$$
-\frac{\hbar}{2m}\frac{d^2}{dx^2}\psi(-x) + V(x)\psi(-x) = E\psi(-x)
$$
\nEQ. (1) is hence proven, and we says $\Psi(-x)$ is a solution to the TISE with energy E

Both $\Psi(x)$ and $\Psi(-x)$ are solutions to the TISE with energy *E*, hence so is the linear combination

$$
\pmb{\psi}_{\pm}(\pmb{x})\!=\!\pmb{\psi}(\pmb{x})\!\pm\!\pmb{\psi}\,(-\pmb{x})
$$

$$
\begin{aligned}\n\psi_+(x) &= \psi(x) + \psi(-x) \qquad \text{is an even solution} \\
\psi_+(-x) &= \psi(-x) + \psi(x) = \psi_+(x)\n\end{aligned}
$$

$$
\begin{aligned} \psi_-(x)=&\psi(x)-\psi(-x) \quad\text{ is an odd solution}\\ \psi_-(-x)=&\psi(-x)-\psi(x)=-\big(\psi(x)-\psi(-x)\big)=-\psi_-(x) \end{aligned}
$$

Conclusion: If $V(x) = V(-x)$, the solutions to the TISE are made up of odd and even ones, $\Psi_+(x)$, $\Psi_-(x)$

Assume the solution is of even parity

$$
\psi(x) = \begin{cases} Fe^{-\kappa x}, \text{ for } x \le -a, \\ D\cos(lx), \text{ for } -a < x < +a, \\ \psi(-x), \text{ for } x \ge a \end{cases}
$$

(1) $\psi(x)$ continuous; (2) $\frac{d\psi}{dx}$ continuous

at the point $x = a$: $Fe^{-\kappa a} = D \cos la$ BD (1): BD (2): $-\kappa F e^{-\kappa a} = -lD \sin l a$

$$
Fe^{-\kappa a} = D \cos la
$$

$$
-\kappa Fe^{-\kappa a} = -lD \sin la
$$

$$
\kappa = l \tan(la)
$$

Show this Let $z \equiv la$ and $z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0}$

$$
\tan z = \sqrt{(z_0/z)^2 - 1}
$$

 $\rm z_{o}$ a dimensionless parameter that describes how deep is the well

Quantisation of energy

 z_n values of z for the intersections in the curves *z* n are to be obtained numerically.

Only three solutions exist. This means only three quantised energies exists for the potential value with z_{0} =8.

Three allowed energy levels in a well with finite depth z_0 =8

E n = Z _n $/$ 2 \hbar 2 2*ma* $\frac{1}{2}$ [−]*V*₀

Solution to
$$
\tan z = \sqrt{\left(\frac{z_0}{z}\right)^2 - 1}
$$
 for $V_0 = 500, 50, 5$ unit.

Note that as $V_0 \rightarrow \infty$, there is only one solution left. It is located in the range of $0 < z < \pi/2$. For small *z*, the roots tend to occur near to the values of $n\pi/2$.

Limiting expressions for
$$
E_{n, Z_n}
$$

\n $z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0}$ $\tan z = \sqrt{(z_0/z)^2 - 1}$
\nFor wide, deep well, $z_0 \gg 1$
\n $z_n \approx \frac{n\pi}{2}$ $E_n \approx \frac{n^2 \pi^2 \hbar^2}{2m(2a)^2} - V_0$ (for low odd *n*)

For shallow, narrow well, z_0 is tiny

$$
z \approx \epsilon
$$
 $E = \frac{\hbar^2 \epsilon^2}{2ma^2} - V_0$ Show this

Odd parity solution

 We have shown the solutions and allowed energies for even parity case.

$$
\psi(x) = \begin{cases} Fe^{-\kappa x}, \text{ for } x \le -a, \\ D \cos(lx), \text{ for } -a < x < +a, \\ \psi(-x), \text{ for } x \ge a \end{cases}
$$

$$
E_n = z_n^2 \frac{\hbar^2}{2ma^2} - V_0
$$

• But don't forget there is still the odd parity solutions.

$$
\psi(x) = \begin{cases}\nFe^{-\kappa x}, & \text{for } x \le -a, \\
C \sin(lx), & \text{for } -a < x < +a, \\
\psi(-x), & \text{for } x \ge a.\n\end{cases}
$$

Energy for the odd parity solution

- What is the allowed energies for the odd parity solution, *E* n $= ?$
- To do so, simply repeat the steps using *C*sin(*lx*) instead of *D* cos (*lx*)

Scattering state solutions

- \cdot $F > 0$
- Consider a particle incident upon the potential from the left, and there is no particle incident

or reflected from the right.

 $x \leq -a$

 $\frac{d^2\psi}{dx^2} = -k^2\psi$ $k = \sqrt{\frac{2mE}{\hbar^2}}$ real and positive $\psi(x) = Ae^{ikx} + Be^{-ikx}$

For $-a < x < a$

 $\frac{d^2\psi}{dx^2}=-l^2\psi$

$$
l=\sqrt{\tfrac{2m}{\hbar^2}(E+V_0)}\quad\text{ real and positive}
$$

$$
\psi(x) = C \sin(lx) + D \cos(lx)
$$

For $x > a$

Compactly

For $x \leq -a$,

$$
\text{Traveling wave}
$$
\n
$$
\psi(x) = Ae^{ikx} + Be^{-ikx}
$$

standing wave $\psi(x) = C \sin(lx) + D \cos(lx)$ For $-a < x < a$

Traveling wave

$$
\psi(x) = Fe^{ikx}, \ \ x \ge a. \qquad \text{For } x \ge a
$$

$$
l = \sqrt{\frac{2m}{\hbar^2}(E + V_0)} \qquad k = \sqrt{\frac{2mE}{\hbar^2}}
$$

Can you tell whether the wavelength in the well is larger or smaller than outside the well?

