Chapter 2

Time-independent Schroedinger Equation

To solving TDSE, first solve TISE

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial^2x} + V\Psi$$

• Assume V=V(x) only so that we can use separation of variables method

Separation of variables

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial^2x} + V\Psi$$

$$\Psi(x,t) = \psi(x)\varphi(t)$$

 Φ , φ are pronounced as /'fai/

$$\begin{split} \frac{\partial \Psi}{\partial t} &= \psi \frac{d\varphi}{dt}, \frac{\partial^2 \Psi}{\partial^2 x} = \frac{d^2 \psi}{dx^2} \varphi \\ i\hbar \psi \frac{\partial \varphi}{\partial t} &= -\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} \varphi + V \varphi \psi \\ i\hbar \frac{1}{\varphi} \frac{d\varphi}{dt} &= -\frac{\hbar^2}{2m} \frac{1}{\psi} \frac{d^2 \psi}{dx^2} + V(x) \end{split}$$

Separation of variables

$$i\hbar\frac{1}{\varphi}\frac{d\varphi}{dt} = -\frac{\hbar^2}{2m}\frac{1}{\psi}\frac{d^2\psi}{dx^2} + V(x)^{\rm E} {\rm E} \label{eq:eta}$$

LHS is a function of t alone while the RHS is a function of x alone. Equation

2.4 is true only if both sides equal to a constant. We will call this constant E

$$\frac{d\varphi}{dt} = -\frac{iE}{\hbar}\varphi \qquad \qquad -\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

The solution to the time-dependent part

$$\varphi(t) = e^{-iEt/\hbar}$$

Exercise: Show this.

TISE

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

The main tasks in ZCT 205 is to learn how to solve this equation for different types of V(x).

Stationary states

Solutions to the TDSE in the form of

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

are said to be "stationary states".

$$|\Psi(x,t)|^2 = \Psi^* \Psi = \psi^* e^{+iEt/\hbar} \psi e^{-iEt/\hbar} = |\psi(x)|^2$$

$$\langle Q(x,p)\rangle = \int \Psi^*Q\left(x,-i\hbar\frac{d}{dx}\right)\Psi dx = \int \psi^*Q\left(x,-i\hbar\frac{d}{dx}\right)\psi dx$$

For a particle in a stationary state, every expectation value is constant in time. So is its probability density function $|\Psi(x,t)|^2$

Why is *t* drops out in stationary states?

t drops out from $|\Psi(x,t)|^2$ and $\langle Q(x,p)\rangle$ for stationary states because these states take on the particular separable form

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

Stationary state is a solution to TDSE, but the inverse is not necessarily so Note: It is possible for the solutions to TDSE to take a

Note: It is possible for the solutions to TDSE to take a form other than $\Psi(x,t)=\psi(x)e^{-iEt/\hbar}$

For example, $\Psi(x,t) = c_1 \psi_1(x) e^{-iE_1t/\hbar} + c_2 \psi_2(x) e^{-iE_2t/\hbar}$ is also a solution. But this solution is not a stationary state.

A stationary state is a solution to TDSE; but a solution to TDSE is not necessarily a stationary state.

Hamiltonian

The operator for total energy (an observable) is Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$

The expectation value for total energy

$$\langle H \rangle = \int \psi^*(\hat{H}\psi) dx$$

Time independent SE in terms of Hamiltonian

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$

$$\hat{H}\psi = E\psi$$

Note: \vec{E} is the separable constant introduced during the separation of variables procedure

Expectation value of *H*

By definition, the expectation value of H is the expected total energy

$$\langle H \rangle = \int \psi^* (\hat{H}\psi) dx = E \int |\psi|^2 dx = E.$$

The separable constant *E* actually is the expected total energy.

Variance of *H*

$$\sigma_H^2 = \langle H^2 \rangle - \langle H \rangle^2 = E^2 - E^2 = 0$$

No 'spread' in the measured value of total energy for a particle in stationary state.

Measurements of the total energy is certain to return the same value *E*.

So, we say,

Stationary states are states of definite total energy.

Contrast this to other observables, such as p, x, where the variances in general are non-zero.

In the case of e.g., p, stationary states are not states of definite momentum.

TISE has infinite many separable solutions, each with a different constant, E_i

$$\Psi_1(x,t) = \psi_1(x)e^{-iE_1t/\hbar}, \Psi_2(x,t) = \psi_2(x)e^{-iE_2t/\hbar}, \cdots$$

$$\{E_1,\,E_2,\cdots\}$$
 are known as "the allowed energies" (separable constants)

The solutions in the form

$$\psi_n(x)e^{-\frac{iE_nt}{\hbar}}$$

are sometimes referred to as the "eigenstates" or eigensolutions, and E_n "eigenenergies"

Linear combination of the separable solutions (eigensolutions) is also a solution

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}$$

This is known as "the total solution", the most general form of solution to the TISE.

Show that the total solution is a solution to the TDSE

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}$$

$$\begin{vmatrix} \text{A solution to} \\ i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial^2 x} + V \Psi \end{vmatrix}$$

To completely solve the TISE

• Amounts to finding the coefficients c_n in that match the initial condition, usually in the form of an initial spatial profile of the wave function,

$$\Psi(x,t=0)=f(x)$$

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}$$

Procedures

 1. Solve the TISE for the complete set of stationary states

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

$$\{E_1, E_2, \dots\} \qquad \{\psi_1(x), \psi_2(x), \dots\}$$

Procedures

2. Find the general solution at t = 0, i.e.,

$$\Psi(x,0) = \sum_{n=0}^{\infty} c_n \psi_n(x)$$

- $\Psi(x,0) = \sum_{n=0}^\infty c_n \psi_n(x)$ by finding the coefficients $\mathbf{c}_{_{\rm I}}$ that fit the initial and boundary conditions.
- "initial profile"

Procedures

3. Once all the c_n are found, the general time-dependent solution is obtained as

$$\Psi(x,t) = \sum_{n=0}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar} = \sum_{n=0}^{\infty} c_n \Psi_n(x,t)$$
 (2.7)

Example: Non-stationary states

Example 2.1 Suppose a particle starts out in a linear combination of just two stationary states:

$$\Psi(x,0) = c_1 \psi_1(x) + c_2 \psi_2(x).$$

(To keep things simple I'll assume that the constants c_n and the states $\psi_n(x)$ are real.) What is the wave function $\Psi(x,t)$ at subsequent times? Find the probability density, and describe its motion.

Solution

the wave function $\Psi(x,t)$ at subsequent times

$$\Psi(x,t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$$

where E_1 and E_2 are the energies associated with ψ_1 and ψ_2

the probability density is time-dependent

$$|\Psi(x,t)|^2 = (c_1\psi_1e^{iE_1t/\hbar} + c_2\psi_2e^{iE_2/\hbar})(c_1\psi_1e^{-iE_1t/\hbar} + c_2\psi_2e^{-iE_2/\hbar})$$

$$= c_1^2\psi_1^2 + c_2^2\psi_2^2 + 2c_1c_2\psi_1\psi_2\cos[(E_2 - E_1)t/\hbar].$$

Comment 1

The state

$$\Psi(x,t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$$

• is not a stationary state (why is this so?)

The state $\Psi(x, t)$, also a solution to the TDSE, is formed by a linear combination of two TISE solutions ψ_1 , ψ_2 with weights c_1 and c_2 .

Although ψ_1 and ψ_2 are stationary states by themselves, the linear combination of them is not.

Comment 2

$$\Psi(x,t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$$

- The state is a "mixed" state.
- It oscillates between the two states $\psi_1(x)e^{-iE_1t/\hbar}$ and $\psi_2(x)e^{-iE_2t/\hbar}$
- at an angular frequency $\omega = \frac{\Delta E}{\hbar} = \frac{|E_2 E_1|}{\hbar}$

Another mathematical property of TISE

*Problem 2.2 Show that E must exceed the minimum value of V(x), for every normalizable solution to the time-independent Schrödinger equation. What is the classical analog to this statement? *Hint:* Rewrite Equation 2.5 in the form

$$\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2} [V(x) - E]\psi;$$

if $E < V_{min}$, then ψ and its second derivative always have the same sign—argue that such a function cannot be normalized.

