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Preface

This set of lecture notes are prepared for the ZCT 205 course offered to mainly
second year students in the school of physics, Universiti Sains Malaysia, Penang.
It is basically a set of notes on selected parts of the first four chapters from the
text book “Introduction to Quantum Mechanics” 2ed. by David Griffiths, Pearson
Prentice Hall, 2005 [1].

When you enter any class of quantum mechanics at the undergraduate level, it
is almost always assumed that you have already familiar with Newtonian mechanics
and some introductory level modern physics. You should be familiar with all those
fundamental notions such as conservation of energy, movement of a particle in a po-
tential field, momentum, kinetic energy and potential energy of a particle, harmonic
oscillation, wave phenomena (you learned this in waves and oscillations), etc. In
modern physics class, you should have already gained some preliminary ideas on the
rise of quantum phenomena based on a string of experimental discoveries that rocks
the fundamental understanding of our physical world based on classical physics.
Such counter-intuitive concepts e.g., wave-particle duality, Heisenberg’s uncertainty
principle, Bohr’s theory and de Broglie’s postulate are among the key knowledge
that are necessarily to understand the content of this course. In order to digest the
concepts and calculations you will encounter in this course, a good mastery of the
“previous” knowledge you learned in the physics classes in the past (in particular
classical mechanics, wave phenomena and modern physics) is almost mandatory. If
you have already discarded these after walking out from the exam hall, I strongly
urge you to scavenge it from your brain’s trash bin. You can’t afford the failure to
recall these required fundamentals in this quantum mechanics course.

Moreover, quantum mechanics ZCT 205 is quite a mathematically demanding
subject. You will discover that it makes use of all the knowledge taught in previous
(and current) mathematics classes. In particular, you are expected to be familiar
with the following topics: vector analysis, vector space, integration (of single vari-
able), differentiation, ordinary differential equations, partial derivatives, complex
number, limits, Fourier series, Fourier integral, series, Taylor series expansion, vol-
ume integration in spherical coordinates, etc. Going through the content of this
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course, you will begin to appreciate the usefulness of those “useless heck of” math-
ematics you have learned in your life all the while. Mathematical training forced
upon all physics students are not meant to be a waste of time. You will thank God
you know mathematics at time when you really need it (such as now).

In this manuscript, you will find Exercises and Problems scattered among
the in-line texts. Exercises are mainly relatively simple mathematical calculations
showing the steps leading to a particular results or formula. Problems are meant for
more elaborated problems requiring lengthier calculations. The solutions to some
selected Exercises and Problems are purposely left out in the notes. These solutions
will only be filled up during the lecture. You are right! this is my tactic to lure (or
to force, if you may) students to attend lectures.

Each chapter in this lecture is accompanied by a problem set. Students are
expected to attempt these problem sets themselves at the end of each chapter. Prac-
ticing on problem sets is an integral part in learning a mathematically demanding
subject such as QM. You can’t really appreciate QM if you don’t attempt the calcu-
lation problems yourselves (Oh! You may think that this is an nagging statement,
but it is also a truth which you can’t afford to not to follow).

I also suggest another book to complement Griffiths: Schaum’s Outlines of
theory and problems of Quantum Mechanics by Peleg et al.. It provides a huge
collection of very useful examples of calculations in great detail.

This is one of the most difficult subjects in your undergraduate year as a
physics student, but also one of the most intellectually challenging. The effort you
invest in to master this subject would be most intellectually rewarding. Apart
from the mundane purpose of passing the examination, understanding QM at the
undergraduate level will equip you with one of the most crucial theoretical tools to
perform researches in the realm of quantum world.

The late John Wheeler (the physicist who coined the term “black hole”) com-
mented

If you are not completely confused by quantum mechanics, you do not
understand it.

The great Richard Feynman (Wheeler’s graduate student), another great physics
figure of our time, said

It is safe to say that nobody understands quantum mechanics.

If you finally comprehend the core issues in QM that renders it such a confusing
law, you have understood QM as in the spirit of Feynman and Wheeler. When will be
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your turn to say something on quantum mechanics? Before you coin your quotation,
I’d first suggest you to put in effort to understand the content we are going to learn
in this course.
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Chapter 1

The wave function

1.0.1 The Schroedinger Equation

• Refer to Fig.1.1 of a “particle” constraint to move only in 1D.

Figure 1.1: A “particle” constrained to move in 1-D under the influence of a specified
force.

Classically, the velocity is v = dx/dt, momentum p = mv, kinetic energy
T = (1/2)mv2. x(t) is determined from Newton’s law F = ma. The force,
if conservative, can be derived from the potential via F = m∂2x

∂t2
= −∂V/∂x.

The complete description of x(t) at any time t can be determined if the initial
condition x(t = 0) is provided.

• In quantum mechanics, the program to describe the system is very much dif-
ferent than that by classical mechanics.

• QM looks at the particle’s wave function Ψ(x, t) (pronounced a “Psi”). Ψ(x, t)
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4 CHAPTER 1. THE WAVE FUNCTION

is obtained by solving the Schroedinger equation:

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ,

where i =
√
−1, ~ = h

2π
= 1.054572× 10−34 Js.

• Given the initial condition Ψ(x, 0) the Shroedinger equation determines Ψ(x, t)
for all future time.

1.0.2 The Statistical Interpretation

• A particle is localised whereas a wave function is spread out in space. How
could a wave function provide a description of a particle?

• The answer lies in Born’s statistical interpretation of the wave function:
|Ψ(x, t)|2 gives the probability of finding the particle at point x at time t:∫ b

a

|Ψ(x, t)|2dx = probability of finding the particle between a and b at time t.

• Probability is the area under the graph of |Ψ|2.

• For example, for the wave function shown in Fig. 1.2, since |Ψ|2 large around
the vicinity of point A and relatively small around B, it is more likely to find
the particle near A relative to B.

• Ψ(x, t) in general is complex. However, |Ψ(x, t)|2 = Ψ(x, t)∗Ψ(x, t) is real and
positive.

• There is an inherent indeterminacy in the statistical interpretation of quan-
tum mechanics. Even we know everything about the wave function and the
equation governing it, we still can not predict with certainty the outcome
of a simple experiment to measure the position. QM only offers statistical
information about the possible results.

• A measurement act “collapses” the wave function to assume a particular num-
ber (e.g., measurement of position results in a particular value of the position).
Right after the measurement, repeated measurement on the particle’s position
will consistently return the same number.

• There are two distinct kinds of physical processes: “ordinary” ones, in which
the wave function evolves in a leisurely fashion under the Shroedinger equation,
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and “measurements” in which Ψ suddenly and discontinuously collapses. The
former represents the particle before being measured, and the latter represents
the particle after measurement.

• What is the particle’s position before it is measured? What happen in a
measurement process such that a particular position is forced upon a particle’s
position? What constitute a measurement process?

• These are unsettled questions.

1.1 Probability

1.1.1 Discrete Variables

• Consider a sample comprise of 14 people whose ages are as follows:

one person aged 14,
one person aged 15,
three people aged 16,
two people aged 22,
five people aged 15.
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• We represent the above information using the notation N(j)

N(14) = 1,
N(15 = 1,
N(16) = 3,
N(22) = 2,
N(24) = 2,
N(25) = 5,
N(j) = 0 for other values of j.

• The age j here takes only integer values. They are discrete variables.

• Total number is N =
∑∞

j=0N(j).

• The histogram of the data is represented in Fig. 1.4:

• P (j) = N(j)/N represents the probability that a person selected randomly
from the sample is of age j.

• The sum of all probability must be 1:

j=∞∑
j=0

P (j) = 1.

This is known as ‘normalisation’. It means the sum of the probability P (j) =
N(j)/N over all j must be 1.
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• The most probable age is 25 as P (j) is maximum at j = 25.

• The median age is the value of j such that the probability of getting a larger
result is the same as the probability of getting a smaller result. In this example,
23 is the median. This value is obtained by working out the value of jm such
that the area under the “curve” before jm and after jm equals.

• Average of mean age is given by

〈j〉 =

∑
jN(j)

N
=
∞∑
j=0

jP (j) = · · · = 21.

• Average value is also known as expectation value. It is usually the quantity
of interest in QM.

• Average of the squares of the age is given by

〈j2〉 =

∑
j2N(j)

N
=
∞∑
j=0

j2P (j).

• In general, the average value of some function of j, f(j), is given by

〈f〉 =
∞∑
j=0

f(j)P (j).



8 CHAPTER 1. THE WAVE FUNCTION

• Apart from the average, 〈j〉, median and most probable value, a set of discrete
statistical data is characterised by a spread in distribution with respect to the
average. This is measured by the variance,

σ2 = 〈(∆j)2〉,

which is the average value of the square of ∆j, where

∆j = j − 〈j〉.

measures the deviation of each j from the average value.

• σ is called the standard deviation, a customary measure of the spread about
〈j〉.

• The histogram of the discrete data set {j,N(j)} is a very useful graphical
representation of it, see Figure 1.5.

• The normalised version of the histogram,

ρ(j) =
N(j)

N
vs. j,

where
∑

j ρ(j) = 1. ρ(j) is referred to as the ‘probability distribution function’,
or simply the ’distribution’.

• For discrete variable j, ∆j = 1 on the normalised histogram. ∆j is the width
of the interval on the j variable axis. (When we generalise to a continuous
variable, say x, the width of the interval in the variable axis ∆x is taken to be
very tiny ∆x→ 0. We will see this in subsection 1.1.2.)

Normalisation for the discrete PDF is expressed as∑
j

ρ(j)∆j = 1.

