
  

Chapter 2

Time-independent Schroedinger Equation



  

To solving TDSE, first solve TISE

 Assume V=V(x) only so that we can use 
separation of variables method



  

Separation of variables

                  

Φ, φ are pronounced 
as /ˈfaɪ/



  

Separation of variables

                  

Exercise: Show this.

= E



  

TISE

                  

The main tasks in ZCT 205 is to learn how to solve 
this equation for different types of V(x).



  

Stationary states

                  
For a particle in a stationary state, every expectation value is 
constant in time. So is its probability density function. 

Solutions to the TDSE in the form of 

are said to be “stationary states”.



  

Why is t drops out in stationary 
states?

                  

t drops out from                    and                     for stationary 
states because these states take on the particular 
separable form



  

Stationary state is a solution to 
TDSE, but the inverse is not 

necessarily so

                  

Note: It is possible for the solutions to TDSE to take a 
form other than 

For example, 
is also a solution. But this solution is not a stationary 
state.
 
A stationary state is a solution to TDSE; but a solution 
to TDSE is not necessarily a stationary state.



  

Hamiltonian

 The operator for total energy (an observable) 
is Hamiltonian

 The expectation value for total energy 



  

Time independent SE in terms of 
Hamiltonian

Note: E is the separable constant 
introduced during the separation of 
variables procedure



  

Expectation value of H

The separable constant E actually is the 
expected total energy.

By definition, the expectation value of H is 
the expected total energy



  

Variance of H

No 'spread' in the measured value of total 
energy for a particle in stationary state.

Measurements of the total energy is certain 
to return the same value E.



  

 Stationary states are states of 
definite total energy.

 So, we say,

Contrast this to other observables, such as 
p, x, where the variances in general are 
non-zero. 

In the case of e.g., p, stationary states are 
not states of definite momentum.



  

TISE has infinite many separable 
solutions, each with a different 

constant, E
i

are known as “the allowed energies” 
(separable constants)

The solutions in the form
  
are sometimes referred to as the “eigenstates” or eigensolutions, 
and E

n
 “eigenenergies”

ψn ( x ) e
−
iE
n
t

ℏ



  

Linear combination of the 
separable solutions 

(eigensolutions) is also a solution

This is known as “the total solution”, the most general form 
of solution to the TISE.



  

Show that the total solution is a 
solution to the TDSE

A solution to 



  

To completely solve the TISE

 Amounts to finding the coefficients c
n
 in that 

match the initial condition, usually in the form 
of an initial spatial profile of the wave function, 

  Ψ ( x,t=0 )=f (x )



  

Procedures

 1. Solve the TISE for the complete set of 
stationary states

  



  

Procedures

 2. Find the general solution at t = 0, i.e., 

 by finding the coefficients c
n
 that fit the initial 

and boundary conditions.

  f ( x ) “initial profile”



  

Procedures



  

Example:
Non-stationary states



  

Solution

is time-dependent



  

Comment 1
 The state

 is not a stationary state (why is this so?)

The state Ψ(x, t), also a solution to the 
TDSE, is formed by a linear combination of 
two TISE solutions ψ

1
 , ψ

2
 with weights c

1 

and c
2
. 

Although ψ
1
 and ψ

2
 are stationary states by 

themselves, the linear combination of them 
is not.



  

 The state is a “mixed” state.
 It oscillates between the two states  

 at an angular frequency ω=
ΔE
ℏ

=
∣E2−E1∣

ℏ

E
2

E
1

ΔE

and

Comment 2



  

Another mathematical property of 
TISE



  

Proof

d2Ψ
dx 2

>0∀ x,

d2Ψ
dx 2

>0∀ x,

Concave upwards

Concave downwards



  

Proof

 If E < V
min
, 

d2ψ ( x )

dx2
=

−2m
ℏ

[E−V ( x ) ]ψ ( x )

d2ψ ( x )

dx2
=+k2ψ ( x ) ,wherek2 somepositiverealvalue

Case I: ψ(x) > 0

Case II: ψ(x) < 0

Concave upwards

Concave downwards



  

