
  

Chapter 3

Formalism



  

Hilbert Space



  

Two kinds of mathematical 
constructs

- wavefunctions  (representing the system)

- operators (representing observables)



  

Vector

Consider a N-dimensional vector wrp to a 
specific orthornormal basis

|α > = |a
1
, a

2
, a

3
, ..., a

N
>

Inner project of two vectors



  

Functions, as vectors

A function is a vector with infinite dimensionality.

Example: 

f ( x )={a1,a2, . . ;b1,b2,. .. } in the basis

{cos nπx;sinnπx }



  

Functions, as vectors

A function is a vector with infinite dimensionality.

Example: 

f ( x )={a1,a2, . . ;b1,b2,. .. } in the basis

{cos nπx;sinnπx }



  

Wave function

A wave function in QM has to be normalised, 

Hence, in QM, we consider only the collection of 
all function that are square integrable



  

Hilbert space

The collection of all square integrable functions 
constitute a Hilbert space, which is a subset of 
the vector space.

 Wave functions live in Hilbert space.

All functions living in Hilbert space is square 
integrable



  

Inner product
Since all functions living in Hilbert space is square integrable, 
the inner product of two functions in the Hilbert space is 
guaranteed to exist



  

By definition of the inner product

Complex conjugate

* *

Take the complex conjugate of the inner product, 
you will get 

“permuting the order in the inner product amounts to complex 
conjugating it.”



  

Inner product of the same function



  

 Schwarz inequality



  

The only function whose inner product with itself vanishes is 0, i.e.



  

Orthogonality 



  

Completeness
A set of functions is complete if any other function (in Hilbert space) 
can be expressed as a linear combination of them:



  

Making sense of these definitions

Try to make sense of these  definitions by 
making contact with what you have learned in 
the previous chapters

The stationary states for the infinite square well 
constitute a complete orthonomal set on the 
interval (0, a); 

The stationary states for the harmonic oscillator 
are a complete set on the interval (−∞, +∞).



  

Expectation value of an observable 
in terms of inner product

The observable has to be a real number, and it is the 
average of many measurement:

Such mathematical requirement results in the fact that 
not any operator can be a valid observable in QM. 



  

To be a valid observable in QM, an operator 
must obey the requirement

⇒

This can be proven by using the fact that



  

Proof

Given 〈Q 〉=〈Q〉
〈Ψ∣QΨ 〉=〈Ψ∣QΨ 〉

But 〈Ψ∣QΨ 〉=〈QΨ∣Ψ 〉
Therefore,

〈Ψ∣QΨ 〉=〈QΨ∣Ψ 〉

*

*

*



  

Hermitian operator

 The operators representing observable in QM, 
Q, has the property that

Hermitian operator arises naturally in QM because their 
expectation values are real.



  

Why Hermitian operators?



  

Fourier's trick to project out the 
coefficients



  

Adjoin / 
Hermitian conjugate

The adjoin or the conjugate of a Hermitian 
operator is defined as

Q a Hermitian operator

Q✝ adjoin to Q



  

 In general, a Hermitian operator is equal to its 
conjugate, i.e.,



  

Example

Show that (i.e., the momentum 
operator is Hermitian)

For this purpose, you need to show that 

Hint: you need to use integration by parts



  

Determinant states

• An determinate state for an observable Q is one 
in which every measurement of Q is certain to 
return the same value.

Example: 
Stationary states are determinate state of the 
Hamiltonian H (which is the observable energy).

A measurement of the total energy on a particle in 
the stationary state Ψ

n
 is certain to yield the 

corresponding allowed energy E
n
.



  

The variance of Q in a determinate 
state is zero

This is an eigenvalue equation for the 
operator Q



  

In QM, determinate states of Q 
are known as 

“eigenfunctions of Q”

QΨ=qΨ
Ψ is an eigenfunction of Q, and q is 
the corresponding eigenvalue.



  

To sum up
If a system is in a state Ψ that is a determinate state of 
operator Q, then:

1)Every time a measurement is made for the observable Q, 

the system in the state Ψ will always return a same 
measured value q as a result of the measurement.

2) The mathematical description of a determinate state is 
provided by the eigenvalue equation, 

Ψ is known as an eigenfunction of Q; q the corresponding 
eigenvalue.