• One could show that the variance is given by

σ2 = · · · = 〈j2〉 − 〈j〉2,

• The standard deviation is simply

σ =
√
〈j2〉 − 〈j〉2.

• Note that 〈j2〉 ≥ 〈j〉2.
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• In short, a discrete statistical data set, {j,N(j)} for the discrete variable
j, is represented by a discrete probability distribution function (PDF), ρ(j).
Given a PDF, we then calculate the variance σ2 (or equivalently, its standard
deviation σ) and min 〈j〉 for the discrete data set. We could also easily derive
the most probable value (mpv) for j and the median jm from the PDF but
these quantities are relatively unimportant in QM.

• Most importantly, given a PDF, we can derive the expectation value for any
j-dependent variable Q(j) =

∑
j ρ(j)Q(j).

1.1.2 Continuous Variables

• We could generalise the description of probability distribution of discrete vari-
able to continuous one,

probability that an individual (chosen at random) lies between x and (x+ dx)
= ρ(x)dx.

• ρ(x) is called the probability density.

• The probability that x lies between a and b (a finite interval) is given by

Pab =

∫ b

a

ρ(x)dx,
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1 =

∫ ∞
−∞

ρ(x)dx,

〈x〉 =

∫ ∞
−∞

xρ(x)dx,

〈f(x)〉 =

∫ ∞
−∞

f(x)ρ(x)dx,

σ2 ≡ 〈(∆x)2〉 = 〈x2〉 − 〈x〉2

Example 1.1

Suppose I drop a rock off a cliff of height h. As it falls. I snap a million
photographs, at random intervals. On each picture I measure the distance the
rock has fallen. Question: What is the average of all these distances? That is
to say, what is the time average of the distance traveled?

Solution: The rock starts out at rest and picks up speed as it falls; it spends
more time near the top, so the average distance must be less than h/2. Ignoring
air resistance, the distance x at time t is

x(t) =
1

2
gt2.

The velocity is dx/dt = gt, and the total flight time is T =
√

2h/g. The
probability that the camera flashes in the interval dt is dt/T .

dt

T
=
dx

gt
/T =

dx

gt

√
g

2h
=

dx

g
√

2x/g

√
g

2h
=

1

2
√
hx
dx ≡ ρ(x)dx

• ρ(x) is the probability density to find the particle in position x.

• ρ(x)dx is the probability to find the particle between the position x and x+dx.

• We can check this result by finding the total probability (which must be equal
1 when integrating over all x),

∫ h

0

1

2
√
hx
dx =

1

2
√
h

(
2x1/2

) ∣∣∣∣h
0

= 1.
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Figure 1.2: The probability density in Example 1.1: ρ(x) = 1
2
√
hx

.
The shaded area is the probability to find the particle between x and x+ dx.

The average distance is

〈x〉 =

∫ h

0

x
1

2
√
hx
dx =

1

2
√
h

(
2

3
x3/2

) ∣∣∣∣h
0

=
h

3
<
h

2
.

1.2 Normalisation

• According to the statistical interpretation, |Ψ(x, t)|2 represent the probability
density for finding the particle at point x at time t.

• If the wave function were to represent physical states, it must be square-
integrable and normalisable:

• square-integrable: ∫ ∞
−∞
|Ψ(x, t)|2dx <∞.

To be so, Ψ(x, t) must go to zero faster than 1/
√
|x| as |x| → ∞.

• In relevance to this, Ψ(x, t) → 0 as |x| → ∞. This is demanded by the fact
that, if the wave function were to represent a physical state, it must vanish at
infinity.
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• Normalisation: The probability to find the particle must be 1 when integrating
the probability density over all space:∫ ∞

−∞
|Ψ(x, t)|2dx = 1.

• The time-dependent wave function is Ψ(x, t). We can prove that (in problem
2, Problem Set 1) the normalisation condition of the wave function, is time-
independent, i.e.,

d

dt

(∫ ∞
−∞
|Ψ(x, t)|2dx

)
= 0.

• This is the result of the mathematical feature of the Schroedinger equation.
Due to such a property in the Schroedinger equation, the normalisation con-
dition is preserved for all t.

• What that means is that once the wave function is normalised at the beginning
(t = 0), it will remain normalised at all future time, i.e., If |Ψ(x, 0)|2 =
1,⇒ |Ψ(x, t)|2 = 1 for all t > 0 with the same normalisation constant (a
number independent of x and t). See the example 1.4 for how to adjust the
normalisation constant A to normalise the wave function.

Example 1.4

At time t = 0 a particle is represented by the wave function

Ψ(x, 0) =


Ax
a
, if 0 ≤ x ≤ a,

A (b−x)
(b−a)

, if a ≤ x ≤ b,

0, otherwise,

where A, a and b are constants.

(a) Normalize Ψ (that is, find A in terms of a and b).

(b) Sketch Ψ(x, 0) as a function of x.

(c) Where is the particle most likely to be found, at t = 0?

(d) What is the probability of finding the particle to the left of a? Check your result
in the limiting cases b = a and b = 2a.
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(e) What is the expectation value of x?

1.3 Momentum

• For a particle in state Ψ, the expectation value of x is

〈x〉 =

∫ ∞
−∞

x|Ψ(x, t)|2dx.

• The expectation value is the average of repeated measurements on an ensemble
of identically prepared systems, not the average of repeated measurements on
one and the same system.

• Since the wave function is evolving in time, so will the expectation value in
general. We wish to know what is d

dt
〈x〉.

• Using integration-by-parts and applying the boundary condition that the wave
function vanishes at infinity, (limits of the the integration will be suppressed
for the sake of brevity)

d

dt
〈x〉 =

∫
x
∂

∂t
|Ψ|2dx = · · · = −i~

2m

∫ (
Ψ∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx = · · ·

=
1

m

∫
Ψ∗
(

~
i

∂

∂x
Ψ

)
dx ≡ 〈p〉

m
.

The expectation value of momentum is postulated as m times the time deriva-
tive of the expectation value of x.

• Exercise: Show this. Hint: Integration by parts:∫ b

a

f
dg

dx
dx = fg

∣∣∣∣b
a

−
∫ b

a

df

dx
gdx.

Sometimes integration by parts is also expressed in terms of∫
udv = uv −

∫
vdu.
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• Summarising the previous two results for x, p,

〈x〉 =

∫
Ψ∗xΨdx,

〈p〉 =

∫
Ψ∗
(

~
i

∂

∂x

)
Ψdx. (1.1)

• We say that the operator x “represents” position, and the operator (~
i
)( ∂
∂x

)
“represents” momentum in quantum mechanics. To calculate the expecta-
tion values we “sandwich” the appropriate operator between Ψ∗ and Ψ, and
integrate.

• In other words, in QM, the dynamical variables x, p are represented by op-
erators. Sometimes we use a hat to distinguish a variable and the operator
representing it, e.g., x is a variable while x̂ a position operator (so is p and the
corresponding operators p̂). But in most cases we can easily infer whether its
a variable or operator from the mathematical context.

• An operator is an instruction to do something to the function that follows it.
For example, in xΨ, x is an operator that transforms Ψ to xΨ; while in ∂

∂x
Ψ,

the operator ∂
∂x

transforms the function Ψ to another function ∂
∂x

Ψ.

• All other classical dynamical variables such as energy, angular momentum,
kinetic energy, can be expressed in terms of position and momentum, e.g.,
kinetic energy T = p2/(2m), angular momentum L = r×mv = r× p.

• Generalising Eq. 1.1 to a generic dynamical variable Q which can always be
“assembled” by the two basic variables x, p,

〈Q(x, p)〉 =

∫
Ψ∗Q

(
x,

~
i

∂

∂x

)
Ψdx (1.2)

• Once can think Eq. (1.2) is an axiom in QM.

• For example,

〈T 〉 = − ~2

2m

∫
Ψ∗
∂2Ψ

∂x2
dx.

• Exercise: Show this.
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1.4 The Uncertainty Principle

• A wave if well defined in wavelength (a small spread in wavelength, i.e., σλ �
1) is ill-defined in its exact location (a large spread in the position, σx � 1),
and vice-versa. In other words, a wave having well defined wavelength is
associated with a large “spread” (σx � 1) that roughly corresponds to the
region in space where the wave is to be found.

• The QM wave function Ψ is also a wave phenomena. The wavelength of Ψ is
related to the momentum of the particle by the de Broglie formula

p =
h

λ
=

2π~
λ
.

• Hence, the spread in wavelength corresponds to a spread in momentum. From
the above observation on the antagonistic relation in the spread of wavelength
and position, we now says that the more precisely determined a particle’s
position is, the less precisely is its momentum,

σxσp ≥
~
2
,

where σx (σp) is the standard deviation in x (p). This relation will be proven
quantitatively later.

• This is the famous Heisenberg’s uncertainty principle

• “Spread” here requires a more quantitative definition. A non-zero σp for ex-
ample means: in momentum measurements of identically prepared systems,
each measurement will yield precise answers but not identical results. The
narrower the spread σp is, the closer are the results of the measurement in a
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Figure 1.3: The smaller is the spread of the wave in position space, the larger is the
spread in momentum space (k-space), and vice versa.

statistical sense. Identical results will be obtained if σp = 0. But in this case,
the measurement in position will yield a wildly scattered results.