Proof

$$\frac{d^2\Psi}{dx^2} > 0 \,\forall x,$$

$$\frac{d^2\Psi}{dx^2} > 0 \,\forall x,$$

Proof

$$\frac{d^2\psi(x)}{dx^2} = \frac{-2m}{\hbar} \left[E - V(x) \right] \psi(x)$$

If E < V_{min},

$$\frac{d^2\psi(x)}{dx^2} = +k^2\psi(x), wherek^2 some positive real value$$

Case I: $\psi(x) > 0$

Concave upwards

Case II: $\psi(x) < 0$

Concave downwards

Proof

 $\frac{d^2\psi(x)}{dx^2} = +k^2\psi(x), wherek^2 some positive real value$

In all possible cases, $\psi(x)$ will shoot to positive or negative infinity as x increase $\Rightarrow \psi(x)$ would not be normalised

Infinite square well

$$\frac{d^{2}\psi(x)}{dx^{2}} = \frac{-2m}{\hbar} [E - V(x)]\psi(x)$$

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}$$

Figure 2.2: The infinite square well potent

Solution

 $\psi(x)$ outside the infinite well is zero.

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

$$\downarrow 0 \le x \le a, V$$

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi$$

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}$$

Figure 2.2: The infinite square well potent

or

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$
, where $k \equiv \frac{\sqrt{2mE}}{\hbar}$; $k^2 \ge 0$

The general solution

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$
, where $k \equiv \frac{\sqrt{2mE}}{\hbar}$; $k^2 \ge 0$

E, must be positive

WHY?

k is real and positive

$$\psi(x) = C_1 e^{ikx} + C_2 e^{-ikx}$$

Do you know how to show this?

$$= A\sin kx + B\cos kx$$

Use Euler relation

The general solution

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$
, where $k \equiv \frac{\sqrt{2mE}}{\hbar}$; $k^2 \ge 0$

E, must be positive

WHY?

k is real and positive

$$\psi(x) = C_1 e^{ikx} + C_2 e^{-ikx}$$

Do you know how to show this?

$$= A\sin kx + B\cos kx$$

Use Euler relation

The general solution

$$\psi(x) = A\sin kx + B\cos kx$$

$$\psi(x) = 0 \text{ for } x \leq 0, x \geq a$$

The arbitrary constants A, B are fixed by the boundary conditions of the problem.

$$\psi(x=0) = \psi(x=a) = 0$$

$$\psi(0) = A\sin 0 + B\cos 0 = B$$

$$B = 0$$

$$\psi(x) = A\sin kx$$

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}$$

Figure 2.2: The infinite square well potent

The constant *k* is quantised due to the boundary condition

$$\psi(x) = 0 \text{ for } x \le 0, x \ge a$$

 $\psi(x) = A \sin kx$

$$\psi(a) = A \sin ka = 0$$

Since $A \neq 0$
$$ka = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \cdots$$

$$k \neq 0$$

 $=\frac{n}{n}$, with $n=1,2,3,\cdots$

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}$$

Figure 2.2: The infinite square well potent

The allowed energies

$$k_n = \frac{n\pi}{a}$$
, with $n = 1, 2, 3, \cdots$

the possible values of E are

$$E_n = p_n^2/2m = \frac{\hbar^2 k_n^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2} \quad \text{with}$$

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ \infty, & \text{otherwise} \end{cases}$$

Figure 2.2: The infinite square well potent

Normalisation

$$\psi(x) = A\sin kx$$
$$\int_0^a |\psi|^2 dx = 1$$

$$A = \sqrt{2/a} \, \cdot$$

Exercise: Show this.

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

$$\psi(x) = 0 \text{ for } x \leq 0, x \geq a$$

The TISE has an infinite set of solutions (one for each positive integer n).

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

- 1. ψ_n are alternately even and odd, with respect to the center of the well (i.e., x = a/2).
- 2. As *n* increases, each successive states has one more node.

The TISE solutions are mutually orthogonal

$$\int \psi_m(x)^* \psi_n(x) dx = \delta_{mn}$$

Exercise: Proof this

This is a very important properties used repeatedly in many subsequent calculations

Kronecker delta function

$$\delta_{mn} = \begin{cases} 0, & \text{if } m \neq n \\ 1, & \text{if } m = n \end{cases}$$

The TISE solutions are complete

Any other function f(x) can be expressed as linear combination of $\{\psi_n(x)\}$:

$$f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x) = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{a}x\right)$$

This is analogous to the three Cartesian unit vectors $[\hat{X}$, \hat{y} , $\hat{z}]$

for which any vector can be expressed as linear combination of them

$$\vec{r} = x \hat{x} + y \hat{y} + z \hat{z}$$

Fourier's trick

Given any function f(x) expressed in the form of the linear combination

$$f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x)$$

The coefficients c_n can be projected out via

$$c_n = \int \psi_n(x)^* f(x) dx$$

Proof

$$c_n = \int \psi_n(x)^* f(x) dx$$

This can be simply proven by making use of the orthogonality of the TISE solutions

$$\int \psi_m(x)^* \psi_n(x) dx = \delta_{mn}$$

The stationary states of the particle in the infinite quantum well

The stationary states associated with the TISE solution are

$$\Psi_n(x,t) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-itE_n/\hbar}$$

With eigenenergies

$$E_n = n^2 \frac{\pi^2 \hbar^2}{2ma^2}$$

The most general solution

 The most general solution to the TDSE is a linear combination of stationary states:

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \Psi_n(x,t)$$
$$= \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-itE_n/\hbar}$$

Check that indeed $\Psi(x, t)$ is a solution to the TDSE.

The coefficients c_n

 c_n in $\Psi(x, t)$ can be obtained if the initial condition ("initial profile") is given (in the form of a specific form $\Psi(x, t=0) = f(x)$

$$c_n = \int \psi_n(x)^* f(x) dx = \int_{-\infty}^{\infty} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) f(x) dx$$

$$= \sqrt{\frac{2}{a}} \int_0^a \sin\left(\frac{n\pi}{a}x\right) f(x) dx$$

Example

A particle in the infinite square well has the initial wave function

$$\Psi(x,0) = Ax(a-x), \quad (0 \le x \le a).$$

Find $\Psi(x,t)$

Normalisation

$$1 = \int_0^a |\Psi(x,0)|^2 dx = |A|^2 \int_0^a x^2 (a-x)^2 dx = |A|^2 \frac{a^5}{30}$$

$$A = \sqrt{\frac{30}{a^5}}$$

The coefficients c_n

$$c_n = \int \psi_n(x)^* f(x) dx = \int_{-\infty}^{\infty} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) f(x) dx$$

f(x) here plays the role of the initial profile

$$f(x) \equiv \Psi(x,0) = Aa(a-x)$$

Coefficient c

$$c_{n} = \int \psi_{n}(x)^{*} f(x) dx = \sqrt{\frac{2}{a}} \int_{0}^{a} \sin\left(\frac{n\pi}{a}x\right) f(x) dx$$

$$c_{n} = \sqrt{\frac{2}{a}} \int_{0}^{a} \sin\left(\frac{n\pi}{a}x\right) \sqrt{\frac{30}{a^{5}}} x(a-x) dx$$

$$= \frac{2\sqrt{15}}{a^{3}} \left[a \int_{0}^{a} x \sin\left(\frac{n\pi}{a}x\right) dx - \int_{0}^{a} x^{2} \sin\left(\frac{n\pi}{a}x\right) dx \right]$$

$$= \frac{2\sqrt{15}}{a^{3}} \left\{ a \left[\left(\frac{a}{n\pi}\right)^{2} \sin\left(\frac{n\pi}{a}x\right) - \frac{ax}{n\pi} \cos\left(\frac{n\pi}{a}x\right) \right] \right|_{0}^{a}$$

$$- \left[2\left(\frac{a}{n\pi}\right)^{2} x \sin\left(\frac{n\pi}{a}x\right) - \frac{(n\pi x/a)^{2} - 2}{(n\pi/a)^{3}} \cos\left(\frac{n\pi}{a}x\right) \right] \right|_{0}^{a} \right\}$$

$$= \frac{2\sqrt{15}}{a^{3}} \left[-\frac{a^{3}}{n\pi} \cos(n\pi) + a^{3} \frac{(n\pi)^{2} - 2}{(n\pi)^{3}} \cos(n\pi) + a^{3} \frac{2}{(n\pi)^{3}} \cos(0) \right]$$

$$= \frac{4\sqrt{15}}{(n\pi)^{3}} [\cos(0) - \cos(n\pi)]$$

$$= \begin{cases} 0, & \text{if } n \text{ is even.} \\ 8\sqrt{15}/(n\pi)^{3}, & \text{if } n \text{ is odd.} \end{cases}$$