Proof
d2ψ ( x )

dx2
=+k2ψ ( x ) ,wherek2 somepositiverealvalue

ψ(x)

x

x

x

x

In all possible cases, ψ(x) will shoot to positive or 
negative infinity as x increase ⇒ ψ(x) would not be 
normalised

ψ(x)

ψ(x) ψ(x)



  

Infinite square well
d2ψ ( x )

dx2
=

−2m
ℏ

[E−V ( x ) ]ψ ( x )



  

Solution

 ψ(x) outside the infinite well is zero.

or



  

WHY ?

Do you know how to show this?

Use Euler relation

k is real and positive



  

WHY ?

Do you know how to show this?

Use Euler relation

k is real and positive



  

The arbitrary constants A, B are fixed by the boundary 
conditions of the problem.



  

The constant k is quantised due to 
the boundary condition



  

The allowed energies



  

Normalisation

 The TISE has an infinite set of solutions (one for each positive integer n).



  

1. ψn are alternately even and 
odd, with respect to the center of 
the well (i.e., x = a/2).

2. As n increases, each 
successive states has one more 
node. 

n=1, even

n=3, even

n=2, odd



  

The TISE solutions are mutually 
orthogonal

This is a very important properties used repeatedly in many 
subsequent calculations



  

The TISE solutions are complete
Any other function f(x) can be expressed as linear combination of 
{ψ

n
(x}:

This is analogous to the three Cartesian unit vectors { x̂ , ŷ , ẑ }
for which any vector can be expressed as linear combination 
of them

r⃗= x x̂+ y ŷ+z ẑ



  

Fourier’s trick 

Given any function f(x) expressed in the 
form of the linear combination 

The coefficients c
n
 can be projected out 

via



  

Proof 

This can be simply proven by making use of the orthogonality of 
the TISE solutions



  

The stationary states of the particle 
in the infinite quantum well

 The stationary states associated with the TISE 
solution are

With eigenenergies



  

The most general solution

 The most general solution to the TDSE is a 
linear combination of stationary states:

 Check that indeed Ψ(x, t) is a solution to the TDSE.



  

The coefficients c
n

c
n 
in Ψ(x, t) can be obtained if the initial condition 

(“initial profile”)  is given (in the form of a specific 
form Ψ(x, t=0) = f(x)



  

Example

Ψ ( x,t )Find



  

Normalisation



  

The coefficients c
n

f(x) here plays the role of the initial profile

f ( x )≡Ψ ( x,0 )=Aa (a− x )



  

Coefficient c
n



  

Final answer

cn=



  

Interpretation of c
n

 Every time you measure the observable 
energy of a quantum particle in state Ψ, you 
will obtain a discrete number E

n
. |c

n
|2 is the 

probability of getting the particular value E
n
 

when you make a measurement.



  

Normalisation of c
n
 

 The probability when summed over all allowed 
states n must be normalised:



  

Proof of normalisation of c
n
 

 Use 

and 

to prove



  

|c
n
|2 vs. n

Comment: only the first c
n
 (n=1) contribute significantly; the other 

n's (n=3,5,7,...) contribution is almost negligible.

n odd integer



  

Expectation value of the energy 

This can be proven via

(3)

 Note that the expectation value of energy is a constant. This is a 
manifestation of conservation of energy in QM.



  

Expectation value of the energy 

cn=

Use Murray Spiegel or revisit your ZCA  110 for the series sum



  

Online resource

 Murray Spiegel, Mathematical Handbook of 
Formulas and Tables (Schaum's outline 
series)

 https://archive.org/details/MathematicalHandbookOfFormulasAndTables

https://archive.org/details/MathematicalHandbookOfFormulasAndTables


  

Check your common sense



  

The harmonic oscillator

V ( x )=

A generic potential can be approximated by a harmonic 
potential in the neighborhood of a local minimum (x = x

0
)



  

 TISE for a 1D harmonic oscillator

Change variable from x to ξ (ξ is pronounced as          
“/ˈzaɪ/, /ˈksaɪ/”. I prefer to pronounce it “cacing”)



  

Solving 

 Strategy: 
 First solve it in the  ξ → ∞ limit.
 Then use the info of the solution in this limit to 

solve the more general case of intermediate  ξ .