QΨ=qΨ



  

Spectrum
An observable Q in an eigenvalue equation has 

a set of eigenvalues, {q
1
, q

2
, q

3
, ....,}

The collection of all the eigenvalues of an 
operator is called its spectrum.

Example: 



  

Degeneracy

Sometimes two distinct eigenfunctions may 
share a same eigenvalue,

The spectrum is said to be degenerate for the 
states 

HΨ 1= Ψϵ 1

HΨ 2= Ψϵ 2

Ψ 1≠Ψ 2

Ψ 1,Ψ 2



  

Eigenfunctions and eigenvalues 
are intrinsic to an operator

Given a Hermitian operator         there always 
exist a set of eigenfunctions and the 
corresponding eigenvalues.

 

In QM, the major task is to find out what are the 
engenfunctions and the corresponding 
eigenevalues of that operator.

Q̂
QΨ=qΨ



  

Why you need to solve the 
eigenvalue problem of Q?

We need to find out the eigenvalues and 
eigenfunctions of a Hermitian operator Q because ...

These eigenvalues and eigenfunctions are the 
determinate states that form the stationary solutions 
to the Schroedinger Equation.

Solving the eigenvalue problem of the corresponding 
Hermitian operator is an integral part to the total 
prediction of the related observable in QM.

QΨ=qΨ



  

Example: 

Find its eigenfunctions and eigenvalues.

Q is a hermiatian because 

...

Show this.



  

Solving the eigenvalue problem for 

We want to know what the function f(ϕ) looks 
like

Due to the definition ϕ as the polar angle of a 
quantum system, cyclic boundary condition is 
to be imposed on f(ϕ):

f(ϕ)=f(ϕ+2π)



  

Solving the eigenvalue problem

Solution: 

Due to periodic boundary condition in ϕ, f(ϕ)=f(ϕ+2π) The 
possible values of the q is restricted to 

Prove this.



  

Checkpoint questions

Consider a particle in an infinite quantum well 
where the wavefunction of the particle is given 
by the ground state Ψ

0
.

Is the particle an determinate state of the 
position operator? 

Is the particle an determinate state of the 
Hamiltonian operator?



  

Two categories of Hermitian 
operators

1. With discrete spectrum (e.g., Hamiltonian for harmonic 
oscillator, Hamiltonian for infinite square well, etc.)

Those eigenfunctions with with discrete eigenvalues are 
normalisable and live in Hilbert space. They represents 
physically realisable states.

2. With continuous spectrum (e.g., Hamiltonian for free 
particle)

Eigenfunctions with continuous eigenvalues are not 
normalisable, hence do not represents physically 
realisable states.



  

Mathematical properties of 
normalisable eigenfunctions of a 

Hermitian operator
(1) Reality: Their eigenvalues are real

Proof:

〈 f∣Q̂ f 〉=〈 f∣qf 〉=∫ f ( x ) (qf ( x ) )dx=q∫ f ( x ) f ( x )dx=q 〈 f∣f 〉

〈Q̂ f∣f 〉=〈qf∣f 〉=∫ (qf ( x ) )* f ( x )dx=q*∫ f ( x ) f ( x )dx=q 〈 f∣f 〉

⇒q=q*



  

Mathematical properties of 
normalisable eigenfunctions of a 

Hermitian operator
(2) Orthogonality: Eigenfunctions belonging to 

distinct eigenvalues are orthogonal. 

This is useful so that we can apply Fourier's trick



  

Proof of orthogonality

Orthogonality: Eigenfunctions belonging to 
distinct eigenvalues are orthogonal. 

Proof:

e.value is real: 
q* = q;q' = q'*;= q < f | g >

q' < f | g > = q < f | g >; q ≠ q'

For the statement to be true, 

< f | g > = 0 whenever q ≠ q' This is 
orthogonality



  

Orthogonality, stated in a different 
way

This is just the orthogonality 
condition on the stationary 
solutions we have seen in 
Chapter 2 (but stated in a more 
rigorous way)

< f | g > = 0 whenever q ≠ q'



  

Mathematical properties of 
normalisable eigenfunctions of a 

Hermitian operator
(3) Completeness: The eigenfunctions of an 

observable operator are complete: Any 
function in Hilbert space can be expressed as 
linear combination of them.