Here we illustrate the uncertainty principle as applied to a group of waves su-
perimposed to form a “wave packet” using the software package Mathematica.
The Mathematica source code and its pdf version for this visual simulation
can be accessed at

http://www2.fizik.usm.my/tlyoon/teaching/ZCT205 1112/wave.nb

http://www2.fizik.usm.my/tlyoon/teaching/ZCT205 1112/wave.pdf

In order to install the Mathematica software (legally, bulk purchased by USM),
follow the instruction at

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1112SEM2/

The whole idea of the Mathematica simulation is to make you appreciate that
(i) adding many waves of different wavelength results in a wave packet, (ii)
the wave packet’s “spread” in x (the “width” of the wave packet) is inversely
proportional to the “spread” in wave number (∆k = Nk∆) of the waves that
are used to form the wave packet.

• Example (Problem 1.9) Hint: Error function is defined as erf(x) = 2√
π

∫ x
0
e−u

2
du.

http://www2.fizik.usm.my/tlyoon/teaching/ZCT205_1112/wave.nb
http://www2.fizik.usm.my/tlyoon/teaching/ZCT205_1112/wave.pdf
http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1112SEM2/
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erf(x→ ±∞) = ±1.

A particle of mass m is in the state

Ψ(x, t) = Ae−a[(mx2/~)+it]

where A and a are positive real constants.

(a) Find A.

(b) For what potential energy function V (x) does Ψ satisfy the Schroedinger
equation?

(c) Calculate the expectation values of x, x2, p and p2.

(d) Find σx and σp. Is their product consistent with the uncertainty principle?
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1.5 Problem Set

ZCA 205 Quantum Mechanics
Problem set for Chapter 1

1. Prove that σ2 ≡ 〈(∆j)2〉, where ∆j = j − 〈j〉, j a discrete variable.

2. Prove that for a wave function that is the solution to the Schroedinger equa-
tion, the normalisation of the wave function is time-independent,

d

dt

(∫ ∞
−∞
|Ψ(x, t)|2dx

)
= 0.
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Chapter 2

Time-independent Schroedinger
Equation

2.1 Stationary States

• Given a (time-independent) potential V (x) and the starting wave function
Ψ(x, 0), we wish to find the wave function, Ψ(x, t), for any subsequent time t
by solving the (time-dependent) Schroedinger equation.

• How to get Ψ(x, t)? By solving the Schroedinger equation:

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂2x
+ VΨ

for a specific potential V (x, t). The potential is time-dependent in most sit-
uations (not always but mostly). We will restrict ourselves only to potential
that is time-independent so that the Schroedinger equation can be solved using
separation of variables method, in which we assume

Ψ(x, t) = ψ(x)ϕ(t) (2.1)

• The most general solution could be constructed from these separable solutions
(namely, {ψn(x),ϕn(t)}, n = 1, 2, · · · ).

• Taking the time partial derivative and second order spatial partial derivative
of Eq.(2.1),

∂Ψ

∂t
= ψ

dϕ

dt
,
∂2Ψ

∂2x
=
d2ψ

dx2
ϕ. (2.2)

21
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• Plug in Ψ(x, t) = ψ(x)ϕ(t) to the Schroedinger equation,

i~ψ
∂ϕ

∂t
= − ~2

2m

d2ψ

dx2
ϕ+ V ϕψ. (2.3)

• Divide both sides of Eq.(2.3) by φϕ,

i~
1

ϕ

dϕ

dt
= − ~2

2m

1

ψ

d2ψ

dx2
+ V (x). (2.4)

• LHS is a function of t alone while the RHS is a function of x alone. Equation
2.4 is true only if both sides equal to a constant. We will call this constant E,
so that

dϕ

dt
= −iE

~
ϕ, (2.5)

− ~2

2m

d2ψ

dx2
+ V (x)ψ = Eψ. (2.6)

Time-independent Schroedinger equation (TISE)

• Separable method has turned a partial differential equation of two variables
into two uncoupled ordinary differential equations.

• The solution to the time-dependent part, Eq. (2.5) is

ϕ(t) = e−iEt/~.

The coefficient to e−iEt/~ in ϕ is absorbed into ψ.
Exercise: Show that ϕ(t) = e−iEt/~ is a solution to Eq.(2.5).
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• Some important properties of the separable solutions ψ(x)e−iEt/~:

1. Ψ(x, t) = ψ(x)e−iEt/~ are stationary states. Despite being time-dependent,
the probability density does not:

|Ψ(x, t)|2 = Ψ∗Ψ = ψ∗e+iEt/~ψe−iEt/~ = |ψ(x)|2,

The expectation value of any dynamical variable for the stationary state
Ψ(x, t) = ψ(x)e−iEt/~ is also time-independent:

〈Q(x, p)〉 =

∫
Ψ∗Q

(
x,−i~ d

dx

)
Ψdx =

∫
ψ∗Q

(
x,−i~ d

dx

)
ψdx

For a particle in a stationary state, every expectation value is constant
in time, as the time-dependent part, ϕ(t) = e−iEt/~ drops out when eval-
uating the probability density or expectation value.

2. Stationary states are states of definite total energy. Total energy in clas-
sical mechanics is called the Hamiltonian:

H(x, p) =
p2

2m
+ V (x).

In QM, the corresponding Hamiltonian operator is obtained by p→ ~
i
∂
∂x

:

Ĥ = − ~2

2m

∂2

∂x2
+ V (x).

The time-independent Schroedinger equation, expressed in terms of Hamil-
tonian, is

Ĥψ = Eψ.

Compare this equation with Eq.(2.6). The expectation value of the total
energy is

〈H〉 =

∫
ψ∗(Ĥψ)dx = E

∫
|ψ|2dx = E.

Hence, it is clear now that the separable constant E actually is the total
energy. Moreover, the variance of H is

σ2
H = 〈H2〉 − 〈H〉2 = E2 − E2 = 0,

where we have made used of the result that 〈H2〉 = E2.

This means measurements of the total energy for a particle in stationary
state (a separable solution to the TISE) is certain to return the same
value E.
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3. The time-independent Schroedinger equation yields an infinite collection
of solutions {ψ1(x), ψ2(x), · · · }, each with its associated value of the
separation constant {E1, E2, · · · }; thus there is a different wave function
for each allowed energy:

Ψ1(x, t) = ψ1(x)e−iE1t/~,Ψ2(x, t) = ψ2(x)e−iE2t/~, · · ·

One can check that the linear combination of solutions,

Ψ(x, t) =
∞∑
n=1

cnψn(x)e−itEn/~

is itself a solution. In short, the total solution (i.e., the most general
solution) is a linear combination of separable solutions.

Exercise: Show this.

• In order to completely solve the general time-independent Schroedinger equa-
tion, we need to find the coefficients cn that match the initial condition of a
problem at hand. In most cases we will encounter, the initial condition is the
profile of the wave function at time t = 0, say f(x). We need to solve for the
coefficients (which are the unknowns) such that the wave function at zero time
Ψ(x, 0) is matched to that of f(x).

• The strategy:

1. First solve the time-independent Schroedinger equations for the complete
set of stationary states, {ψ1(x), ψ2(x), · · · }, each with its own associated
energy {E1, E2, · · · }.

2. Find the general solution at t = 0, i.e., Ψ(x, 0) =
∑∞

n=0 cnψn(x) by finding
the coefficients cn that fit the initial and boundary conditions.



2.1. STATIONARY STATES 25

3. Once all the cn are found, the general time-dependent solution is obtained
as

Ψ(x, t) =
∞∑
n=0

cnψn(x)e−itEn/~ =
∞∑
n=0

cnΨn(x, t) (2.7)

• The separable solutions themselves, Ψn(x, t) = ψn(x)e−iEnt/~ are stationary
states in the sense that all probability and expectation values are time-independent.

• However, for the most general solution, Eq.(2.7), probability density and ex-
pectation values are time-dependent as it contains different components of
stationary states, which exponents in e−itEn/~ do not cancel.

• Euler’s formula is relevant here,

eiθ = cos θ + i sin θ.

• Note also the probability is oscillating in time, hence, the state represented by

Ψ(x, t) = c1ψ(x)1e
−iEtt/~ + c2ψ(x)2e

−iEtt/~

is not a stationary state. The state Ψ(x, t), also a solution to the TDSE, is
formed by a linear combination of two TISE solutions ψ1, ψ2 with weights c1

and c2 respectively. Although ψ1 and ψ1 are stationary state by themselves,
the linear combination of them is not.
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• Now, be advised to adjust yourself to get familiarised with the following state-
ment which is going to occur repeatedly in the study of QM: A linear combina-
tion of solutions to the TISE (TDSE) is also a solution to the TISE (TDSE).
such as the example above.

Solution

Given d2ψ(x)
dx2 = 2m

~ [V (x)− E]ψ(x), if E < Vmin, where Vmin the minimal of

V (x), x ∈ (−∞,∞), then ψ and d2ψ(x)
dx2 always have the same sign: If ψ(x) is positive

(negative), then d2ψ(x)
dx2 is also positive (negative). This means that ψ always curves

away from the x-axis (see Figure 2.1). In either cases (ψ(x) starts out positive or
negative), |ψ(x)| → ∞ as x→ ±∞. In order for ψ(x) to remain normalisable, this
is not to be allowed. Hence, we we must not allow E < V (x)min, ∀x ∈ (−∞,∞).

Figure 2.1: Behavior of ψ(x) when ψ and d2ψ(x)
dx2 always have the same sign.



2.2. THE INFINITE SQUARE WELL 27

2.2 The Infinite Square Well

V (x) =

{
0, if 0 ≤ x ≤ a

∞, otherwise

Figure 2.2: The infinite square well potential

• This is the most illustrative example of how the quantum mechanical machin-
ery is used to solve the Schroedinger equation.

• ψ(x) outside the infinite well is zero.