Final answer

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-itE_n/\hbar}$$

$$c_n = \begin{cases} 0, & \text{if } n \text{ is even.} \\ 8\sqrt{15}/(n\pi)^3, & \text{if } n \text{ is odd.} \end{cases} E_n = n^2 \frac{\pi^2 \hbar^2}{2ma^2}$$

$$\Psi(x,t) = \sqrt{\frac{30}{a}} \left(\frac{2}{\pi}\right)^3 \sum_{n=1,3,5} \frac{1}{n^3} \sin\left(\frac{n\pi}{a}x\right) e^{-in^2\pi^2\hbar t/2ma^2}$$

Interpretation of c_n

• Every time you measure the observable energy of a quantum particle in state Ψ , you will obtain a discrete number E_n . $|c_n|^2$ is the probability of getting the particular value E_n when you make a measurement.

Normalisation of c_n

 The probability when summed over all allowed states n must be normalised:

$$\sum_{n=1}^{\infty} |c_n|^2 = 1$$

Exercise: Proof this relation for any arbitrary t-dependent state $\Psi(x,t)$

Proof of normalisation of c_n

• Use
$$\int |\Psi(x,t)|^2 = 1$$
 and $\int \psi_n^*(x)\psi_m(x)dx = \delta_{mn}$ to prove
$$\sum_{n=0}^{\infty} |c_n|^2 = 1$$

n=1

$|c_n|^2$ vs. n

Comment: only the first c_n (n=1) contribute significantly; the other n's (n=3,5,7,...) contribution is almost negligible.

Expectation value of the energy

$$\langle H \rangle = \sum_{n=0}^{\infty} |c_n|^2 E_n$$

This can be proven via

(1) the definition
$$\langle H \rangle = \int \Psi^* H \Psi$$

(2) the TISE in terms of Hamiltonian, $H\Psi_n = E_n \Psi_n$

(3)
$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}$$

Note that the expectation value of energy is a constant. This is a manifestation of conservation of energy in QM.

Expectation value of the energy

$$\langle H \rangle = \sum_{n=0}^{\infty} |c_n|^2 E_n$$

$$C_n = \begin{cases} 0, & \text{if } n \text{ is even.} \\ 8\sqrt{15}/(n\pi)^3, & \text{if } n \text{ is odd.} \end{cases}$$

$$E_n = n^2 \frac{\pi^2 \hbar^2}{2ma^2}$$

$$\langle H \rangle = \sum_{n=1,3,5,\dots}^{\infty} \left(\frac{8\sqrt{15}}{n^3 \pi^3} \right)^2 \frac{n^2 \pi^2 \hbar^2}{2ma^2} = \frac{480 \hbar^2}{\pi^4 ma^2} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^4} = \frac{5\hbar^2}{ma^2}$$

Use Murray Spiegel or revisit your ZCA 110 for the series sum

$$\sum_{n=1,3,5,\cdots} \frac{1}{n^4}$$

Online resource

 Murray Spiegel, Mathematical Handbook of Formulas and Tables (Schaum's outline series)

https://archive.org/details/MathematicalHandbool

Check your common sense

Is $\langle H \rangle$ larger, equal or smaller than the ground state energy $E_1 = \frac{\pi^2 \hbar^2}{2ma^2}$? Explain why.

The harmonic oscillator

A generic potential can be approximated by a harmonic potential in the neighborhood of a local minimum $(x = x_0)$

TISE for a 1D harmonic oscillator

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{2x^2} + \frac{1}{2}m\omega^2 x^2\psi = E\psi$$

Change variable from x to ξ (ξ is pronounced as "/'zaɪ/, /'ksaɪ/". I prefer to pronounce it "cacing")

$$\xi = x\sqrt{\frac{m\omega}{\hbar}}$$

$$\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi \qquad K \equiv \frac{2E}{\hbar\omega}$$

Solving
$$\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi$$

- Strategy:
- First solve it in the $\xi \rightarrow \infty$ limit.
- Then use the info of the solution in this limit to solve the more general case of intermediate ξ .

$$\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi$$

$$\frac{d^2\psi}{d\xi^2} = \xi^2\psi$$

Dropping the B coefficient

$$\frac{d^2\psi}{d\xi^2} = \xi^2\psi \psi(\xi) = Ae^{-\xi^2/2} + Be^{+\xi^2/2}$$

Prove this

What is *B*?

The *B* term blows up as $|\xi| \to \infty$, hence has to be dropped in order to preserve normalisability.

As such,
$$\psi(\xi) \sim e^{-\xi^2/2}$$
 at large ξ

In the intermediate range of ξ

$$\psi(\xi) = h(\xi)e^{-\xi^2/2}$$

where the (yet unknown) functions $h(\xi)$ behave in such a way that

$$\psi(\xi) \sim e^{-\xi^2/2}$$
 at large ξ

Recast the TISE

$$\frac{d^2\psi}{d\xi^2} = (\xi^2 - K)\psi$$

$$\psi(\xi) = h(\xi)e^{-\xi^2/2}$$
 Show this

$$\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + (K-1)h = 0.$$

Solving
$$\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + (K-1)h = 0.$$

Power series method

$$h(\xi) = \sum_{j=0}^{\infty} a_j \xi^j$$

What we really want are the values of the coefficients a_i for all j.

Solving
$$\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + (K-1)h = 0.$$

Differentiating $h(\xi)$ with respect to ξ once and twice, then substitute the results back into $\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + (K-1)h = 0$

$$\sum_{j=0}^{\infty} \left[(j+1)(j+2)a_{j+2} - 2ja_j + (K-1)a_j \right] \xi^j = 0$$

Show this

The coefficients to ξ_j must be zero for every j

Non-zero, because the are the solution (wave function) we are after

Recursion formula

Setting

$$[(j+1)(j+2)a_{j+2} - 2ja_j + (K-1)a_j] = 0$$

$$a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)}a_j$$

The recursion formula allows us to obtain all a_j based on two "seed" coefficients (unknown at this stage), a_0 and a_1 .

 a_0 generate all even coefficients $a_j, j = 2, 4, 6, \cdots$ a_1 generate all odd coefficients $a_j, j = 3, 5, 7, \cdots$

Recursion formula

$$a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)}a_j$$

Example:

$$\begin{split} j &= 0 \colon a_2 = \frac{(2 \cdot 0 + 1 - K)}{(0 + 1)(0 + 2)} a_0 = \frac{(1 - K)}{2} a_0 \\ j &= 1 \colon a_3 = \frac{(2 \cdot 1 + 1 - K)}{(1 + 1)(1 + 2)} a_1 = \frac{(3 - K)}{6} a_1 \\ j &= 2 \colon a_4 = \frac{(2 \cdot 4 + 1 - K)}{(2 + 1)(2 + 2)} a_2 = \frac{(5 - K)}{12} a_2 = \frac{(5 - K)}{12} \frac{(1 - K)}{2} a_0 \\ j &= 3 \colon a_5 = \frac{(2 \cdot 5 + 1 - K)}{(3 + 1)(3 + 2)} a_2 = \frac{(11 - K)}{20} a_3 = \frac{(11 - K)}{20} \frac{(3 - K)}{6} a_1 \end{split}$$

 a_{even} is in terms of a_{o}

 a_{odd} is in terms of a_{1}

The solution $h(\xi)$ as sum of two parts with definite parity

$$h(\xi) = h_{even}(\xi) + h_{odd}(\xi),$$

$$h_{even}(\xi) \equiv a_0 + a_2 \xi^2 + a_4 \xi^4 + \cdots,$$

$$h_{odd}(\xi) \equiv a_1 + a_3 \xi^3 + a_5 \xi^5 + \cdots$$

 a_0, a_1 are to be fixed by normalisation

Odd and even solutions.