Recall that you have seen these three properties in the 
stationary solutions in Chapter 2 !!!

f ( x )=∑ cn f n ( x )

{ f
n
(x) } the set of eigenfunctions living in Hilbert 

space (hence normalisable)



  

Hermitian operator with continuous 
spectrum

The three mathematical properties for the  
eigenfunctions with discrete eigenvalues are 
“desirable” properties for QM.

 We wish that these would have also happened to 
Hermitian operators with continuous spectrum.



  

Eigenfunction of Hertmitian 
operators with continuous spectra 

are not normalisable
Specific example of Hermitian operator with 

continuous spectrum: momentum, position 
operator for free particle.

 This case is slightly complicated compared to the 
case with discrete spectra as the eigenfunctions 
are not normalisable.

 This is because the inner products may not exist.
 However, reality, orthorgonality and completeness 

of the eigenfunctions still hold (but manifest 
themselves in a mathematically different way)



  

Momentum operator as an example 
of Hertmitian operators with 

continuous spectra

Note: If p is complex, p ≠ p*



  

Restoring orthogonality

However, orthogonality of the eigenfunction can 
be restored if we restrict only to real values of 
the eigenvalues p (i.e., p* = p):

Rewrite the inner product of the eigenfunctions 
as 



  

Dirac delta function in integral form 
(1)

Plancherels theorem, we can express Dirac 
delta function δ(x) in terms of its fourier 
transform F(k):



  

Dirac delta function in integral form 
(2)

This is the result of the definition of the Dirac delta function,  

∫ δ ( x ) f ( x )dx=f ( 0 )

Show this



  

“Dirac orthonormality”

This is the orthonormality statement for eigenfunctions with 
continuous spectrum. 



  

To sum up the previous slides

As comparison: reality and orthonormality statements for the 
normalisable eigenfunctions case are

The reality of eigenvalues and orthogonality of the 
eigenfunctions of the momentum operator, 
which is an example of Hermitian operator with 
continuous spectrum, are “restored”:

 p = p* (reality is “imposed”)

< f
m
 | f

n
 > = δ

m,n



  

Check point question

Does δ (p - p') any different than  δ (p' – p) ?



  

Completeness

The eigenfunctions f
p
(x) with continuous, real 

eigenvalues are complete, in the sense that 
any square-integrable function f(x) can be 
written as an integral the form

This is considered as an axiom, which is to be accepted and not 
to be proven.



  

Coefficient c(p)
c(p) in the expansion of f(x) can be obtained via 

Fourier's trick (thanks to Dirac's orthonormality)

Dirac's orthonormality



  

Another example of Hermitian 
operator with continuous spectrum: 

position operator
 Find the eigenvalues and eigenfunctions of the 

position operator.

We want to know what is the eigenfunction g
y
(x), and the 

eigenvalue y.



  

The eigenfunction of the continuous 
observable x

The eigenfunction turns out to be 

What is a function of x that has the property that multiplying it by x is 
the same a multiplying it by a constant y? 

Eigenvalue y is real.

g
y
(x) is not square integrable, but still Dirac orthonormal (by 

choosing A = 1):



  

The eigenfunction of the continuous 
observable x is complete

The coefficient c(x) is trivially given by 

; A =1



  

To sum up



  

Check-point questions

Is the ground state of infinite quantum well an 
eigenfunction of momentum? 

= ... 

≠constant x 

Hence the ground state           is not the eigenfunction of 
momentum operator 

cos



  

Is the ground state of infinite 
quantum well an eigenfunction of 

momentum?
What is the magnitude of the momentum in the 

ground state? 

ANS: the magnitude of the momentum is 

Since the momentum is definite, why not the ground state a 
determinate state of the momentum?
ANS: See next slide



  

Is the ground state of infinite 
quantum well an eigenfunction of 

momentum?
ANS: NO. The ground state in the infinite quantum 

well is not a determinate state of the momentum 
because it is not the eigenstate of the 
momentum operator. 

The magnitude of momentum is determinate but 
NOT the direction. 

So the fact that the magnitude of the momentum is 
determinate does not contradict the fact that the 
ground state is NOT the eigenstate of the 
momentum operator.