• Inside the well, i.e., 0 ≤ x ≤ a, V = 0. The time-independent Schroedinger
equation (TISE) becomes

− ~2

2m

d2ψ

dx2
= Eψ,

or
d2ψ

dx2
= −k2ψ, where k ≡

√
2mE

~
; k2 ≥ 0 (2.8)

• The energy, E, must be positive (otherwise the wave function would not be
normalisable). We have proven this in Problem 2.2 above, i.e., E > Vmin = 0
(Vmin = 0 in our case here).

• The general solution to Eq. (2.8) is

ψ(x) = C1e
ikx + C2e

−ikx = A sin kx+B cos kx.
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Exercise: Show this.

The arbitrary constants A,B are fixed by the boundary conditions of the
problem.

• For the infinite square well, where V →∞ outside the well, there is only one
boundary condition, i.e., the wave function ψ(x) must be continuous. For this
to be true, it is required that at the boundaries,

ψ(x = 0) = ψ(x = a) = 0;

so as to join onto the solution outside the well, ψ(x) = 0 for x ≤ 0, x ≥ a.

•
ψ(0) = A sin 0 +B cos 0 = B

so B = 0, and hence
ψ(x) = A sin kx

Then ψ(a) = A sin ka = 0. Since A 6= 0 (or else the solution would become
trivial), we must have

ka = 0,±π,±2π,±3π, · · ·

k 6= 0 (or else it would imply the solution is trivial), hence we obtain a set of
distinct solutions, each of them is characterised by an positive integer:

kn =
nπ

a
, with n = 1, 2, 3, · · ·

• As a result, the possible values of E are

En = p2
n/2m =

~2k2
n

2m
=
n2π2~2

2ma2
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• The energy of a quantum particle in the infinite square well can only be one
of these allowed values.

• The constant A can be found by normalisation of ψ∫ a

0

|ψ|2dx = 1

which gives A =
√

2/a

Exercise: Show this.

•

ψn(x) =

√
2

a
sin
(nπ
a
x
)
.

• The TISE has an infinite set of solutions (one for each positive integer n).

• The n = 1 solution is known as the ground state. E1 is the ground state
energy, the lowest of all En. For other n, they are known as excited states.
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• Three important properties of ψn

1. They are alternately even and odd, with respect to the center of the
well (i.e., x = a/2)

2. As n increases, each successive states has one more node. ψ1 has none,
ψ2 has one, ψ3 has two, and so on.

3. They are mutually orthogonal,∫
ψm(x)∗ψn(x)dx = δmn.

Exercise: Proof this.

δmn is the so-called Kronecker delta function

δmn =

{
0, if m 6= n

1, if m = n

4. They are complete: Any other function f(x) can be expressed as linear
combination of them:

f(x) =
∞∑
n=1

cnψn(x) =

√
2

a

∞∑
n=1

cn sin
(nπ
a
x
)
.

Loosely, cn represents how much of ψn is contained in f(x). It can be
projected out from f(x) using Fourier’s trick that exploits the orthog-
onality of {ψn}:

cn =

∫
ψn(x)∗f(x)dx. (2.9)

Exercise: Show this.
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• The stationary states are:

Ψn(x, t) =

√
2

a
sin
(nπ
a
x
)
e−itEn/~ (2.10)

where En = n2 π2~2

2ma2 .

• The most general solution to the time-dependent Schroedinger equation (TDSE)
is a linear combination of stationary states:

Ψ(x, t) =
∞∑
n=1

cnΨn(x, t) =
∞∑
n=1

cn

√
2

a
sin
(nπ
a
x
)
e−itEn/~ (2.11)

• Note that the stationary states Eq. (2.10) and the most general solution,
Eq.(2.11), are two different thing. Make sure that you know their distinc-
tion.

Exercise: Check that indeed Ψ(x, t) is a solution to the TDSE.

• At t = 0 the wave function assumes an initial profile f(x) ≡ Ψ(x, 0). This is
the initial condition to the problem. The initial profile is usually considered a
known quantity.

• Given a specific form of the initial condition f(x), we need to work out the
coefficients cn (which are t- and x-independent) such that the wave function
at t = 0 fits the initial condition. Specifically, we need to find cn such that the
RHS of Eq.(2.11) match the given initial profile f(x)

• The coefficients cn can be obtained via Fourier’s trick, Eq.(2.9):

cn =

∫
ψn(x)∗f(x)dx =

∫ ∞
−∞

√
2

a
sin
(nπ
a
x
)
f(x)dx =

√
2

a

∫ a

0

sin
(nπ
a
x
)
f(x)dx
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• To summarise the procedure to calculate the wave function in the infinite
square well:

1. Given an initial profile f(x), evaluate the coefficient cn.

2. Then plug in these coefficients into Eq.(2.11). That’s it. The most general
solution of the wave function to the Schroedinger equation for the infinite
square well is obtained.

3. Armed with this solution, we can proceed next to use it to calculate the
expectation values for any dynamical variable.

• The procedure of calculation for other form of potentials are exactly the same
as for the infinite square well except the functional form of the stationary
states ψn(x) and the allowed energies En would be different in that case.
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• What is the physical meaning of cn?

• Every time you measure the observable energy of a quantum particle in state
Ψ, you will obtain a discrete number En. |cn|2 is the probability of getting the
particular value En when you make a measurement.

• The probability when summed over all allowed states n must be normalised:

∞∑
n=1

|cn|2 = 1

Exercise: Proof this relation for any arbitrary t-dependent state Ψ(x, t).
Hint: Make use of the normalisation condition

∫
|Ψ(x, t)|2 = 1 and the or-

thonormality of the stationary states,
∫
ψ∗n(x)ψm(x)dx = δmn.

• We can also show that the expectation value of the energy 〈H〉 can be obtained
from the knowledge of the coefficients cn via

〈H〉 =
∞∑
n=0

|cn|2En.

Exercise: Proof this.
Hint: Make use of (1) the definition 〈H〉 =

∫
Ψ∗HΨ, (2) the TISE in terms

of Hamiltonian, HΨn = EnΨn, and that the wave function Ψ is a linear com-
bination of the stationary states, Ψ(x, t) =

∑∞
n=1 cnψn(x)e−itEn/~.
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• Note that the expectation value of energy is a constant. This is a manifestation
of conservation of energy in QM.

Example 2.3 Calculate the expectation value of energy for the particle in
Example 2.2.

You got to check out the convergence of infinite series
∑

n=1,3,5,···
1
n4 yourself

from either Murray Spiegel or revisit your ZCA 110. Is 〈H〉 larger, equal or smaller
than the ground state energy E1 = π2~2

2ma2 ? Explain why.

2.3 The Harmonic Oscillator

• Quantum harmonic oscillator suffers a potential of the parabolic form V (x) =
1
2
mω2x2, where ω2 a positive constant (angular frequency squared), m the

mass of the oscillator.

• In practice, in the neighborhood of a local minimum (x = x0), a generic
potential (Fig. 2.4) can be approximated by a harmonic potential of the form
(by Taylor expanding the potential V (x) about x = x0):

V (x) ∼=
1

2
V ′′(x0)(x− x0)2

• As such, quantum harmonic oscillator (QHO) is a very important topic in QM
as it provides very useful approximated solutions to many generic problem
(such as phonon oscillation in periodic solid crystals, where the ground state
of the periodic potential can be approximated by a harmonic potential.)

• TISE for a 1D harmonic oscillator:

− ~2

2m

d2ψ

2x2
+

1

2
mω2x2ψ = Eψ. (2.12)

• We will solve Eq.(2.12) using an analytical method – power series (we will skip
the ladder operator method).
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2.3.1 Analytical Method

• To simplify the complexity of the equation, we introduce dimensionless variable
ξ in place of position variable x,

ξ = x

√
mω

~
.

• ξ is pronounced as “xi”.

• The TISE then reads

d2ψ

dξ2
= (ξ2 −K)ψ, (2.13)

where K (also dimensionless) is the energy in unit of (1/2)~ω,

K ≡ 2E

~ω
.

Exercise: Show this.
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• We wish to solve Eq.2.13 for ψ(x) and obtain the allowed values of K.

• The strategy we would employ in the following is to first look at the behaviour
of the wave function solution to the TISE in the ξ → ∞ limit. This will
provide very insightful information to how the true solution shall behave. We
could ‘build up’ the true solution based on ξ.

• To begin with, we know that the solution ψ(ξ) must be well-behave (normal-
isable, finite, continuous) throughout all values in ξ, including in the ξ → ∞
limit.

• In this limit, Eq.(2.13) becomes

d2ψ

dξ2
= ξ2ψ, (2.14)

• The solution to this second order ordinary different equation is

ψ(ξ) ≈ Ae−ξ
2/2 +Be+ξ2/2,

A,B two arbitrary constants to be fixed by boundary conditions.
Exercise: Prove this.

.

• The B term has to be dropped as it causes ψ(ξ) not normalisable (Be+ξ2/2

blows up as |ξ| → ∞).

• As such, ψ(ξ) ∼ e−ξ
2/2 at large ξ.
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• In the intermediate range of ξ, we expect ψ(ξ) to be represented by

ψ(ξ) = h(ξ)e−ξ
2/2, (2.15)

where the (yet unknown) functions h(ξ) behave in such a way that ψ(ξ) →
e−ξ

2/2 at large ξ.

• So now the problem is recast into finding the form for h(ξ), which is the
solution to the equation (a supposedly easier task than solving ψ(x) directly
from the original TISE):

d2h

dξ2
− 2ξ

dh

dξ
+ (K − 1)h = 0. (2.16)

Eq.(2.16) is obtained by substituting Eq.(2.15) into the TISE equation Eq.(2.13).
Exercise: Show this.