Looks familiar?

Explicitly

$$h(\xi) = \sum_{j=0}^{\infty} a_j \xi^j$$

$$= \left(a_0 \, \xi^0 + a_2 \, \xi^2 + a_4 \, \xi^4 + \ldots\right) + \left(a_1 \, \xi^1 + a_3 \, \xi^3 + a_5 \, \xi^5 + \ldots\right)$$

Constraint

Constraint has to be imposed on

$$a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)}a_j$$

so that $\psi(\xi) = h(\xi)e^{-\xi^2/2}$ does not blow up in the $\xi \to \infty$ limit

How to design such a constraint?

Introducing the non-negative integer

n

$$a_{j+2} = \frac{2j+1-K}{(j+1)(j+2)}a_j$$

Introduce a non-negative integer *n* to truncate the series

$$h(\xi) = \sum_{j=0}^{\infty} a_j \xi^j$$

beyond the *n*-term.

If there exist a non-negative integer n such that

$$K = 2n + 1$$

then, for any
$$j \ge n$$

$$a_{2+n} = \frac{(2n+1)-K}{(n+1)(n+2)} a_n = 0$$

Note: $a_{2+n}=0$ but not a_n

In other words, if K = 2n + 1, then ...

- For any given odd n,
- $a_m = 0$ for all odd m, m > n
- Example: If n=3, $\underbrace{a_1, a_3; a_5, a_7, a_9, \dots}_{=0}$
- a_n even terms are not affected by K = 2n + 1 if n is odd.

In other words, if K = 2n + 1, then ...

- For a given even n,
- $a_k = 0$ for all even k, k > n
- Example: If n = 4, $\underbrace{a_0, a_2, a_4}_{0}$; $\underbrace{a_6, a_8, a_{10}, \dots}_{=0}$
- a_n odd terms are not affected by K = 2n + 1 if n is even.

Further condition to be imposed "by hand"

• As an independent consideration, we have to impose another condition by hand on a_j to make $\psi(\xi)$ well behaved in the limit $\xi \to \infty$

$$a_0 = 0$$
 if n is odd (hence, all even $a_j = 0$)

$$a_1 = 0$$
 if n is even (hence, all odd $a_1 = 0$)

Numerical illustration

$$a_{j+2} = rac{2j+1-K}{(j+1)(j+2)} a_j$$
 $K = 2n+1$
 $a_0 = 0$ if n is odd (hence, all even $a_j = 0$)
 $a_1 = 0$ if n is even (hence, all odd $a_j = 0$)

$$n \quad K = \text{Odd } a_j \qquad \text{Even } a_j$$

$$1 \qquad a_0$$

0 1 0
$$a_0 \neq 0;$$
 $a_1 \neq 0;$ $a_2 = a_4 = a_6 = ... = 0$

1 3
$$a_1 \neq 0$$
; $a_2 = a_7 = ... = 0$

$$a_0 + a_2 \xi^2$$

$$a_1 = a_5 = a_7 = ... = 0$$

$$a_1\xi + a_3\xi^3$$

2 5 0
$$a_0 \neq 0; a_2 = 2a_0$$
 $a_0 + a_2 \xi^2 + a_4 \xi^4$

3 7
$$a_1 \neq 0; a_3 = a_1/3;$$
 0 $a_1 \xi + a_3 \xi^3 + a_5 \xi^5$ $a_5 = a_7 = ... = 0$

The values of a_0 or a_1 are not important; only the relatives values of a_j are

- The absolute values of a_0 or a_1 are not important.
- Only the relative values of a_j with respect to a_0 or a_1 are.

Normalisation

$$\psi_n(\xi) = e^{-\xi^2/2} h_n(\xi)$$

We can normalise the solution $\psi_n(\xi)$ for a particular n via

$$\int |\psi_n(\xi)|^2 dx = 1$$

This in turn will fix the value of a_0 (in the case n is even) or a_1 (in the case n is odd) for that particular n value.

Some examples of the solutions Ψ_n

• Ψ_n for the first few odd and even integers are shown in the next two slides.

$$\psi_{n}(\xi) = e^{-\xi^{2}/2}h_{n}(\xi)$$

Even n

$$\psi_n(\xi) = e^{-\xi^2/2} h_n(\xi)$$

$$n=0$$

$$A_n = 0.751126$$

$$|h_n(\xi)| = 1$$

$$A_n = 0.531126$$

$$\psi_{n}(\xi) = 0.751126 e^{-0.5 \xi^{2}} h_{n}(\xi) = 1 - 2 \xi^{2}$$

$$h_n(\xi) = 1 - 2 \xi^2$$

$$\psi_{\mathbf{n}}(\xi) = \mathbf{0.531126} \, e^{-\mathbf{0.5} \, \xi^2} \, (\mathbf{1} - \mathbf{2} \, \xi^2)$$

$$A_n = 0.459969$$

$$h_n(\xi) = 1 - 4 \xi^2 + \frac{4 \xi^4}{3}$$

$$\psi_{\mathbf{n}}(\xi) = \mathbf{0.459969} \, e^{-0.5 \, \xi^2} \left(\mathbf{1} - \mathbf{4} \, \xi^2 + \frac{\mathbf{4} \, \xi^4}{3} \right)$$

$$\psi_{n}(\xi) = e^{-\xi^{2}/2}h_{n}(\xi)$$

n=1

$$A_n = 1.06225$$

$$\boldsymbol{h_n}(\xi) = \xi$$

$$\psi_{n}(\xi) = 1.06225 e^{-0.5 \xi^{2}} \xi$$
 $A_{n} = 1.30099$

$$A_n = 1.45455$$

$$h_n(\xi) = \xi - \frac{4\xi^3}{3} + \frac{4\xi^5}{15}$$

$$n=3$$

$$A_n = 1.30099$$

$$h_n(\xi) = \xi - \frac{2\xi^3}{3}$$

$$A_{n} = 1.45455$$
 $h_{n}(\xi) = \xi - \frac{4\xi^{3}}{3} + \frac{4\xi^{5}}{15}$
 $\psi_{n}(\xi) = 1.30099 e^{-0.5\xi^{2}} \left(\xi - \frac{2\xi^{3}}{3}\right)$

$$\psi_{n}(\xi) = 1.45455 e^{-0.5 \xi^{2}} \left(\xi - \frac{4 \xi^{3}}{3} + \frac{4 \xi^{5}}{15} \right)$$

Checking whether ψ is well behaved in the limit $\xi \to \infty$

Using Mathematica code, we verify that,

$$\psi_n(\xi) = e^{-\xi^2/2} h_n(\xi)$$

indeed converges to zero at the limit $|\xi|$

Quantisation of energy

- K = 2n + 1;
- $K = 2E/(\hbar \omega)$
- $E = (n + 1/2) \hbar \omega$

Mathematica code for QHO

The code, download-able from

www2.fizizk.usm.my/tlyoon/teaching/ZCT205_13 14/QHO.nb

shows you how to generate the QHO solution using Mathematica

• Numerically, if E assume a value other that allowed, (say $E = 0.49 \, \hbar \omega$ or $0.51 \, \hbar \omega$), the solution $\psi(\xi)$ will blow beyond the the furthest nodes.

See also QHO.nb

Exercise

• Assume n is 1, write down $h(\xi)$, hence the stationary wave function, $\psi_1(x)$.

• Assume n is 2, write down $h(\xi)$, hence the stationary wave function, $\psi_{\gamma}(x)$.

Hermite polynomial, $H_n(\xi)$

$$\psi_n(x) = h_n(\xi)e^{-\xi^2/2} = \frac{1}{\sqrt{2^n n!}}H_n(\xi)e^{-\xi^2/2}$$

TABLE 2.1: The first few Hermite polynomials, $H_n(\xi)$.

$$H_0 = 1$$
,
 $H_1 = 2\xi$,
 $H_2 = 4\xi^2 - 2$,
 $H_3 = 8\xi^3 - 12\xi$,
 $H_4 = 16\xi^4 - 48\xi^2 + 12$,
 $H_5 = 32\xi^5 - 160\xi^3 + 120\xi$.