  

Check point question
(easy)

Problem 3.1 (a)

Suppose that f(x) and g(x) are two 
eigenfunctions of an operator Q, with the same 
eigenvalue q. Show that any linear 
combination of f and g is itself an eigenfuntion 
of Q, with eigenvalue q.



  

Generalised statistical interpretation

QM can't tell you the precise value you will get in 
a particular measurement (as would be the case 
in classical mechanics)

In QM, the results of any measurement is not 
deterministic but “spread out” according to a 
probability distribution. 

How to calculate the possible results of any 
measurement?



  

{f
n
(x)} are the set of eigenfunctions associated 

with the operator Q

Probability for discrete spectrum

Q̂ f n ( x )=qn f n ( x )



  

Probability for discrete spectrum 
(cont.)

If you measure an observable Q(x, p) on a 
particle in the state Ψ, you are certain to get one 
of the eigenvalues of the hermitian operator  
Q(x, p). 

If the spectrum is discrete, the probability of 
getting the particular eigenvalue q

n
 associated 

with the orthornomalised eigenfunction f
n
(x) is  

 |c
n
|2 is the probability that a measurement of Q will yield the value q

n
.



  

Interpretations of  |c
n
|2 

|c
n
|2 as the probability that the particle which is 

now in the state Ψ will be in the state f
n
 

subsequent to a measurement of Q.

The process of measurement 'collapses' the 
wavefunction Ψ into one of its many 'potentia' 
state f

n
 into reality with a probability  |c

n
|2. 



  

Normalisation of Ψ 
Since  

is normalised, e.g., 

It can be proven mathematically that 

Interpretation: the sum over of all possible 
outcome of a measurement got to be unity.



  

Proof of 



  

Expectation value of Q

Prove the last step (it's easy)

Q̂ f n ( x )=qn f n ( x )



  

Continuous c.f. discrete spectrum

Q̂ f z ( x )=q ( z ) f z ( x )

Ψ ( x,0 )=∫ c ( z ) f z ( x )dz

Q̂ f n ( x )=qn f n ( x )

Discrete spectrum Continuous  spectrum

f
z
(x) Dirac-

orthonomalised 
eigenfunctions 
associated with 
Q

q(z) real, 
continuous 
eigenvalues 
associated 
with Q

Continuous, real eigenvalue q(z) labeled by 
continuous variable z; e.g., z = x or = p

Discrete eigenvalues q
n  

labeled by discrete 
variable n



  

Statistical interpretation of 
momentum measurement



  

Momentum space wavefunction

   is the probability to obtain an 
eigenvalue p in the range dp in an 
momentum measurement.



  

Fourier conjugate pair



  

Example: Calculate p for particle in 
Dirac delta potential

    A particle of mass m is found in the delta function well. 
What is the probability that a measurement of its 
momentum would yield a value greater than p

0
 = mα/♄?



  

Calculate p for particle in Dirac delta 
potential

The momentum space wave function 



  

Calculate p for particle in Dirac delta 
potential

Note: m, α and♄ are expressed in terms of 

Show this. Hint: use integral table, e.g., Spiegel



  

Calculate p for particle in Dirac delta 
potential

 The probability to measure the momentum to lie between p and p ± dp is



  

, (t = 0)



  



  

 The probability to measure the momentum p to lie above p
0
 is simply



  

Generalised uncertainty principle



  

Variances of two observables

Consider two observables A and B and their 
variances:



  

Applying Schwarz inequality to the 
products of variances

Eq. (1)



  

Let

For any complex number z,

Look at

Eq. (2)

Eq. (3)

, Eq. (2) becomes



  

z – z*, in terms of 
commutator of A and B

Independently, one can show that

(Show these)

where the commutator of the operators A and B is defined as

Show the last step in Eq. (4)

Eq. (4)



  

Putting everything together



  

It is a mathematical result

●  Note that the generalised uncertainty relation 
is a consequence of the mathematical 
properties of Hermitian operators living in the 
Hilbert space and complex number.



  

Canonical commutator relation

   This is an axiom (a principle that is generally assumed 
to be true) in QM. 

   Plug it into the generalised uncertainty relation gives

Heisenberg’s uncertainty principle  is recovered !!!