• Eq.(2.16) is to be solved using power series method by assuming the solution
could be expanded into the series form

h(ξ) =
∞∑
j=0

ajξ
j. (2.17)

• In practice, what we really need to know are the values of the coefficients aj
for all j.

• Differentiating h(ξ) with respect to ξ once and twice, then substitute the
results into Eq.(2.16), we obtain the relation

∞∑
j=0

[(j + 1)(j + 2)aj+2 − 2jaj + (K − 1)aj] ξ
j = 0 (2.18)

for all powers of j.
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• The coefficients to ξj must be zero (because ξj are not) so that the RHS of
Eq.(2.18) is zero. Hence, we obtain the recursion formula that relates an a
for the present j with previous j:

aj+2 =
2j + 1−K

(j + 1)(j + 2)
aj. (2.19)

• The recursion formula allows us to obtain all aj based on two “seed” coefficients
(unknown at this stage), a0 and a1.

• a0 generate all even coefficients aj, j = 2, 4, 6, · · · .

• a1 generate all odd coefficients aj, j = 3, 5, 7, · · · .

• Hence we write the solution h(ξ) in terms of the sum of two parts with definite
parity,

h(ξ) = heven(ξ) + hodd(ξ),

where

heven(ξ) ≡ a0 + a2ξ
2 + a4ξ

4 + · · · ,

hodd(ξ) ≡ a1 + a3ξ
3 + a5ξ

5 + · · · .

• The exact values of the arbitrary constant a0, a1 are to be fixed by normalisa-
tion condition but usually not of much interest.

• But this is not the end of the story. In order to guarantee normalisation in
ψ(ξ), the functions h(ξ) must behave in such a ways that ψ(ξ) never blow up
in the large ξ limit.

• Indeed, ψ(ξ) = h(ξ)e−ξ
2/2, with h(ξ) as defined in Eq. 2.17, does blow up at

large |ξ|,
ψ(ξ)→ eξ

2/2 as ξ →∞.

(See the textbook Griffth for discussion on this.)

• How to avoid ψ(ξ) from blowing up? This can be achieved if the coefficients aj
in the series expansion h(x) =

∑
ajξ

j terminates at a cut-off (i.e., a “highest”
j), say, j = n, i.e, aj = 0 for all j > n.

• If we truncate the series after the n-th term, the solution would look like

ψ(ξ) = (a0ξ
0 + a1ξ

1 + a2ξ
2 + a3ξ

3 + · · ·+ anξ
n)e−ξ

2/2.
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• Look at the recursion formula, Eq. (2.19). We can impose automatic trun-
cation into the series of h(ξ) by introducing a non-negative integer n (i.e.,
0,1,2,3,...) and tying it with the allowed energy E via

K = 2n+ 1.

• In this way, either the odd or even terms in the power series will terminate for
j > n.

• Note that the power series
∑
ajξ

j = hodd(ξ) + heven(ξ) comprises of both an
even and odd part. The condition K = 2n + 1 only truncates either the odd
or even part (but not both). For example, if n is even, only the even series is
truncated but not the odd series.

• To truncate the series of the opposite parity, we need to impose by hand
another condition: that if n is odd, the even parity part must be set to zero
“by hand”, heven(ξ) = 0, i.e, a0 = 0 (Hence the subsequent even coefficients
a2 = a4 = a6 = · · · = 0.); if n is even, the odd parity part hodd(ξ) = 0, i.e,
a1 = 0 (Hence the subsequent odd coefficients a3 = a5 = a7 = · · · = 0.);

• For example, if n is an odd value, n = 5, a7 = a9 = · · · = 0. a1, a3, a5 are
non-zero. a0 = a2 = a4 = · · · = 0. (The latter is imposed “by hand”).

• For example, if n is an even value, n = 4, a6 = a8 = a10 = · · · = 0. a0, a2, a4

are non zero. a1 = a3 = a5 = · · · = 0. (The latter is imposed “by hand”).

• To summarise: If we (1) impose the condition K = 2n + 1, and (2) shut off
the power-series of the opposite parity, the solution

ψn(x) = e−ξ
2/2(a0ξ

0 + a2ξ
2 + a0ξ

0 + · · · anξn)( for n even),

or

ψn(x) = e−ξ
2/2(a1ξ

1 + a3ξ
3 + a5ξ

5 + · · · anξn)( for n odd)

will be well behaved (i.e., normalisable).

• We have not proved this (normalisation of ψn(x)) with mathematical rigor,
but we can investigate the numerical behavior of ψn(x) to show that indeed
ψn(x) is well behave for arbitrary n.
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• As a result the normalisation condition forces the energy E to assume only
discrete values according to

K = 2n+ 1→ En = (
1

2
+ n)~ω, n = 0, 1, 2, 3, · · ·

We say that the energies of the QHM is quantised. It can not assume a con-
tinuous value as like in classical mechanics. Now each solution is characterised
by a non-negative integer n, ψn(ξ).

• One can show numerically that if E assume a value other that allowed, (say
E = 0.49~ω or 0.51~ω), the solution ψ(ξ) will not be normalisable (they blow
up at large |ξ|), see Figure 2.3.

Figure 2.3: Solutions to the TISE for (a) E = 0.49~ω, and (b) E = 0.51~ω

Exercise: Assume n is 1, write down h(ξ), hence the stationary wave function,
ψ1(x). We denote the h(ξ) function characterised by n = 1 as h1(ξ).
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Exercise: Assume n is 2, write down h(ξ), hence, ψ2(x). We denote the h(ξ)
function characterised by n = 2 as h2(ξ).

• The functions hn(ξ) is a polynomial of degree n in ξ, involving either even or
odd powers only (depend on whether n is even or odd). Apart from overall
factor a0 or a1, hn are known as Hermite polynomials. See Table 2.1.

• In general, the normalised stationary states are given by the form

ψn(x) = hn(ξ)e−ξ
2/2 =

1√
2nn!

Hn(ξ)e−ξ
2/2

• Figure 2.7(a) plots ψn(x) for the first few n’s.

• The Hermite polynomials can be generated from the Rodrigues formula:

Hn(ξ) = (−1)neξ
2

(
d

dξ

)n
e−ξ

2

.

• Higher order Hermite polynomials Hn+1 can be easily generated from the lower
order ones, Hn, using the recursion relation:

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ).
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Exercise: Derive H1, H2, H3 from the Rodrigues formula.

Exercise: Derive H3, H4 from H1, H2 using the recursion relation. As a check,
the function H3 derived using both methods must agree.
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• Three features of the QM solutions for the harmonic oscillator:

1. |ψn|2 6= 0 outside the harmonic well. These are classically forbidden
regions of x. Recall that classically, the energy of a harmonic oscilla-
tor is given by E = K + V = (1/2)mω2x2 + (1/2)mω2(A2 − x2) =
(1/2)mω2A2. The kinetic energy K = (1/2)mω2x2 can never be larger
than E = (1/2)mω2A2 because −A ≤ x ≤ A. A is the amplitude of the
oscillator.

2. In the odd states, probability to find the oscillator is always zero at the
center (x = 0) of the potential.

3. Figure 2.7(b) plots |ψ100(x)|2. As n→∞, |ψn|2 behaves much like what
is expected of a classical harmonic oscillator if one plots the probability
density of finding the oscillator as a function of position x. This is an
particular example of the correspondence principle that says: in the n→
∞ limit, results of a quantum calculation must reduce to that of classical
calculation.

2.4 The Free Particle

• TISE for a free particle:

− ~2

2m

d2ψ

dx2
= Eψ

or, equivalently,
d2ψ

dx2
= −k2ψ, where k ≡

√
2mE

~
.

• This is similar to the case of particle in the infinite square well (except that
now the width a→∞.)

• The general solution to the TISE

ψk(x) = Aeikx +Be−ikx

• There is no boundary condition to restrict the possible value of k (hence E)
as in the infinite square well; the energy of the free particle E can take any
positive value (recall why E can’t be negative?).

• In relation to this, there is no quantization of states characterised by the
integer n as in the the case of infinite square well or the QHO. k or E is not
quantised in this case.
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• Tacking on the time-dependence function e−iEt/~ to ψk(x), the “stationary”
state for the free particle is

Ψk(x, t) = ψk(x)e−itE/~ = ψk(x)e−
it~k2
2m = Aeik(x− ~k

2m
t) +Be−ik(x+ ~k

2m
t). (2.20)

• The first term in the RHS represents a traveling plane wave in the +x direction,
whereas the second term a traveling plane wave in the -x direction.

• Rewrite Eq.(2.20) compactly as

Ψk(x, t) = Aeik(x− ~k
2m

t);

k ≡ ±
√

2mE

~
, with

{
k > 0⇒ traveling to the positive direction

k < 0⇒ traveling to the negative direction

(2.21)

• The “stationary states” of the free particle are traveling waves (this is unlike
the cases of QHO or infinite square well) with a wavelength λ = 2π/|k| and a
corresponding momentum p = ~|k|.

• An disturbing feature: the wave function is not normalisable,∫ ∞
−∞

Ψ∗kΨkdx→∞.

• This means the “stationary” wave function Ψk(x, t) does not represents a phys-
ical state. In other words, there is nothing such as a free particle with a definite
energy. To find a way out of this disturbing feature for the free particle, we
turn to the most general solution to the TDSE for the free particle (instead of
looking at the “stationary states” Ψk(x) per se.

• Recall that the most general TDSE solution to quantised systems (e.g., infi-
nite square well, harmonic potential) is a sum over all stationary states each
indexed by the quantum number n, i.e., Ψ(x, t) =

∑
all n cnψn(x)e−itEn/~.