ξ → ∞



  

Dropping the B coefficient

Prove this

What is B? 

The B term blows up as |ξ| → ∞, hence has to be dropped in order to 
preserve normalisability.

As such,



  

 In the intermediate range of ξ

where  the (yet unknown) functions h(ξ) behave in such a way that 



  

Recast the TISE

Show this



  

Solving 

 Power series method

What we really want are the values of the coefficients a
j
 for all j.



  

Solving 

Differentiating h(ξ) with respect to ξ once and twice, then substitute 
the results back into 

Show this

The coefficients to ξ
j
 must be zero for every j

Non-zero, because the are the solution (wave function) 
we are after



  

Recursion formula
Setting 

= 0

The recursion formula allows us to obtain all a
j
 based on two 

“seed” coefficients (unknown at this stage), a
0
 and a

1
.



  

Example:

j=1:a3=
(2⋅1+1−K )

(1+1 ) (1+2 )
a1=

(3−K )

6
a1

j=2:a4=
(2⋅4+1−K )

(2+1 ) (2+2 )
a2=

(5−K )

12
a2=

(5−K )

12
(1−K )

2
a0

j=0:a2=
(2⋅0+1−K )

( 0+1 ) (0+2 )
a0=

(1−K )

2
a0

j=3:a5=
(2⋅5+1−K )

(3+1 ) (3+2 )
a2=

(11−K )

20
a3=

(11−K )

20
(3−K )

6
a1

a
even

 is in terms of a
0

a
odd

 is in terms of a
1

Recursion formula



  

The solution h(ξ) as sum of two 
parts with definite parity

Odd and even solutions. 
Looks familiar?



  

Explicitly

=( a0 ξ
0+a2 ξ

2+a4 ξ
4+. ..)+ (a1ξ

1+a3ξ
3+a5 ξ

5+.. .)



  

Constraint
Constraint has to be imposed on 

so that                                       does not blow up in the ξ → ∞ 
limit

How to design such a constraint?



  

Introducing the non-negative integer 
n

K = 2n + 1

then, for any j ≥ n

a2+n=
(2n+1 )−K
(n+ 1 ) (n+2 )

an=0

If there exist a non-negative integer n such that 

Note: a
2+n

=0 but not a
n

Introduce a non-negative integer n to truncate the series

beyond the n-term.



  

In other words, if K = 2n + 1, then ...

 For any given odd n,

 a
m 
= 0 for all odd m, m > n

 Example: If n=3, 

 a
n
 even terms are not affected by K = 2n + 1 if 

n is odd.

a1 ,a3⏟
0

; a5 ,a7 ,a9 ,. ..⏟
=0



  

In other words, if K = 2n + 1, then ...

 For a given even n,

 a
k 
= 0 for all even k, k > n

 Example: If n = 4,

 a
n
 odd terms are not affected by K = 2n + 1 if n 

is even.

a0 ,a2,a4⏟
0

; a6 ,a8 ,a10 , .. .⏟
=0



  

Further condition to be imposed “by 
hand”

 As an independent consideration, we have to 
impose another condition by hand on a

j 
to 

make           well behaved in the limit              :

a
0
 = 0 if n is odd (hence, all even a

j
 = 0)

a
1
 = 0 if n is even (hence, all odd a

j
 = 0)

ψ (ξ ) ξ→∞



  

K = 2n + 1 
a

0
 = 0 if n is odd (hence, all even a

j
 = 0)

a
1
 = 0 if n is even (hence, all odd a

j
 = 0)