Rodrigues formula

$$H_n(\xi) = (-1)^n e^{\xi^2} \left(\frac{d}{d\xi}\right)^n e^{-\xi^2}$$

Recursion relation

$$H_{n+1}(\xi) = 2\xi H_n(\xi) - 2nH_{n-1}(\xi)$$

Exercise

- Derive H_1 , H_2 , H_3 from the Rodrigues formula.
- Derive H_3 , H_4 from H_1 , H_2 using the recursion relation.
- As a check, the function H_3 derived using both methods must agree.

Features of the QM solutions for the harmonic oscillator I

1. $|\psi_n|^2 \neq 0$ outside the harmonic well

The particle has non zero probability to be $_$ found in classically forbidden regions, where F < V

Quantum Tunelling effect

Features of the QM solutions for the harmonic oscillator II

2. In the odd states, probability to find the oscillator is always zero at the center (x = 0) of the potential.

Features of the QM solutions for the harmonic oscillator III: Correspondence principle

3. As $n \to \infty$, $|\psi_n(x)|^2$ behaves much like what is expected of a classical harmonic oscillator.

The correspondence principle: in the $n \to \infty$ limit, results of a quantum calculation must reduce to that of classical calculation.

Free particle

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi$$

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$
, where $k \equiv \frac{\sqrt{2mE}}{\hbar}$

Equivalent to setting $a \rightarrow \infty$ in infinite quantum well

The time-independent solution

$$\psi_k(x) = Ae^{ikx} + Be^{-ikx}$$

But no boundary condition (as in the case of infinite quantum well).

Hence, E is not quantised (so is k).

This is an essential difference between a 'confined' system and a free particle.

The time-dependent "stationary" solution is a traveling plane wave

$$\Psi_k(x,t) = \psi_k(x)e^{-itE/\hbar} = \psi_k(x)e^{-\frac{it\hbar k^2}{2m}}$$
$$= Ae^{ik(x-\frac{\hbar k}{2m}t)} + Be^{-ik(x+\frac{\hbar k}{2m}t)}$$

Compactly,

$$\Psi_k(x,t) = Ae^{ik(x-\frac{\hbar k}{2m}t)};$$

$$k \equiv \pm \frac{\sqrt{2mE}}{\hbar}$$
, with

 $\begin{cases} k > 0 \Rightarrow \text{traveling to the positive direction} \\ k < 0 \Rightarrow \text{traveling to the negative direction} \end{cases}$

Normalisation of the traveling wave "stationary" solution

$$\int_{-\infty}^{\infty} \Psi_k^* \Psi_k dx \to \infty$$

SHOW THIS! IT"S EASY

Disturbing !!!

A stationary state is one which has a definite energy. But since the state Ψ_k can't be normalised, there is nothing such as a free particle with a definite energy.

Total solution to the TDSE

To properly interpret

$$\Psi_k(x,t) = Ae^{ik(x-\frac{\hbar k}{2m}t)}$$

 we must look at the total solution instead of just the individual stationary solution per se.

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) \psi_k(x,t) e^{-itE/\hbar} dk$$

Compare this with as in the case of quantised E_n (confined system)

$$\Psi(x,t) = \sum_{\text{all } n} c_n \psi_n(x) e^{-itE_n/\hbar}$$

Comparison

Quantised system

$$\Psi(x,t) = \sum_{\text{all } n} c_n \psi_n(x) e^{-itE_n/\hbar}$$

 E_n , k_n (discrete) $\mid E, k$ (continuous)

$$\sum_n c_n(\cdots)$$

Free particle

$$\Psi(x,t) = \sum_{\text{all } n} c_n \psi_n(x) e^{-itE_n/\hbar} \left[\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) \psi_k(x,t) e^{-itE/\hbar} dk \right]$$

$$c_n \frac{1}{\sqrt{2\pi}}\phi(k)dk$$

$$\sum_{n} c_{n}(\cdots) \int_{-\infty}^{\sqrt{2}n} (\cdots) \phi(k) dk$$

$$\frac{1}{\sqrt{2\pi}}$$

1 $\frac{1}{\sqrt{2\pi}}$ A new factor introduced introduced for the sake of later convenience (so that it is consistent with the definition of Fourier transformation)

Normalisable

Normalisable

A free particle must be represented as a wave packet (so that it remains normalisable)

• A free particle cannot be in a "stationary state" $\Psi_k(x,t) = \psi_k(x)e^{-itE/\hbar}$ as it is not normalisable.

• But
$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) \psi_k(x,t) e^{-itE/\hbar} dk$$

is normalisable.

- Hence, a free particle must be represented as a wave packet in the form of $\Psi(x,t)$
- Note that $\Psi(x,t)$ has a large spread of wave number k (nence a large spread in energy E).

Plancherel's theorem

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx}dk \Leftrightarrow F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx.$$

F(k) is the Fourier transform of f(x)

f(x) inverse Fourier transform of F(k)

Finding $\phi(k)$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.$$

$$\downarrow^{t=0}$$

$$\Psi(x,0) = \frac{1}{\sqrt{2\pi}} \int \phi(k) e^{ikx} dk$$

given $f(x) \equiv \Psi(x,0)$ we want to know what $\phi(k)$ is

A classic Fourier transformation problem

$$\phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x,0)e^{-ikx} dx$$

Example

$$\Psi(x,0) = \begin{cases} A, & \text{if } -a < x < a, \\ 0, & \text{otherwise,} \end{cases}$$

Find $\Psi(x,t)$.

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.$$

This amounts to finding $\phi(k)$

Normalisation

$$\int_{-\infty}^{\infty} |\Psi(x,0)|^2 dx = 1 \Rightarrow A = \frac{1}{\sqrt{2a}}.$$

$$\phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x,0) e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2a}} \int_{-a}^{a} e^{-ikx} dx$$

$$= \dots = \frac{1}{\sqrt{a\pi}} \frac{\sin(ka)}{k} \text{ (show this)}$$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.$$

$$\phi(k) = \frac{1}{\sqrt{a\pi}} \frac{\sin(ka)}{k}$$

$$= \frac{1}{\pi\sqrt{2a}} \int_{-\infty}^{\infty} \frac{\sin(ka)}{k} e^{i(kx - \frac{\hbar k^2}{2m}t)} dk$$

 $\Psi(x,t)$ begins to spread in width as t>0

$$\Psi(x,t) = \frac{1}{\pi\sqrt{2a}} \int_{-\infty}^{\infty} \frac{\sin(ka)}{k} e^{i(kx - \frac{\hbar k^2}{2m}t)} dk$$
 at $t=0$

Description in *x*-space vs. Description in *k*-space

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.$$

VS

$$\phi(k) = \frac{1}{\sqrt{a\pi}} \frac{\sin(ka)}{k}$$

 $\phi(k)$ describes the free particle (at t=0) in terms of $k=p/\hbar$

 $\Psi(x,0)$ describes

the free particle (at t=0) in terms of position, x.

In the a << 1 limit at t = 0

A small spread in position space, $\sigma_x \simeq a$ (where $a \ll 1$) is associated with a large spread in momentum space, i.e., $\sigma_k \to \infty$

In the $a \gg 1$ limit at t = 0

A small spread in momentum space, $\sigma_k \approx \frac{2\pi}{a}$

is associated with a large spread in position space.

i.e.,
$$\sigma_X \to \infty$$
.

When time evolution is switched on

www2.fizik.usm.my/tlyoon/teaching/ZCT205_1314/freeparticle.nb

In position space

Position well defined

Position not well defined, large spread in *x*

$$\sigma_x(t=0) = 2a \longrightarrow \sigma_x(t \to \infty) \to \infty$$

In momentum space

Wavelength not well defined (large spread in k)

Wavelength better defined

$$\sigma_k(t=0) \to \infty \longrightarrow \sigma_k(t\to\infty) \to 2\pi/a$$

the HUP is in action

$$\sigma_x \sigma_k \geq \hbar/2\pi$$

Continuous vs. discrete energy solutions

Two different kind of TISE solutions $\psi(x)$ (stationary states):

1. $\psi_n(x)$, renormalisable, labeled by a discrete index n (QHO, infinite well.)

$$\Psi(x,t) = \sum_{n=0}^{\infty} c_n \psi_n(x) e^{-itE_n/\hbar}$$

2. $\psi_k(x)$, non-renormalisable, labeled by continuous variable k, as in the free particle.

$$\Psi(x,t) = \int_{k=-\infty}^{k=\infty} \phi(k) \psi_k(x) e^{-i\frac{\hbar k^2}{2m}t} dk$$

What's the difference?