**Imposing BC at
$$
x = -a
$$**
\n(BC) #1 at $x = -a$
\n $\psi(x)$ continuous at $x = -a$
\n $Ae^{-ika} + Be^{ika} = C \sin(-la) + D \cos(-la)$
\n $= -C \sin(la) + D \cos(la)$
\nboundary condition (BC) #2 at $x = -a$
\n $\frac{d\psi}{dx}$ continuous at $x = -a$
\n $ik [Ae^{-ika} - Be^{ika}] = l [C \cos(la) + D \sin(la)]$

Imposing BC at $x = a$ boundary condition (BC) #1 at $x = a$ $Fe^{ika} = C \sin(la) + D \cos(la)$ boundary condition (BC) $\#2$ at $x = a$ $ikFe^{ika} = l[C\cos(la) - D\sin(la)]$

Tidying up

$$
Ae^{-ika} + Be^{ika} = -C\sin(la) + D\cos(la)
$$

ik $[Ae^{-ika} - Be^{ika}] = l [C\cos(la) + D\sin(la)]$
 $Fe^{ika} = C\sin(la) + D\cos(la)$
 $ikFe^{ika} = l [C\cos(la) - D\sin(la)]$

• The BC results in a total of 4 algebraic equations with 5 unknowns (*A*, *B*, *C*, *D*, *F*).

A as an independent unknown

express B, C, D, F in terms of A

$$
B = i \frac{\sin(2la)}{2kl} (l^2 - k^2) F
$$

$$
F = \frac{e^{-2ika}A}{\cos(2la) - i\frac{(k^2 + l^2)}{2kl}\sin(2la)}
$$

Exercise: Derive this

Reflection coefficient

The fraction of the incoming number (from the left) that will bounce back. • Of relevance only in region $x < -a$.

Transmission coefficient

How much of the incident number has transmitted through the potential to come out to the other side.

To conserve probability, *T* + *R* = 1

$$
T^{-1} = 1 + \frac{V_0^2}{4E(E + V_0)} \sin^2\left(\frac{2a}{\hbar}\sqrt{2m(E + V_0)}\right)
$$

Exercise: Show this. Hint: use these relations

$$
T = \frac{|F|^2}{|A|^2} \qquad R = \frac{|B|^2}{|A|^2} \qquad T + R = 1.
$$

$$
F = \frac{e^{-2ika}A}{\cos(2la) - i\frac{(k^2 + l^2)}{2kl}\sin(2la)}
$$

"Transparent potential"

• If
$$
\frac{2a}{\hbar} \sqrt{2m(E+V_0)} = n\pi
$$
 so that
\n
$$
T^{-1} = 1 + \frac{V_0^2}{4E(E+V_0)} \sin^2 \left(\frac{2a}{\hbar} \sqrt{2m(E+V_0)}\right)
$$

$$
\bullet \quad T=1
$$

• No reflection, $R = 0$.

$$
E_n = n^2 \frac{\pi^2 \hbar^2}{2m(2a)^2} - V_0.
$$

This is exactly the same set of discrete energies as that of an infinite square well.

Ramsauer-Townsend effect

Q1

Solution to the Dirac potential is given by

$$
\psi(x) = \begin{cases} Be^{\kappa x}, x \le 0 \\ Be^{-\kappa x}, x \ge 0 \end{cases}
$$

Normalisation gives the value of $B = \sqrt{\kappa}$ SHOW THIS

Q2

$$
\kappa = l \tan(la)
$$

\nShow this $\Big|$ Let $z \equiv la$ and $z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0}$
\n
$$
\tan z = \sqrt{(z_0/z)^2 - 1}
$$

Q3

Given the four algebraic equations

$$
Ae^{-ika} + Be^{ika} = -C\sin(la) + D\cos(la)
$$

ik $[Ae^{-ika} - Be^{ika}] = l[C\cos(la) + D\sin(la)]$
 $Fe^{ika} = C\sin(la) + D\cos(la)$
 $ikFe^{ika} = l[C\cos(la) - D\sin(la)]$

Show

$$
B = i \frac{\sin(2la)}{2kl} (l^2 - k^2) F
$$

$$
F = \frac{e^{-2ika} A}{\cos(2la) - i \frac{(k^2 + l^2)}{2kl} \sin(2la)}
$$

Show

 $T^{-1} = 1 + \frac{V_0^2}{4E(E + V_0)} \sin^2\left(\frac{2a}{\hbar}\sqrt{2m(E + V_0)}\right)$

TUTORIAL QUESTION

*Problem 2.34 Consider the "step" potential:

$$
V(x) = \begin{cases} 0, & \text{if } x \le 0, \\ V_0, & \text{if } x > 0. \end{cases}
$$

- (a) Calculate the reflection coefficient, for the case $E < V_0$, and comment on the answer.
- (b) Calculate the reflection coefficient for the case $E > V_0$.
- (c) For a potential such as this, which does not go back to zero to the right of the barrier, the transmission coefficient is *not* simply $|F|^2/|A|^2$ (with A the

FIGURE 2.20: Scattering from a "cliff" (Problem 2.35).

incident amplitude and F the transmitted amplitude), because the transmitted wave travels at a different speed. Show that

$$
T = \sqrt{\frac{E - V_0}{E}} \frac{|F|^2}{|A|^2},
$$
 [2.172]

for $E > V_0$. Hint: You can figure it out using Equation 2.98, or — more elegantly, but less informatively—from the probability current (Problem 2.19). What is T, for $E < V_0$?

(d) For $E > V_0$, calculate the transmission coefficient for the step potential, and check that $T + R = 1$.