Numerical illustration

n K = 
2n+
1

Odd a
j

Even a
j

0 1 0 a
0
≠0;

a
2
=a

4
=a

6
=...=0

1 3 a
1
≠0;

a
3
=a

5
=a

7
=...=0

0

2 5 0 a
0
≠0;a

2
=2a

0
a

4
=a

6
=...=0

3 7 a
1
≠0;a

3
=a

1
/3;

a
5
=a

7
=...=0

0

4 9 0 a
0
≠0;a

2
=2a

0
;

a
4
=-a

2
/3; a

6
=a

8
=...=0

5 11 a
1
≠0;a

3
=a

1
/3;

a
5
=a

3
/5;a

7
=a

9
=...=0 0

a0

hn (ξ )

a1ξ

a0+a2ξ
2

a1ξ+a3ξ
3

a0+a2ξ
2+a4ξ

4

a1ξ+a3ξ
3+a5 ξ

5



  

The values of a
0
  or a

1 
are not 

important; only the relatives values 
of  a

j
 are

 The absolute values of a
0
  or a

1
  are not 

important. 

 Only the relative values of a
j
 with respect to a

0
  

or a
1
  are.



  

Normalisation

ψn (ξ )=e−ξ
2/ 2hn (ξ )

∫∣ψn (ξ )∣2dx=1

We can normalise the solution 
for a particular n via 

This in turn will fix the value of a
0 
(in the case n is even) 

or a
1 
(in the case n is odd) for that particular n value.

ψn (ξ )



  

Some examples of the solutions Ψn

 Ψn for the first few odd and even integers 
are shown in the next two slides.

ψn (ξ )=e−ξ
2/ 2hn (ξ )



  

ψn (ξ )=e−ξ
2/ 2hn (ξ )Even n



  

ψn (ξ )=e−ξ
2/ 2hn (ξ )Odd n



  

Checking whether ψ is well behaved 
in the limit ξ →∞

ψn (ξ )=e−ξ
2/ 2hn (ξ )

Using Mathematica code, we verify that, 

indeed converges to zero at the limit |ξ| 
→∞



  



  

Quantisation of energy

 K = 2n + 1;
 K = 2E/(♄ω)
 E=( n + 1/2)♄ω



  

Mathematica code for QHO

The code, download-able from 

www2.fizizk.usm.my/tlyoon/teaching/ZCT205_13
14/QHO.nb

shows you how to generate the QHO solution 
using Mathematica



  

 Numerically, if E assume a value other that 
allowed, (say E = 0.49 ♄ω or 0.51 ♄ω), the 
solution ψ(ξ) will blow beyond the the furthest 
nodes. 

 See also QHO.nb



  

Exercise

 Assume n is 1, write down h(ξ), hence the 
stationary wave function, ψ

1
 (x).

 Assume n is 2, write down h(ξ), hence the 
stationary wave function, ψ

2
 (x).



  

Hermite polynomial, H
n
(ξ)



  

Rodrigues formula

Recursion relation



  

Exercise

 Derive H
1
, H

2
, H

3
 from the Rodrigues formula.

 Derive H
3
, H

4
 from H

1
, H

2
 using the recursion 

relation. 

 As a check, the function H
3
 derived using both 

methods must agree.



  

Features of the QM solutions for the 
harmonic oscillator I

Quantum Tunelling effect

The particle has non zero probability to be 
found in classically forbidden regions, where 
E < V



  

Features of the QM solutions for the 
harmonic oscillator II



  

Features of the QM solutions for the 
harmonic oscillator III: 

Correspondence principle
3. As n → ∞, |ψ

n
(x)|2 behaves much like what is expected of a classical 

harmonic oscillator.
The correspondence principle: in the n → ∞ limit, results of a quantum 
calculation must reduce to that of classical calculation.



  

Free particle

Equivalent to setting a → ∞  in infinite quantum well



  

The time-independent solution

But no boundary condition (as in the case of infinite 
quantum well).