• What is the difference between a discretely indexed $\psi_{\text{\tiny n}}(x)$ and a continuously indexed $\psi_{\text{\tiny k}}(x)$?

- $\psi_n(x)$: bound states
- $\psi_k(x)$: scattering states

In CLASSICAL mechanics, a particle can only exist in a region where E > V

In quantum mechanics

A quantum scattering state

In QUANTUM mechanics, a particle can exist in a region where E > V, because $|\Psi(x,t)|^2$ could be non-zero in such a classically forbidden region.

Features of the QM solutions for the harmonic oscillator I

1. $|\psi_n|^2 \neq 0$ outside the harmonic well

The particle has non zero probability to be $_$ found in classically forbidden regions, where F < V

Quantum Tunelling effect

Classifying bound or scattering states in QM

$$\begin{cases} E < [V(-\infty) \text{ and } V(+\infty)] \Rightarrow \text{ bound state.} \\ E > [V(-\infty) \text{ or } V(+\infty)] \Rightarrow \text{ scattering state.} \end{cases}$$

Use the criteria to determine which state Ψ is in a given potential

QHO is a bound state Infinite quantum well is a bound state Free particle is a scattering state

Finite quantum well

 Ψ_{n} a bound state if $-V_{0} < E < 0$

 Ψ a scattered state if E > 0

What state Ψ is if $E < -V_0$?

Step potential

 Ψ a scattered state for all allowed E.

Can you tell why?

What state Ψ is if $E < -V_0$?

Dirac Delta function, $\delta(x)$

$$\int_{-\infty}^{\infty} e^{i(p'-p)y} dy = 2\pi \delta(p'-p)$$

Exercise: What is the dimension of the Dirac delta function? Hint: refer to the normalisation equation of it.

$\delta(x-a)$

 $\delta(x-a)$ is a sharp spike at x=a

$$\int_{-\infty}^{\infty} \delta(x - a) f(x) dx = f(a)$$

Dirac delta potential

Can Ψ in a bound state?
Can Ψ in scattered state?

Bound or scattering state?

- If E > 0: scattering state
- If *E* < 0: bound state
- Convince yourself that these are true

Solving SE in Dirac delta potential

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} - \alpha\delta(x)\psi = E\psi$$

- The solution depends on whether E > 0 or E <
 0
- We will consider only the case with E < 0 in ZCT 205

Solving SE in Dirac delta potential

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} - \alpha\delta(x)\psi = E\psi$$

To solve the TISE for three different regions:

$$-\infty < \chi < 0$$
$$0 > \chi > \infty$$
$$\chi = 0$$

$X \neq 0$

$$\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi \equiv \kappa^2\psi$$

$$\kappa \equiv \sqrt{\frac{-2mE}{\hbar^2}}$$

 κ is real and positive (since E < 0 by assumption)

The general solution for the left of x=0 region $-\infty < x < 0$

$$\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi \equiv \kappa^2\psi$$
$$\psi(x) = Ae^{-\kappa x} + Be^{\kappa x}$$

A has to be set to zero so that $\psi(x)$ remains finite as $x \to -\infty$

$$\psi(x) = Be^{\kappa x}, \ x < 0$$

The general solution for the right of x=0 region $0 < x < \infty$

$$\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi \equiv \kappa^2\psi$$

$$\psi(x) = Fe^{-\kappa x}, \ x > 0$$

Solution at x=0

- The solution to the TISE must obey the following boundary conditions strictly:
 - 1. ψ is always continuous
 - 2. $\frac{d\psi}{dx}$ is continuous except at points where the potential is infinite
- BD1: solutions left to x=0 and right to x=0 have to match at x = 0:

Solution at x=0

1. ψ is always continuous solutions left to x=0 and right to x=0 have to matched at x = 0:

$$\lim_{x \to 0^{-}} \psi(x) = \lim_{x \to 0^{+}} \psi(x)$$

$$\psi(x = 0) = F = B$$

$$\psi(x) = \begin{cases} Be^{\kappa x}, & x \le 0 \\ Be^{-\kappa x}, & x \ge 0 \end{cases}$$

Normalisation

$$\psi(x) = \begin{cases} Be^{\kappa x}, & x \le 0 \\ Be^{-\kappa x}, & x \ge 0, \end{cases}$$

Normalisation gives the value of $B = \sqrt{\kappa}$

SHOW THIS

This is a bound state. Can you see why?

BD II, at the vicinity of x = 0, $-\varepsilon \le x \le \varepsilon$

2. $\frac{d\psi}{dx}$ is continuous except at points where the potential is infinite

This BD gives rise to energy quantisation

$$\lim_{\epsilon \to 0} -\frac{\hbar^2}{2m} \int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{dx^2} dx + \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} V(x) \psi(x) dx$$
$$= \lim_{\epsilon \to 0} E \int_{-\epsilon}^{+\epsilon} \psi(x) dx$$

The first term in the LHS

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{dx^2} dx$$

$$= \lim_{\epsilon \to 0} \left(\frac{d\psi(x)}{dx} \bigg|_{\epsilon} - \left. \frac{d\psi(x)}{dx} \right|_{-\epsilon} \right) \equiv \Delta$$

DO YOU SEE HOW TO GO FROM LINE 1 TO LINE 2?

NEED TO RECALL ZCA 110!

Show $\int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{dx^2} dx = \left(\frac{d\psi(x)}{dx} \bigg|_{\epsilon} - \left. \frac{d\psi(x)}{dx} \right|_{-\epsilon} \right)$

$$\int F(x)dx = [F(x)dx]_{-\epsilon}^{\epsilon} = [F(\epsilon) - F(-\epsilon)]dx$$

$$\int F(x) dx = \left(F(\epsilon) - F(-\epsilon)\right) dx$$
Now, let
$$F(x) = \frac{df(x)}{dx}$$

$$\int \left(\frac{df(x)}{dx}\right) dx = \left(\frac{df}{dx}(\epsilon) - \frac{df}{dx}(-\epsilon)\right) dx$$

By definition, the differential df(x) is

$$df(x) = \frac{df(x)}{dx} \cdot dx$$

Geometrical interpretation of differential, df(x)

$$df(x) = \lim f(x + \Delta x) - f(x) = \frac{df(x)}{dx} \cdot dx$$

$$\int \left(\frac{df(x)}{dx}\right) dx = \left(\frac{df}{dx}(\epsilon) - \frac{df}{dx}(-\epsilon)\right) dx = \left[df(x)\right]_{-\epsilon}^{\epsilon}$$
$$= f(\epsilon) - f(-\epsilon)$$

Now, let
$$f(x) = \frac{d\psi(x)}{dx}$$

$$\int \frac{d}{dx} \left(\frac{d\psi(x)}{dx} \right) dx = \frac{d\psi}{dx} (\epsilon) - \frac{d\psi}{dx} (-\epsilon)$$

$$\Delta = \left(\frac{d\psi(x)}{dx} \Big|_{\epsilon} - \frac{d\psi(x)}{dx} \Big|_{-\epsilon} \right)$$

The second term

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} V(x)\psi(x)dx$$

$$= \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} -\alpha \delta(x)\psi(x)dx = -\alpha \psi(0)$$