• For the free particle case, the most general solution to the TDSE is not ob-
tained via a discrete sum over all n but an integration over the continuous
variable k instead,

Ψ(x, t) =
1√
2π

∫ ∞
−∞

φ(k)ψk(x, t)e
−itE/~dk =

1√
2π

∫ ∞
−∞

φ(k)ei(kx−
~k2
2m

t)dk.

Here 1√
2π
φ(k)dk plays the role of cn, and instead of

∑
n cn(· · · ), we have

1√
2π

∫∞
−∞(· · · )φ(k)dk. The factor 1/

√
2π is introduced for the sake of later

convenience (so that it is consistent with the definition of Fourier transforma-
tion).
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• Ψ(x, t) contains a range of k, hence a range of energies and speeds. Hence we
understand that Ψ(x, t) is a wave packet.

• Most importantly, Ψ(x, t) is normalisable. It does represent a physical state.

• In other words, in QM, a free particle cannot be in a “stationary state”, Ψk,
because such “stationary states” are not normalisable for a free particle – it is
unphysical. Instead, a free particle must be represented as a wave packet that
has a large spread of wave number k (hence a large spread in energy E).

• Now, the problem remains to find what is φ(k) given the initial wave function
profile Ψ(x, 0). This the equivalence to the determination of cn, given a known
initial profile Ψ(x, 0) =

∑
n cnψn(x), when we discussed the QHO and the

infinite square well.

• If we know the initial profile Ψ(x, 0), we match it to 1√
2π

∫
φ(k)eikxdk to find

what φ(k) is.

• This is a classic Fourier analysis problem which answer is provided by Plancherel’s
theorem,

f(x) =
1√
2π

∫ ∞
−∞

F (k)eikxdk ⇔ F (k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx.

• F (k) is the Fourier transform of f(x); f(x) inverse Fourier transform of F (k).

• Here, we want to know what φ(k) is, given f(x) ≡ Ψ(x, 0). This could be
obtained via the Fourier transforms:

φ(k) =
1√
2π

∫ ∞
−∞

Ψ(x, 0)e−ikxdx. (2.22)

• φ(k) is the Fourier transform of Ψ(x, 0).

• Warning: Do mind the sign in the exponential factor in these Fourier trans-
form conjugate pair e±ikx.

Example 2.6

A free particle, which is initially localised in the range −a < x < a, is released
at time t = 0:

Ψ(x, 0) =

{
A, if− a < x < a,

0, otherwise,
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where A and a are real positive constants. Find Ψ(x, t).

Solution: Refer Figure 2.8. First find the normalisation constant A:∫ ∞
−∞
|Ψ(x, 0)|2dx = 1⇒ A =

1√
2a
.

Then work out φ(k) using Eq.(2.22):

φ(k) =
1√
2π

1√
2a

∫ a

−a
e−ikxdx = · · · = 1√

aπ

sin(ka)

k
. (show this)

• Then put it back to Ψ(x, t) = 1√
2π

∫∞
−∞ φ(k)ei(kx−

~k2
2m

t)dk, and we obtain

Ψ(x, t) =
1

π
√

2a

∫ ∞
−∞

sin(ka)

k
ei(kx−

~k2
2m

t)dk. (2.23)

• The integration cannot be solved analytically (in practice one solves it numer-
ically.)

• From Eq. (2.23), we see that once the time evolution is switched on (i.e.,
t > 0), the initial wave function profile Ψ(x, t) begins to spread in width,
moving towards both sides and decreases in amplitude. This is similar to the
spreading of a ripple from the center of a water generated by a perturbation.
Initially well localised, the wave will become less and less localised as time
goes by, see Figure 2.8.

• φ(k) describes the free particle (at t = 0) in terms of k = p/~, whereas Ψ(x, 0)
the free particle (at t = 0) in terms of position, x.

• We will consider two limits of the free particle wave function solution at t = 0.
These limits are (i) a� 1 and (ii) a� 1. We will see that in these limits, the
position and momentum of the free particle display “antagonistic” behaviour
consistent with Heisenberg uncertainty principle: the lesser is the spread in
position (momentum) the larger is the spread in momentum (position).

• In the a� 1 limit,

–

φ(k)
a�1−→

√
a

π
.
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– Note that this limiting behavior is obained with the help of L’Hopital’s
rule, limx→0

sinx
x

= 1.

– Compare this with

Ψ(x, 0) =

{
A, if− a < x < a,

0, otherwise.

– See Figure 2.9. A small spread in position space, σx ' a (where a � 1)
is associated with a large spread in momentum space, i.e., σk →∞.

– In other words, in the limit a� 1, where the particle is sharply localised
in position (with a narrow width in Ψ(x, 0)), it’s spread in momentum
must be large (seen from the fact that φ(k) a flat constant throughout
all values k).

• Now consider φ(k) in the a � 1 limit: Multiply the RHS of φ(k) by a factor
of a

a
,

–

φ(k) =

√
a

2π

sin(ka)

ka
.

– For a fixed value of a, φ(k) peaks around k = 0 with a width σk ≈
2π
a

, see Figure 2.10. The width of φ(k) in momentum space is inversely
proportional to a.

– If we take a → ∞, Ψ(x, 0) becomes a flat constant (i.e. the spread in
position becomes infinitely large), yet this results in a much narrower
φ(k) in momentum space. Again, we see the HUP is in action here.
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–

• When time evolution is switched on:

– Initially the wave is well located within σx(t = 0) = 2a (with a tiny
spread in position) [(a) in Figure 2.9]. From the viewpoint of Fourier
analysis, the highly localised wave (in terms of position space x) is made
up of many waves with various wavelengths, hence the spread in σk is
huge (“it is made up of many, many wave numbers”). Mathematically,
this is translated into the statement σk(t = 0) → ∞, [see (b) in Figure
2.9].

– When t begins, the wave starts to spread, and σx(t → ∞) → ∞. The
wave tends toward a constant throughout all x [(a) in Figure 2.10]. From
the view point of Fourier analysis, it takes much less number of waves
with different wavelength to make up such a “flat” wave (“it is made
up of only a few wave numbers”). In other words, the wavelength is now
better defined (sharper), hence the spread in k, σk → 2π/a, [(b) in Figure
2.10].

– To summarise, for a fixed a, the time-development behavior of the wave
function is such that,

σx(t = 0) = 2a−→σx(t→∞)→∞

σk(t = 0)→∞−→σk(t→∞)→ 2π/a

Exercise (Problem 2.8):
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Show that Aeikx+Be−ikx and C cos kx+D sin kx are equivalent ways of writing the
same function of x, and determine the constants C and D in terms of A and B, and
vice versa. Hint: Use Euler’s equation, eix = sinx+ i cosx.

Comment: In quantum mechanics, when V = 0, the exponentials represent
traveling waves, and are most convenient in discussing the free particle, whereas
sines and cosines correspond to standing waves, which arise naturally in the case of
the infinite square well.
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2.5 The Delta-Function Potential

2.5.1 Bound states and scattering states

• Recap

– Two different kind of TISE solutions ψ(x) (stationary states) were en-
countered so far:

1. ψn(x), renormalisable, labeled by a discrete index n, as in QHO,
infinite square well;

2. ψk(x), non-renormalisable, labeled by continuous variable k, as in
the free particle.

– In both cases, the general solution to the TDSE is a linear combination
of these stationary states, i.e., Ψ(x, t) =

∑∞
n=0 cnψn(x)e−itEn/~ for case 1,

Ψ(x, t) =
∫ k=∞
k=−∞ φ(k)ψk(x)e−i

~k2
2m

tdk for case 2.

– What is the significance of this distinction (continuous variable k vs.
discrete index n)?

– It turns out that a state indexed by a continuous variable is a scattering
state, whereas that by discrete index a bound state.

• The following discussion on the bound state/scattering states is in the context
of classical mechanics:

– Classically, a particle (with a given constant energy E) subjected to a
potential V (x) could be either (a) trapped between two “turning points”
separated by a finite distance, or (b) free to roam in one of the following
regions: −∞ ≤ x < xTP, or xTP ≤ x ≤ ∞ or −∞ ≤ x ≤ ∞.

– Case (a) corresponds to the situation as in Figure 2.12(a) and Figure
2.12(c). The energy of the particle, E, is such that V (xTP1) ≤ E ≤
V (xTP2). These are classical bound states.

– Case (b) corresponds to the situations as depicted in Figure 2.12(b). The
energy of the particle, E, in the left figure in Figure 2.12(b) is such that
E ≥ V (x) for x ≤ xTP. For the right figure in Figure 2.12(b), E > V (x)
for −∞ ≤ x ≤ ∞. These are classical scattering states.

– Note that in Figure 2.12(c), should the energy E is sufficiently raised, the
particle will “overflow” into a scattering state. This shows that whether
a particle subjected to a potential V (x) is in a bound or scattering state,
in some cases, depend on how large is E.
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– In classical mechanics, a particle can only exist in a region where the
energy of the particle E is such that E > V (x).

• The following discussion on the bound state/scattering states is in the context
of QM:

– For a QH oscillator, it is restricted to move around in the restricted region
inside the potential well. It admits only bound states. For any given fixed
energy E, there always exist a xTP such that V (x) > E when |x| ≥ xTP.

– In the free particle case, the particle is free to move around in all regions.
The free particle admits only scattering states (since E > V (x) = 0
everywhere).