  

Note on the derivation of HUP

●  Heisenberg’s uncertainty principle  is 
recovered as a mathematical consequence of 

 (1) the canonical commutator relation axiom

 (2) generalised uncertainty relation



  

Incompatible observables

● A pair of incompatible observables, say {A, B},  is 
one whose operators do not commute,

 [A, B] ≠ 0

 Incompatible observables do not have shared 
eigenfunctions.

● i.e, if f(x) is an eigenfunction of operator A, it 
cannot be an eigenfunction of B, or vice versa.

●



  

Note on the symbol for operator and 
observable

●  The symbol for “operator” and “observable” 
is often used interchangeably

●  For example, A can be referred to as 
“observable” or “operator”. 

● Which one it represents can be inferred from 
the context. 



  

Proof by contradiction
●  Let A, B be two incompatible observables, hence, 

[A, B] ≠ 0
●  We will prove that they don't share a common (simultaneous) 

eigenfunction by using “proof by contradiction”:

●  Assume A, B share a common eigenfunction g.

Ag = ag, Bg = bg 
●  where a, b eigenvalues corresponds to A and B.

[A, B] g = (AB – BA) g = (ab – ba)g = 0, 

  which is a contradiction to [A, B] ≠ 0 
●  Hence, g cannot be a common eigenfunction to A and B.



  

Example of incompatible 
observables

●x and p
●

●

●There is no eigenfunction of position that is also 
an eigenfunction of momentum:



  

Consecutive measurements of two  
incompatible observables

●  For incompatible observables A and B, the results of 
the measurement of A will be rendered obsolete by 
the subsequent measurement of B (think of 
measuring momentum followed by measuring the 
position). 



  

Heisenberg’s Gedanken experiment

   Illustrate very well the 
incompatibility of measuring x 
and p of a photon

   x and p of a photon cannot be known 
simultaneously.

   x and p are incompatible 
observables.



  

Compatible observables
  If [A, B] = 0,  then A, B are compatible 

(commuting) observables
   
   They share a complete set of common  

(simultaneous) eigenfunctions. 

   Example of commuting observables: H, 
L2, and Lz



  

Consecutive measurements of two  
compatible observables

   If observables A and B are compatible, the result 
of the A measurement will not effect the result of 
the measurement of B subsequently (think of 
measuring energy followed by total angular 
momentum)



  

Analogy

●  Compatible observables are like friendship;

●  Incompatible observables are like romance.



  

Other uncertainty relations

   Other than the famous Heisenberg uncertainty 
relation,          

   there exist many other very important results 
from the generalised uncertainty principle.



  

Uncertainty relation for Hamiltonian 
and position

Hint: you need this 

and



  

Uncertainty relation for Hamiltonian 
and momentum

Hint: you need this 

and



  

The Energy-Time Uncertainty Principle
 



  

The time variable, t
●  Dynamical obserables are treated on very 

unequal footing in the QM (see the Schroedinger 
Equation)

●

●.

   Time is not dynamical observable like others (E, 
p, x, etc.).

   You don't measure “time” of a particle as you 
might its position or energy.

   Time is an independent variable.
●  Dynamical observables are function of time.



  

Comparing

   In non-relativistic QM,

   cannot be derived from 

   

σ
q
 in the uncertainty relation is standard deviation of 

a collection of the measurement of observable Q

In contrast, ∆t is not the standard deviation of a 
collection of the measurement of time. It is ...

against



  

∆t is ...

The time it takes the system to change 
substantially

●  How to quantify the time for a  'substantial 
change'

   
●  That depends on how fast the system changes



  

Quantifying how fast a system is 
changing

●  The rate of change of the expectation value of 
an observable 

●  It tells us how fast an the expectation value of 

  an observable Q is changing in time

●  This is the quantity we would monitor to 
quantify “how fast a system is changing”



  

Expanding 

The TD Schroedinger equation



  

Show this

Hint: The Hamiltonian H is hermitian



  

∂Q̂
∂ t

=0

⇒



  

Interpretation of 

The equation tells us how the expectation value of 
Q evolves in time

The evolution is dependent of commutator of the
operator Q with the Hamiltonian.



  

Deriving Ehrenfest's theorem

Ehrenfest's theorem: expectation values obey 
classical laws

Examples:

The above relations can be derived from 

Show this



  

Observable Q is a conserved 
quantity if commute with H

●  If [Q, H] = 0, then <Q> is constant in time.