Hence, E is not quantised (so is k).

This is an essential difference between a 'confined' system 
and a free particle.



  

Compactly,

The time-dependent “stationary” 
solution is a traveling plane wave



  

Normalisation of the traveling wave 
“stationary” solution

Disturbing !!!
A stationary state is one which has a definite energy. 
But since the state        can't be normalised, there is nothing 
such as a free particle with a definite energy. 

SHOW THIS! IT”S EASY



  

Total solution to the TDSE

 To properly interpret  

 we must look at the total solution instead of 
just the individual stationary solution per se.

Compare this with as in the case of quantised E
n 
(confined system)



  

Comparison

Quantised system Free particle

1 A new factor introduced 
introduced for the sake of later 
convenience (so that it is 
consistent with the definition of 
Fourier  transformation)

E
n
, k

n 
(discrete) E, k (continuous)

Normalisable Normalisable



  

A free particle must be represented 
as a wave packet 

(so that it remains normalisable)
 A free particle cannot be in a “stationary state”  

                                  as it is not normalisable. 
 But 

is normalisable.
 Hence, a free particle must be represented as 

a wave packet in the form of 
 Note that              has a large spread of wave 

number k (hence a large spread in energy E).



  

Plancherel’s theorem



  

Finding

A classic Fourier transformation problem

Ψ ( x,0 )=
1

√2π
∫ϕ ( k ) e ikxdk

t = 0



  

Example

This amounts to finding 



  

Normalisation



  

as



  



  

Description in x-space vs. 
Description in k-space

vs

describes



  

In the a << 1 limit at t = 0

Well localised 
in  position 
space

Large spread in  
momentum space



  

In the a >> 1 limit at t = 0

Well localised 
in momentum  
space

Large spread in  
position space

x

position

momentum



  

When time evolution is switched on
www2.fizik.usm.my/tlyoon/teaching/ZCT205_1314/freeparticle.nb



  

In position space

Position not well defined, 
large spread in xPosition well defined



  

In momentum space

Wavelength 
better defined

Wavelength not well 
defined (large spread in k)



  

σ x σk≥ℏ/2π



  

Continuous vs. discrete energy 
solutions

 Two di erent kind of TISE solutions ff ψ(x) 
(stationary states):

1. ψ
n
(x), renormalisable, labeled by a discrete 

index n (QHO, infinite well.)

2. ψ
k
(x), non-renormalisable, labeled by 

continuous variable k, as in the free particle.



  

What's the difference?

 What is the difference between a discretely 
indexed ψ

n
(x) and a continuously indexed 

ψ
k
(x)?

 ψ
n
(x): bound states

 ψ
k
(x): scattering states



  

In CLASSICAL mechanics, a particle can only exist in a region where    
E > V

In classical mechanics
Classical 
bound state

Classical 
bound state

Classical scattering 
state

Classical scattering 
state



  

In quantum mechanics

A quantum scattering state

In QUANTUM mechanics, a particle can exist in a region where E > V, 
because |Ψ(x,t)|2 could be non-zero in such a classically forbidden 
region.



  

Features of the QM solutions for the 
harmonic oscillator I

Quantum Tunelling effect

The particle has non zero probability to be 
found in classically forbidden regions, where 
E < V



  

Classifying bound or scattering 
states in QM

QHO is a bound state
Infinite quantum well is a bound state
Free particle is a scattering state

Use the criteria to determine which state Ψ is in a 
given potential



  

Finite quantum well

Ψn a bound state if -V
0
 < E < 0

Ψ a scattered state if E > 0

What state Ψ is if E < -V
0
?



  

Step potential

Ψ a scattered state for all allowed E.

Can you tell why?

What state Ψ is if E < -V
0
?



  

Dirac Delta function, δ(x)

x = 0



  

x = a

δ(x-a)



  

Dirac delta potential

Can Ψ in a bound state?

Can Ψ in scattered state?



  

Bound or scattering state?