The last term

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} \psi(x) dx = 0$$

Putting everything together

$$\lim_{\epsilon \to 0} -\frac{\hbar^2}{2m} \int_{-\epsilon}^{+\epsilon} \frac{d^2 \psi}{dx^2} dx + \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} V(x) \psi(x) dx$$

$$= \lim_{\epsilon \to 0} E \int_{-\epsilon}^{+\epsilon} \psi(x) dx$$

$$-\frac{\hbar^2}{2m} \Delta + (-\alpha \psi(0)) = 0$$

$$\frac{\hbar^2}{2m} \Delta = \alpha \sqrt{\kappa}$$

Look closer at Δ

Quantisation of E shown, finally

$$\frac{\hbar^2}{2m}\Delta = \alpha\sqrt{\kappa}$$

$$\frac{\hbar^2}{2m}\Delta = -\frac{\hbar^2}{2m}\cdot -2\kappa^{3/2} = \alpha\sqrt{\kappa}$$

$$\kappa^2 = \frac{m^2}{\hbar^4} \alpha^2 = -2 \frac{mE}{\hbar^2} \qquad \kappa \equiv \sqrt{\frac{-2mE}{\hbar^2}}$$

$$E = -\frac{m\alpha^2}{2\hbar^2}$$

Only a single bounded state

No higher energy states like in the case of QHO or infinite quantum well

The Finite Square Well

$$V(x) = \begin{cases} -V_0, & \text{for } -a \le x \le a, \\ 0, & \text{for } |x| > a, \end{cases}$$

 V_0 is a positive constant

Bound state solution, $-V_0 < F < 0$

Three regions: $x \leq -a, -a < x < a, x \geq a$

$$x < -a$$

$$-a < x < a$$

$$x \ge a$$

$$\frac{d^2\psi}{dx^2} = \kappa^2\psi$$

$$\frac{d^2\psi}{dx^2} = -l^2\psi$$

$$\frac{d^2\psi}{dx^2} = \kappa^2\psi$$

$$\kappa = \sqrt{-\frac{2mE}{\hbar^2}}$$

$$l = \sqrt{\frac{2m(E+V_0)}{\hbar^2}}.$$

$$\kappa = \sqrt{-\frac{2mE}{\hbar^2}}$$

Bound state solutions

$$x < -a$$

$$\frac{d^2\psi}{dx^2} = \kappa^2\psi$$

$$\psi(x) = A \exp(-\kappa x) + B \exp(\kappa x)$$

$$A = 0$$

$$\psi(x) = B \exp(\kappa x)$$

$$-a < x < a$$

$$\frac{d^2\psi}{dx^2} = -l^2\psi$$

$$\psi(x) = F \exp(-\kappa x) - G \exp(\kappa x)$$

$$\psi(x) = F \exp(-\kappa x)$$

$$\psi(x) = F \exp(-\kappa x)$$

$$\psi(x) = C\sin(lx) + D\cos(lx)$$

Symmetric potential

- Since the potential is even, V(x) = V(-x),
- the solutions must be either even or odd

$$\psi(x) = \psi(-x) \qquad \psi(x) = -\psi(-x)$$

To prove this statement, first we have to show that $\Psi(-x)$ is a solution to the TISE if V(-x) = V(-x) with energy E

To show $\Psi(-x)$ is a solution to the TISE with energy E, the following must be true:

$$-\frac{\hbar}{2m}\frac{d^{2}}{dx^{2}}(ANYTHING)+V(x)(ANYTHING)=E\cdot(ANYTHING);$$
 where $ANYTHING\equiv\psi(-x)$

$$-\frac{\hbar}{2m}\frac{d^2}{dx^2}(ANYTHING) + V(x)(ANYTHING) = E \cdot (ANYTHING);$$

$$where ANYTHING \equiv \psi(-x)$$
EQ. (1)

To prove EQ. (1), begin from an TISE

$$-\frac{\hbar}{2\mathrm{m}} \frac{d^2}{dx^2} \psi(x) + V(x) \psi(x) = E\psi(x)$$

$$\downarrow x \rightarrow x' = -x$$

$$\frac{d}{dx} = \frac{dx'}{dx} \frac{d}{dx'} = (-1) \frac{d}{dx'}$$

$$\frac{d^2}{dx'^2} = \dots = (-1)^2 \frac{d^2}{dx'^2} = \frac{d^2}{dx'^2}$$

$$-\frac{\hbar}{2\mathrm{m}} \frac{d^2}{dx'^2} \psi(x') + V(x') \psi(x') = E\psi(x')$$

$$-\frac{\hbar}{2\mathrm{m}} \frac{d^2}{dx^2} \psi(-x) + V(-x) \psi(-x) = E\psi(-x)$$
Since $V(-x) \rightarrow V(x)$

$$-\frac{\hbar}{2\mathrm{m}} \frac{d^2}{dx^2} \psi(-x) + V(x) \psi(-x) = E\psi(-x)$$

EQ. (1) is hence proven, and we says $\Psi(-x)$ is a solution to the TISE with energy E

Both $\Psi(x)$ and $\Psi(-x)$ are solutions to the TISE with energy E, hence so is the linear combination

$$\psi_{\pm}(\mathbf{x}) = \psi(\mathbf{x}) \pm \psi(-\mathbf{x})$$

$$\psi_+(x) = \psi(x) + \psi(-x) \qquad \text{is an even solution}$$

$$\psi_+(-x) = \psi(-x) + \psi(x) = \psi_+(x)$$

$$\psi_{-}(x) = \psi(x) - \psi(-x)$$
 is an odd solution

$$\boldsymbol{\psi}_{-}(-\boldsymbol{x}) = \boldsymbol{\psi}(-\boldsymbol{x}) - \boldsymbol{\psi}(\boldsymbol{x}) = -(\boldsymbol{\psi}(\boldsymbol{x}) - \boldsymbol{\psi}(-\boldsymbol{x})) = -\boldsymbol{\psi}_{-}(\boldsymbol{x})$$

Conclusion: If V(x) = V(-x), the solutions to the TISE are made up of odd and even ones, $\psi_+(x)$, $\psi_-(x)$

Assume the solution is of even parity

$$\psi(x) = \begin{cases} Fe^{-\kappa x}, & \text{for } x \le -a, \\ D\cos(lx), & \text{for } -a < x < +a, \\ \psi(-x), & \text{for } x \ge a \end{cases}$$

(1) $\psi(x)$ continuous; (2) $\frac{d\psi}{dx}$ continuous

at the point x = a:

BD (1): $Fe^{-\kappa a} = D\cos la$

BD (2): $-\kappa F e^{-\kappa a} = -lD \sin la$

$$Fe^{-\kappa a} = D\cos la$$

$$-\kappa Fe^{-\kappa a} = -lD\sin la$$

$$\kappa = l\tan(la)$$

$$Show this \qquad \text{Let } z \equiv la \text{ and } z_0 \equiv \frac{a}{\hbar}\sqrt{2mV_0}$$

$$\tan z = \sqrt{(z_0/z)^2 - 1}$$

 z_0 a dimensionless parameter that describes how deep is the well

Graphical solution to $\tan z = \sqrt{(z_0/z)^2 - 1}$, for $z_0 = 8$ (even states)

Quantisation of energy

 z_n values of z for the intersections in the curves z_n are to be obtained numerically.

Only three solutions exist. This means only three quantised energies exists for the potential value with z_0 =8.

Three allowed energy levels in a well with finite depth z_0 =8

$$E_n = \frac{z_n^2 \hbar^2}{2 ma^2} - V_0$$

 E_3 E_2 E_1

$$V_0 = z_0^2 \frac{\hbar^2}{2 ma^2}$$

Solution to tan
$$z = \sqrt{\left(\frac{z_0}{z}\right)^2 - 1}$$
 for $V_0 = 500, 50, 5$ unit.

Note that as $V_0 \to \infty$, there is only one solution left. It is located in the range of $0 < z < \pi/2$. For small z, the roots tend to occur near to the values of $n\pi/2$.

$$z_n \approx \frac{n\pi}{2}$$
{Red: $V_0 = 500$; Blue: $V_0 = 50$; Green: $V_0 = 1$ }

Limiting expressions for E_{n} , Z_{n}

$$z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0}$$
 $\tan z = \sqrt{(z_0/z)^2 - 1}$

For wide, deep well, $z_0 \gg 1$

$$z_n \approx \frac{n\pi}{2} ~~ E_n \approx \frac{n^2\pi^2\hbar^2}{2m(2a)^2} - V_0$$
 (for low odd n)

For shallow, narrow well, z_0 is tiny

$$z \approx \epsilon$$
 $E = rac{\hbar^2 \epsilon^2}{2ma^2} - V_0$ show this

Odd parity solution

 We have shown the solutions and allowed energies for even parity case.

$$\psi(x) = \begin{cases} Fe^{-\kappa x}, & \text{for } x \le -a, \\ D\cos(lx), & \text{for } -a < x < +a, \\ \psi(-x), & \text{for } x \ge a \end{cases}$$

$$E_n = z_n^2 \frac{\hbar^2}{2ma^2} - V_0$$

 But don't forget there is still the odd parity solutions.

$$\psi(x) = \begin{cases} Fe^{-\kappa x}, & \text{for } x \le -a, \\ C\sin(lx), & \text{for } -a < x < +a, \\ \psi(-x), & \text{for } x \ge a. \end{cases}$$

Energy for the odd parity solution

- What is the allowed energies for the odd parity solution, $E_n = ?$
- To do so, simply repeat the steps using Csin(Ix) instead of D cos (Ix)

Scattering state solutions

- *E* > 0
- Consider a particle incident upon the potential from the left, and there is no particle incident or reflected from the right.