– In QM, some potentials admit only bound states, some allow only scat-
tering states. Some permit both, depend on the energy of the particle
(example: finite square well).
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– In QM, a quantum phenomena known as quantum tunneling, which
has no classical analog, allows a particle to leak out from the potential
“trap” into regions which are otherwise forbidden in classical mechanics
(these are regions in x where E < V (x).) This occurs in, e.g., the QHO,
where the a non-zero wave function penetrates beyond the classically
forbidden region by a “skin-depth”.

– Two kinds of solutions to the SE correspond to bound state and scattering
state: {

E < [V (−∞) and V (+∞)]⇒ bound state.

E > [V (−∞) or V (+∞)]⇒ scattering state.
(2.24)

2.5.2 The Delta function

• Defined as

δ(x) =

{
0, if x 6= 0

∞, if x = 0,

with ∫ ∞
−∞

δ(x)dx = 1.

Figure 2.4: The Dirac delta potential well.

Exercise: What is the dimension of the Dirac delta function?
Hint: refer to the normalisation equation of it.

• δ(x− a) is a sharp spike at x = a.
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• Multiplying a function f(x) by the Dirac delta function δ(x − a) and then
integrate over all x “projects” out the value of the function f(x) at x = a:∫ ∞

−∞
δ(x− a)f(x)dx = f(a).

• Consider a hypothetical potential well

V (x) = −αδ(x),

α a positive constant.

Exercise: What is the dimension of α?
Hint: you need to know what is the dimension of the Dirac delta function to
answer this.

• The TISE for this case is

− ~2

2m

d2ψ

dx2
− αδ(x)ψ = Eψ.

• There are two possibilities: either E > 0 (this will yield a scattering state)
or E < 0 (this will yield a bound state). Convince yourself that these cases
correspond respectively to a scattering and a bound state by referring to the
criteria Eq. (2.24).

• We will solve the TISE for the case of E < 0, and as we will see later, the
stationary solution is a localised function concentrating around x = 0 and
drops to zero as |x| → ∞. Hence it is a bound state.

• We need to solve this equation by considering the variable x in three separate
regions, namely, x < 0, x > 0 and x = 0.

• Consider the x < 0 region:

d2ψ

dx2
= −2mE

~2
ψ ≡ κ2ψ, κ ≡

√
−2mE

~2
,

κ is real and positive (since E < 0 by assumption).

• The general solution is
ψ(x) = Ae−κx +Beκx.

• A has to be set to zero so that ψ(x) remains finite as x → −∞, otherwise
ψ(x) will explode in this limit.
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• Hence,
ψ(x) = Beκx, x < 0.

• Using similar argument, we obtain the solution

ψ(x) = Fe−κx, x > 0

• At x = 0, we need to stitch together the solutions from both sides by applying
appropriate boundary conditions that:{

1. ψ is always continuous

2. dψ
dx

is continuous except at points where the potential is infinite.

(2.25)

• Boundary condition #1 requires that limx→0− ψ(x) = limx→0+ ψ(x), i.e. ψ(x =
0) = F = B.

• Hence the full (valid for all x) solution for ψ(x) is

ψ(x) =

{
Beκx, x ≤ 0

Be−κx, x ≥ 0,

Figure 2.5: Bound state wave function for the delta-function potential.

• Normalisation gives the value of B =
√
κ.

Exercise: Show this.

• Now let us look at the boundary condition #2. It does not play a role to
determine the solution; it forces energy quantisation upon the bound state
solution.
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• To see how quantisation arises, integrate the TISE around x = 0 for a small
region −ε < x < ε, ε a tiny positive number. At the end we will take the limit
ε→ 0. As a result, quantisation of energy will arise:

lim
ε→0
− ~2

2m

∫ +ε

−ε

d2ψ

dx2
dx+ lim

ε→0

∫ +ε

−ε
V (x)ψ(x)dx = lim

ε→0
E

∫ +ε

−ε
ψ(x)dx.

• The first term (apart from the constant − ~2

2m
) is

lim
ε→0

∫ +ε

−ε

d2ψ

dx2
dx = lim

ε→0

(
dψ(x)

dx

∣∣∣∣
ε

− dψ(x)

dx

∣∣∣∣
−ε

)
≡ ∆

• The second term:

lim
ε→0

∫ +ε

−ε
V (x)ψ(x)dx = lim

ε→0

∫ +ε

−ε
−αδ(x)ψ(x)dx = −αψ(0).

• The last term involving E is zero in the limit ε→ 0:

lim
ε→0

∫ ε

−ε
ψ(x)dx = 0

It represents the area of the function ψ(x) about the kink at x = 0, and this
area shrinks to zero as ε→ 0.

• Equating both terms,

− ~2

2m
∆ = αψ(0) = α

√
κ (2.26)

• Look more closely at ∆ :

∆ = lim
ε→0

(
dψ(x)

dx

∣∣∣∣
ε

− dψ(x)

dx

∣∣∣∣
−ε

)
= lim

x→0+

dψ(x)

dx
− lim

x→0−

dψ(x)

dx

• The second term on the RHS is for x < 0, where ψ(x) = Beκx, dψ(x)
dx

= κBeκx,

lim
ε→0

dψ(x)

dx

∣∣∣∣
−ε

= lim
x→0−

dψ(x)

dx
= lim

x→0−
κBeκx = κB

• Similarly for the first term, it is for x > 0, where ψ(x) = Be−κx, dψ(x)
dx

=
−κBe−κx,

lim
ε→0

dψ(x)

dx

∣∣∣∣
ε

= lim
x→0+

dψ(x)

dx
= lim

x→0+
−κBe−κx = −κB
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• Put back both expression into ∆:

∆ = −2κB,

so that now Eq.(2.26) becomes

−2κB = −2m

~2
α
√
κ⇒ κ =

m

~2
α⇒ κ2 =

m2

~4
α2 = −2

mE

~2
,

from which quantisation of energy ensues (recall that from normalisation, we
already know B =

√
κ),

E = −mα
2

2~2
.

The bound state’s energy is quantised in the sense that it admits only one
allowed discrete value (which is unlike the bound states of QHM or the infinite
square well).

• In terms of α,
√
κ =

√
mα
~ .

• The stationary wave function is ψ(x) =
√
mα
~2 e

−mα
~2 |x|, which is the only bound

state (no other excited states)

What about scattering state, with E > 0? This case will not be discussed
here. Read the textbook for more detail.

2.6 The Finite Square Well

•

V (x) =

{
−V0, for − a ≤ x ≤ a,

0, for |x| > a,

where V0 is a positive constant.
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Figure 2.6: The finite square well potential

• First, consider the case of E < 0 (bound state).

• Three regions: x ≤ −a, −a < x < a, x ≥ a.

• For the region x < −a, the TISE is

− ~2

2m

d2ψ

dx2
= Eψ, or

d2ψ

dx2
= κ2ψ,

where κ =
√
−2mE

~2 is real and positive. The solution is

ψ(x) = A exp (−κx) +B exp (κx) = B exp (κx) ,

where the term with coefficient A is dropped so that the function does not
blow up in the limit x→ −∞.

• For the region −a < x < a

− ~2

2m

d2ψ

dx2
− V0ψ = Eψ, or

d2ψ

dx2
= −l2ψ,

where l =
√

2m(E+V0)
~2 .

• We would further assume −V0 < E so that l > 0 and real (can you recall why
such an assumption is necessary?). With this assumption, the general solution
to the TISE in this region is

ψ(x) = C sin(lx) +D cos(lx).

• For the region x ≥ a, similar argument as that for the region x ≤ −a leads to

ψ(x) = F exp (−κx)

so that the stationary state does not blows up when x→∞.
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• Note that since the potential is an even function, i.e., V (x) = V (−x), we
can prove that the solution ψ(x) can always be taken to be either even (i.e.,
ψ(x) = ψ(−x)) or odd (i.e., ψ(x) = −ψ(−x)). Can you prove this statement?

• We will now proceed by assuming the solution ψ(x) an even function. For the
sake of completeness, we must also repeat the following analysis by taking the
solution as an odd function (this case will be covered later).

• Using such parity argument saves us some efforts in obtaining the solution.
Specifically, we need only to impose boundary conditions at one side of x = 0
(say at x = x0). What happen to ψ(x) and dψ

dx
at the opposite site x = −x0

can be easily inferred from ψ(x = x0), using the parity property of ψ(−x0) =
±ψ(x0). But more importantly, it allows us to treat the two solutions of
opposite parity separately (hence the working is less messy).

• In general, the existence of parity in the potential is good for us as it helps
to provide some information about the properties of the solutions even before
we solve the problem. This information also will help to ease the working of
obtainting the solutions.

• Assume ψ(x) an even function,

ψ(x) =


Fe−κx, for x ≤ −a,
D cos(lx), for − a < x < +a,

ψ(−x), for x ≥ a

• Boundary conditions (1) ψ(x) continuous; (2) dψ
dx

continuous.

• Look at the point x = a: Boundary condition (1) at this point requires

Fe−κa = D cos la

• Boundary condition (2) requires

−κFe−κa = −lD sin la

• Taking the ratio of both gives

κ = l tan(la)

• This formula (a result of imposing the boundary conditions upon the solution
of ψ(x)) gives rise to quantisation of allowed energies, as shows below:
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• Let z ≡ la and z0 ≡ a
~
√

2mV0.

• κ = l tan(la), rewritten in terms of z, z0, is a transcendental function (i.e.,
function without an analytical solution). It needs to be solve numerically.

tan z =
√

(z0/z)2 − 1.

Exercise: Show this.

Figure 2.7: Graphical solution to tan z =
√

(z0/z)2 − 1, for z0 = 8 (even states).

• The values of z for the intersections in the curves (i.e., numerical values on the
horizontal axis, let’s call it z1, z2, z3, · · · ) shown in Figure 2.6 gives the allowed
energies.