 If E > 0:  scattering state
 If E < 0:  bound state
 Convince yourself that these are true



  

Solving SE in Dirac delta potential

 The solution depends on whether E > 0 or E < 
0

 We will consider only the case with E < 0 in 
ZCT 205



  

Solving SE in Dirac delta potential

To solve the TISE for three different regions:
   

−∞<x<0
0>x>∞
x=0



  

X ≠ 0



  

The general solution for the left of 
x=0 region−∞<x<0



  

The general solution for the right of 
x=0 region 0<x<∞



  

Solution at x=0

 The solution to the TISE must obey the 
following boundary conditions strictly:

 BD1: solutions left to x=0 and right to x=0 
have to match at x = 0:



  

Solution at x=0

solutions left to x=0 and right to x=0 have to 
matched at x = 0:



  

Normalisation

SHOW THIS



  

This is a bound state. Can you 
see why?



  

BD II, at the vicinity of x = 0,
 -ε≤ x ≤ε

This BD gives rise to energy quantisation



  

The first term in the LHS

DO YOU SEE HOW TO GO FROM LINE 1 TO LINE 2? 

NEED TO RECALL ZCA 110 !



  x=0

x

F(x)

∫F ( x )dx= [F ( x )dx ]−ϵ
ϵ

=( F (ϵ )−F (−ϵ ) )dx

x=-ε x=ε

= Show



  

∫F ( x )dx= (F (ϵ )−F (−ϵ ) )dx

Now, let F ( x )=
df ( x )

dx

∫( df ( x )

dx )dx=( dfdx (ϵ )−
df
dx

(−ϵ ))dx
By definition, the differential df(x) is 

df ( x )=
df ( x )

dx
⋅dx



  

x=0

x

f(x)

x

f(x)

f(x+Δx)

x+Δx

df(x)

y=f(x)

df ( x )= lim f ( x+Δx )− f ( x )=
df ( x )

dx
⋅dx

Geometrical interpretation of 
differential, df(x)



  

∫( df ( x )

dx )dx=( dfdx (ϵ )−
df
dx

(−ϵ ))dx= [df ( x ) ]−ϵ
ϵ

=f (ϵ )− f (−ϵ )

Now, let f ( x )=
dψ ( x )

dx

∫
d
dx ( dψ ( x )

dx )dx= dψdx (ϵ )−
dψ
dx

(−ϵ )



  

The second term

The last term



  

Putting everything together

- + (−αψ(0)) = 0



  

Look closer at Δ

x=−ϵ
x= 0

x=ϵ
x→0+x→0−

-
=−2κ3 /2



  

Quantisation of E shown, finally

.

Only a single bounded state
No higher energy states like in 
the case of QHO or infinite 
quantum well

−2κ3 /2



  

The Finite Square Well



  

Bound state solution,
-    < E < 0



  

Bound state solutions

A = 0
G = 0

ψ ( x )=Fexp (−κx )−Gexp (κx )



  

Symmetric potential

 Since the potential is even, V(x) = V(-x),
 the solutions must be either even or odd

To prove this statement, first we have to show that Ψ(-x)  is a 
solution to the TISE if V(-x) = V(-x) with energy E

To show Ψ(-x)  is a solution to the TISE with energy E, the 
following must be true:

−
ℏ

2m
d2

dx 2
(ANYTHING )+V ( x ) ( ANYTHING )=E⋅( ANYTHING ) ;

whereANYTHING≡ψ (−x )



  

 To prove EQ. (1), begin from an TISE

−
ℏ

2m
d2

dx 2
(ANYTHING )+V ( x ) ( ANYTHING )=E⋅( ANYTHING ) ;

whereANYTHING≡ψ (−x ) EQ. (1)

−
ℏ

2m
d2

dx 2
ψ ( x )+V (x )ψ ( x )=Eψ ( x )

x → x'=-x

−
ℏ

2m
d 2

dx'2
ψ ( x' )+V ( x' )ψ ( x' )=Eψ ( x' )