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$

$$k = \sqrt{\frac{2mE}{\hbar^2}} \text{ real and positive}$$

$$\psi(x) = Ae^{ikx} + Be^{-ikx}$$

For
$$-a < x < a$$

$$\frac{d^2\psi}{dx^2} = -l^2\psi$$

$$l=\sqrt{rac{2m}{\hbar^2}}(E+V_0)$$
 real and positive

$$\psi(x) = C\sin(lx) + D\cos(lx)$$

For $x \geq a$

$$\psi(x) = Fe^{ikx} + Ge^{-ikx}$$
 No reflected wave from the far right
$$\psi(x) = Fe^{ikx}, \ \ x \geq a.$$

Compactly

Traveling wave

$$\psi(x) = Ae^{ikx} + Be^{-ikx}$$

For
$$x \leq -a$$
,

standing wave

$$\psi(x) = C\sin(lx) + D\cos(lx)$$
 For $-a < x < a$

For
$$-a < x < a$$

Traveling wave

$$\psi(x) = Fe^{ikx}, \ x \ge a.$$

For
$$x > a$$

$$l = \sqrt{\frac{2m}{\hbar^2}(E + V_0)} \qquad \qquad k = \sqrt{\frac{2mE}{\hbar^2}}$$

Can you tell whether the wavelength in the well is larger or smaller than outside the well?

Imposing BC at x = -a

(BC) #1 at
$$x = -a$$

$$\psi(x) \text{ continuous at } x = -a$$

$$Ae^{-ika} + Be^{ika} = C\sin(-la) + D\cos(-la)$$

$$= -C\sin(la) + D\cos(la)$$
boundary condition (BC) #2 at $x = -a$

$$\frac{d\psi}{dx} \text{ continuous at } x = -a$$

$$ik \left[Ae^{-ika} - Be^{ika} \right] = l \left[C\cos(la) + D\sin(la) \right]$$

Imposing BC at x = a

boundary condition (BC) #1 at x = a $Fe^{ika} = C\sin(la) + D\cos(la)$

boundary condition (BC) #2 at x = a

 $ikFe^{ika} = l \left[C\cos(la) - D\sin(la) \right]$

Tidying up

$$Ae^{-ika} + Be^{ika} = -C\sin(la) + D\cos(la)$$

$$ik \left[Ae^{-ika} - Be^{ika} \right] = l \left[C\cos(la) + D\sin(la) \right]$$

$$Fe^{ika} = C\sin(la) + D\cos(la)$$

$$ikFe^{ika} = l \left[C\cos(la) - D\sin(la) \right]$$

• The BC results in a total of 4 algebraic equations with 5 unknowns (A, B, C, D, F).

A as an independent unknown

express B, C, D, F in terms of A

$$B = i \frac{\sin(2la)}{2kl} (l^2 - k^2) F$$

$$F = \frac{e^{-2ika}A}{\cos(2la) - i\frac{(k^2 + l^2)}{2kl}\sin(2la)}$$

Exercise: Derive this

Reflection coefficient

$$R = \frac{\left|B\right|^2}{\left|A\right|^2}$$

The fraction of the incoming number (from the left) that will bounce back.

• Of relevance only in region x < -a.

Transmission coefficient

$$T = \frac{\left|F\right|^2}{\left|A\right|^2}$$

How much of the incident number has transmitted through the potential to come out to the other side.

To conserve probability, T + R = 1

Transmission coefficient

$$T^{-1} = 1 + \frac{V_0^2}{4E(E+V_0)} \sin^2\left(\frac{2a}{\hbar}\sqrt{2m(E+V_0)}\right)$$

Exercise: Show this.

Hint: use these relations

$$T = \frac{|F|^2}{|A|^2} \qquad R = \frac{|B|^2}{|A|^2} \qquad T + R = 1.$$

$$E = \frac{e^{-2ika}A}{\cos(2la) - i\frac{(k^2 + l^2)}{2kl}\sin(2la)}$$

"Transparent potential"

• If
$$\frac{2a}{\hbar}\sqrt{2m(E+V_0)}=n\pi$$
 so that
$$T^{-1}=1+\frac{V_0^2}{4E(E+V_0)}\sin^2\left(\frac{2a}{\hbar}\sqrt{2m(E+V_0)}\right)$$

- T = 1
- No reflection, R = 0.

$$E_n = n^2 \frac{\pi^2 \hbar^2}{2m(2a)^2} - V_0.$$

This is exactly the same set of discrete energies as that of an infinite square well.

Ramsauer-Townsend effect

Tutorial 2.2

Q1

Solution to the Dirac potential is given by

$$\psi(x) = \begin{cases} Be^{\kappa x}, & x \le 0 \\ Be^{-\kappa x}, & x \ge 0, \end{cases}$$

Normalisation gives the value of $B = \sqrt{\kappa}$ show this

Q2

$$\kappa = l \tan(la)$$

$$Show this \mid \text{Let } z \equiv la \text{ and } z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0}$$

$$\tan z = \sqrt{(z_0/z)^2 - 1}$$

Q3

Given the four algebraic equations

$$Ae^{-ika} + Be^{ika} = -C\sin(la) + D\cos(la)$$

$$ik \left[Ae^{-ika} - Be^{ika}\right] = l \left[C\cos(la) + D\sin(la)\right]$$

$$Fe^{ika} = C\sin(la) + D\cos(la)$$

$$ikFe^{ika} = l \left[C\cos(la) - D\sin(la)\right]$$
Show

Show

$$B = i \frac{\sin(2la)}{2kl} (l^2 - k^2) F$$

$$F = \frac{e^{-2ika} A}{\cos(2la) - i \frac{(k^2 + l^2)}{2kl} \sin(2la)}$$

Given

$$R = \frac{|B|^2}{|A|^2}$$
 $T = \frac{|F|^2}{|A|^2}$ $T + R = 1$

$$B = i \frac{\sin(2la)}{2kl} (l^2 - k^2) F$$

$$F = \frac{e^{-2ika} A}{\cos(2la) - i \frac{(k^2 + l^2)}{2kl} \sin(2la)}$$

Show

$$T^{-1} = 1 + \frac{V_0^2}{4E(E+V_0)} \sin^2\left(\frac{2a}{\hbar}\sqrt{2m(E+V_0)}\right)$$

TUTORIAL QUESTION

*Problem 2.34 Consider the "step" potential:

$$V(x) = \begin{cases} 0, & \text{if } x \le 0, \\ V_0, & \text{if } x > 0. \end{cases}$$

- (a) Calculate the reflection coefficient, for the case $E < V_0$, and comment on the answer.
- (b) Calculate the reflection coefficient for the case $E > V_0$.
- (c) For a potential such as this, which does not go back to zero to the right of the barrier, the transmission coefficient is *not* simply $|F|^2/|A|^2$ (with A the

FIGURE 2.20: Scattering from a "cliff" (Problem 2.35).

incident amplitude and F the transmitted amplitude), because the transmitted wave travels at a different *speed*. Show that

$$T = \sqrt{\frac{E - V_0}{E}} \, \frac{|F|^2}{|A|^2},\tag{2.172}$$

for $E > V_0$. Hint: You can figure it out using Equation 2.98, or—more elegantly, but less informatively—from the probability current (Problem 2.19). What is T, for $E < V_0$?

(d) For $E > V_0$, calculate the transmission coefficient for the step potential, and check that T + R = 1.