●  Q is a conserved quantity.



  

Deriving

Applying the generalised uncertainty principle to 
a generic operator Q and the Hamiltonian H



  

Interpreting

Rearrange: 
σH⋅

σQ

∣
d 〈Q 〉
dt

∣

≥
ℏ

2

Compare this with Δ EΔ t≥
ℏ
2

Identify the following quantities



  

Interpretation of 

The change of expectation value of Q in time ∆t 
is related via the definition

We are now ready to interpret      :

∆t represents the the amount of time it takes the 
expectation value of Q to change by one 
standard deviation.



  

 

         varies from one observable to observable,     
because different Q has a different 

varies from observable to observable



  

Fast changing observable has large 
uncertainty in energy

>> 1

that means

as σ
Q
 in                                is fixed to 1 standard

deviation in the definition of ∆t.

The

according to 

The



  

The specific meaning of ∆t varies 
from case to case

●  ∆t as appeared in ∆t∆E ≥ ℏ/2  has a variety of 
specific meanings, depending on the context 
of the system being considered. 

●  The best way to understand the meaning of ∆t 
is  by looking at many different examples. 



  

Example 1:
∆t in the oscillation of a mixed state

   A stationary state has definite energy, so      
∆E = 0, ∆t → ∞. But for a mixture of two 
stationary states, we could show that the 
product of ∆E and ∆t obey the uncertainty 
bound.



  

Example 1 (cont. 1)

A linear combination of two stationary states

Note: (E2−E1)

ℏ
t=

ΔE
ℏ

t≡ω t⇒ ΔE=ℏ ω ;ω=
2π
τ



  

Example 1 (cont. 2)

Taking 

then implies

Δ EΔ t=2πℏ>
ℏ

2



  

   We have just shown that the energy-time  
uncertainty principle is respected in the 

system.



  

Example 2:
∆t in the motion of a free-particle 

wave
   How long does it take a free-particle wave 

packet to pass by a particular point?



  

Example 2 (cont.)



  

   We have just shown that the energy-time  
uncertainty principle is respected in the 

system.



  

Example 3:
∆t in the decay of the ∆ particle

  The ∆ particle last about 10−23 seconds, before 
spontaneously disintegrating. If you make a 
histogram of all measurements of its mass, 
you get a kind of bell-shaped curve centered at 
1232 MeV/c2, with a width of about 120 MeV/c2. 
Why does the rest energy mc2 sometimes 
come out higher that 1232, and sometimes 
lower? Is this experimental error?



  



  

Example 3 (cont. 1)

● The 'spread' of the rest energy (equivalent to 
the rest mass) of ∆ particle, ∆E=120 MeV/c2  is 
consistent with the energy-time uncertainty 
relation. 

●  You can check that indeed



  

Example 3 (cont. 2)
●  The rest mass of the Delta particle is not sharply 

defined (unlike many other stable particles, e.g, 
electron and proton).

●  The 'spread' of the rest energy (rest mass) of the ∆ 
particle is an inherent uncertainty that arises due to 
the time-energy uncertainty principle.

●  The rest mass of the particle has a large 'spread' 
(uncertainty) of the order ~MeV/c2 because of its 
short lifetime, 10-23 sec (strong interactions).

●  The shorted the lifetime of a particle the larger is 
the uncertainty of its rest mass.



  

Example 3 (cont. 3)

●  How large the value of ∆E of a particle 
depends on the lifetime, t=∆t, which in turns 
depend on the fundamental interactions acting 
on the particles (strong forces, weak forces or 
electromagnetic forces). 

●  As long as the value of ∆E fulfills the condition 
that product of ∆E and ∆t is less than /2, it will ℏ
be allowed to happen, such as in the case of 
the Delta particle.



  

   We have just shown that the energy-time  
uncertainty principle is respected in the 

system.



  

To sum up

●  In the previous examples, ∆t takes on a variety 
of specific meaning. 

●  In Example 1: it’s a period oscillation. 
●  In Example 2, it’s the time it takes a particle to 

pass a point
●  In Example 3, it’s the lifetime of an unstable 

particle. 
●  In these examples, ∆t is the time it takes for 

the system to undergo “substantial” change.
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