−
ℏ

2m
d2

dx 2
ψ (−x )+V (−x )ψ (−x )=Eψ (−x )

d
dx

=
dx'
dx

d
dx'

= (−1 )
d
dx'

d 2

dx2
=…=(−1 )2

d2

dx'2
=

d2

dx' 2

Since V(-x) → V(x)

−
ℏ

2m
d2

dx 2
ψ (−x )+V ( x )ψ (−x )=Eψ (−x )

EQ. (1) is hence proven, and we says Ψ(-x)  is a 
solution to the TISE with energy E



  

ψ± ( x )=ψ ( x )±ψ (−x )

Both Ψ(x) and Ψ(-x)  are solutions to the TISE with energy 
E, hence so is the linear combination

ψ+ ( x )=ψ ( x )+ψ (−x ) is an even solution

ψ+ (−x )=ψ (−x )+ψ ( x )=ψ+ ( x )

ψ− ( x )=ψ ( x )−ψ (−x ) is an odd solution

ψ− (−x )=ψ (−x )−ψ ( x )=−(ψ ( x )−ψ (−x ) )=−ψ− ( x )

Conclusion: If V(x) = V(-x), the solutions to the TISE are 
made up of odd and even ones, ψ+ ( x ) ,ψ− ( x )



  

Assume the solution is of even 
parity

BD (1):

BD (2):



  

z
0
 a dimensionless parameter that describes how deep is the well



  



  

Quantisation of energy

Only three solutions exist. This means only three quantised energies 
exists for the potential value with z

0
=8.

z
n
 are to be obtained  numerically.



  

Three allowed energy levels in a 
well with finite depth z

0
=8

z
0
=8

En=
z n

2
ℏ

2

2ma2
−V 0

V 0=z0
2 ℏ

2

2ma2E
1

E
2

E
3



  

Note that as V
0
 → ∞, there is only one solution left. It is located in 

the range of 0 < z < π/2. For small z, the roots tend to occur near 
to the values of nπ/2.

x

x
x

x



  

(for low odd n)

SHOW THIS

Limiting expressions for E
n, 

z
n



  

Odd parity solution
 We have shown the solutions and allowed 

energies for even parity case.

 But don't forget there is still the odd parity 
solutions. 



  

Energy for the odd parity solution

 What is the allowed energies for the odd parity 
solution, E

n
 = ?

 To do so, simply repeat the steps using Csin(lx) 
instead of D cos (lx)



  

Scattering state solutions

E > 0

 E > 0
 Consider a particle incident upon the potential 

from the left, and there is no particle incident

or reflected from the right. 



  

 x ≤ −a



  

 real and positive



  

No reflected wave 
from the far right



  

Compactly

Can you tell whether the wavelength in the well is larger or 
smaller than outside the well?

Traveling wave

Traveling wave

standing wave



  

E > 0

Traveling wave

Traveling wave

standing wave



  

Imposing BC at x = -a



  

Imposing BC at x = a



  

Tidying up

 The BC results in a total of 4 algebraic 
equations with 5 unknowns (A, B, C, D, F).



  

A as an independent unknown

Exercise: Derive this



  

Reflection coefficient

 The fraction of the incoming number (from the 
left) that will bounce back.
 Of relevance only in region x < −a. 

A2

B2



  

Transmission coefficient

How much of the incident number has 
transmitted through the potential to come out 
to the other side.

 To conserve probability, T + R = 1

A2

F2



  

Transmission coefficient

Hint: use these relations



  

“Transparent potential”

 If so that 

 T = 1
 No reflection, R = 0.

This is exactly the same set of discrete energies as that of an infinite 
square well.



  



  

Tutorial 2.2



  

Q1

SHOW THIS

Solution to the Dirac potential is given by 



  

Q2



  

Q3
Given the four algebraic equations

Show



  

Q4

Show

Given 

T + R = 1



  

TUTORIAL QUESTION
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