• These zn are to be determined numerically for a given set of {V0, a}. The
allowed energies in terms of zn are

En = z2
n

~2

2ma2
− V0.

• For wide, deep well, z0 � 1 because V0 � 1. As a result, the function√
(z0/z)2 − 1) is “higher” for larger z0. For large z0, the intersections would

be slightly lower than nπ/2. Hence zn ≈ nπ
2

, so that

En ≈
n2π2~2

2m(2a)2
− V0.

• Figure 2.8 illustrate the numerical behavior of the transcendental equation
generated using Mathematica code. The code can be downloaded at

http://www2.fizik.usm.my/tlyoon/teaching/ZCT205 1112/finitesw.nb

http://www2.fizik.usm.my/tlyoon/teaching/ZCT205_1112/finitesw.nb


2.6. THE FINITE SQUARE WELL 61

• For shallow, narrow well, z0 is tiny. Note that z0 is the value where the curve√
(z0/z)2 − 1 cuts the horizontal axis. The tan z curves are fixed. As z0 gets

smaller and smaller, it passes through nπ/2 from higher n towards z0 = 0.
Once it pass through z = π/2, as long as 0 < z0 < π/2, there is always one
bound state (correspond to a intersection value z ≈ ε), where ε a tiny but
non-zero positive number. The sole bound state energy in this limit is

E =
~2ε2

2ma2
− V0.

• The green coloured curve of the last graphs, with V0 = 1 in Figure 2.8 illus-
trates such situation.

Exercise: Show this. Hint: for tiny ε, tan ε ≈ ε.

Exercise: Obtain the normalisation constants F,D.

• The above analysis is valid to the even parity solution of ψ(x). It should also be
repeated for odd parity solution of ψ(x) to obtain a different set of bound states
and energies. To do so, essentially, simply replace the cos(lx) function by a
sin(lx) and go through the similar procedure of imposing boundary conditions.
Odd solution takes the form

ψ(x) =


Fe−κx, for x ≤ −a,
C sin(lx), for − a < x < +a,

ψ(−x), for x ≥ a.

Exercise: Work out the allowed energies for the odd parity case.
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Solution to equation Κ=ltan(la) for V0= 25 for even−parity solution. Note that there are only three solutions for this

choice of V0.

Κ= -
2m E

Ñ
2

, l =
2m HE-V0L
Ñ

2

In[38]:= hbar = 1;V0= 25.0;m = 1;a= 1.0;

l@ee_D := Sqrt@2 m Hee + V0LD� hbar;
k@ee_D := Sqrt@-2 m eeD� hbar;
fl@ee_D := l@eeD*Tan@a*l@eeDD;
Plot@8k@eeD, fl@eeD<, 8ee, 0, -3 V0<, AxesLabel® 8"E", "y=l;y=Κ"<, PlotLabel®
"Soltion to Κ=ltanHlaL for V0="<> ToString@V0DD

Out[42]=

-70 -60 -50 -40 -30 -20 -10
E

-30

-20

-10

10

20

30

y=l;y=Κ

Soltion to Κ=ltanHla L for V0=25.

In[43]:= hbar = 1;V0= 500.0;m = 1;a= 1.0;

l@ee_D := Sqrt@2 m Hee + V0LD� hbar;
k@ee_D := Sqrt@-2 m eeD� hbar;
fl@ee_D := l@eeD*Tan@a*l@eeDD;
Plot@8k@eeD, fl@eeD<, 8ee, 0, -2 V0<, AxesLabel® 8"E", "y=l;y=Κ"<, PlotLabel®
"Soltion to Κ=ltanHlaL for V0="<> ToString@V0DD

Out[47]=

-1000 -800 -600 -400 -200
E

-100

-50

50

100

y=l;y=Κ

Soltion to Κ=ltanHla L for V0=500.

SolutiontoequationΚ = ltanHlaLforV0 = 500 foreven-
paritysolution.Note thatthere are 11solutionsforthischoice ofV0.

Figure 2.8: Numerical solutions for the transcendental obtained using Mathematica
using various values of V0
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Solution to tan z = J z0

z
N2- 1 for V0=500, 50, 5 unit. Note that as V0�0, there is only one solution left. It is located

in  the  range  of  0  <  z  <  Π/ 2.  For  small  z,  the  roots  tend  to  occur  near  
to the values of nΠ/ 2.

In[5]:= hbar = 1;m = 1;a= 1.0;

z0= Ha� hbarL Sqrt@2 m V0D;
f2@z_D := Sqrt@Hz0�zL^2- 1D;
PlotB8f2@zD �.8V0® 500<, f2@zD �.8V0® 50<, f2@zD �.8V0® 1<, Tan@zD<,
8z, 0, 10 Pi<, PlotStyle ® 8Red, Blue, Green, Black<,

PlotLabel® 8"Red:V0=500;Blue:V0=50;Green:V0=1"<, AxesLabel® :"z", "y=
z0

z

2

- 1 ; y=tan z">F

Out[8]=

5 10 15 20 25 30
z

-5

5

10

y=

z0

z

2

-1 ; y=tan z

8Red:V0=500;Blue:V0=50;Green:V0=1<

2   finitesw.nb

Figure 2.9: Numerical solutions for the transcendental obtained using Mathematica
using various values of V0 (cont.)
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We have shown the bound state solutions. Next we are going to solve for the
scattering state solutions for the finite square well, where E > 0. We consider a
particle incident upon the potential from the left, and there is no particle incident
or reflected from the right.

• For x ≤ −a,

− ~2

2m

d2ψ

dx2
= Eψ, or

d2ψ

dx2
= −k2ψ,

where k =
√

2mE
~2 is real and positive. This is a second order differential

equation encountered in classical simple harmonic motion (there you have a t
instead of x) with a solution of the form (which you should be familiar with)

ψ(x) = Aeikx +Be−ikx.

The first term in the RHS represent a traveling wave to the right (this is the
incident particle), whereas the second a traveling wave to the left (this is the
reflected particle upon bouncing on the boundary at x = −a ). A is the
amplitude of the incident wave; B the amplitude of the reflected wave.

• For −a < x < a,

− ~2

2m

d2ψ

dx2
= (E + V0)ψ, or

d2ψ

dx2
= −l2ψ,

l =
√

2m
~2 (E + V0), real and positive; The solution is

ψ(x) = C sin(lx) +D cos(lx).

This represents a sort of standing wave that is established in the potential
well.

• For x ≥ a,

ψ(x) = Feikx +Ge−ikx.

Ge−ikx represents a traveling wave coming from the right. In our problem
under consideration, there is no boundary to the right of the potential (hence
no reflected wave from such a boundary) or any source of wave coming from
the right. As such, this term is dropped, so that

ψ(x) = Feikx, x ≥ a.
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• Imposing boundary condition (BC) #1 at x = −a gives

Ae−ika +Beika = C sin(−la) +D cos(−la) = −C sin(la) +D cos(la) (2.27)

• Imposing boundary condition (BC) #2 at x = −a gives

ik
[
Ae−ika −Beika

]
= l [C cos(la) +D sin(la)] (2.28)

• Imposing boundary condition (BC) #1 at x = a gives

Feika = C sin(la) +D cos(la) (2.29)

• Imposing boundary condition (BC) #2 at x = a gives

ikFeika = l [C cos(la)−D sin(la)] (2.30)

• The BC results in a total of 4 algebraic equations with 5 unknowns (A,B,C,D, F ).
Choose any four of these to be expressed in terms of the remaining one. We
choose to express B,C,D, F in terms of A.

B = i
sin(2la)

2kl
(l2 − k2)F, (2.31)

F =
e−2ikaA

cos(2la)− i (k2+l2)
2kl

sin(2la)
, (2.32)

Exercise: Derive Eq. (2.31), Eq. (2.32). Hint: Use Eqs. (2.30), (2.29) to solve
for C and D in terms of F , and then plug them into Eqs. (2.27), (2.28).

• The probability of finding the particle at a specific location is given by |Ψ|2, so
the relative probability that an incident particle (with an incident amplitude
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A) will be reflected back (the reflected wave has an amplitude of B) is

R =

∣∣B∣∣2∣∣A∣∣2
This is the reflection coefficient, a quantity of relevance only in region to
the left of x = −a. It tells you the fraction of the incoming number that will
bounce back.

• Likewise, to the right of x > a we can define the transmission coefficient,

T =

∣∣F ∣∣2∣∣A∣∣2
which tells you how much of the incident number has transmitted through the
potential to come out to the other side.

• To conserve probability, T +R = 1.

• The transmission coefficients can be shown to be

T−1 = 1 +
V 2

0

4E(E + V0)
sin2

(
2a

~
√

2m(E + V0)

)
.

Exercise: Show this.

• The well become “transparent” to the incident wave (i.e., T = 1) if the energy
E is set to some discrete values such that the argument in the sin2 terms
vanishes, i.e.,

2a

~
√

2m(E + V0) = nπ,

or

En = n2 π2~2

2m(2a)2
− V0.
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• Notice that this is exactly the same set of discrete energies as that of an infinite
square well.

• This phenomena is known as Ramsauer-Townsend effect. This is an ex-
ample of resonance phenomena. See Figure 2.19.

• There are two more very common forms of potential in standard QM text-
books, i.e. rectangular potential barrier and the step potential. These are
offered as your home works in the problem sets for chapter 2.
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2.7 Problem Set

ZCA 205 Quantum Mechanics
Problem set for Chapter 2
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1. Derive Eq. 2.80 in Griffiths, page 53.

2. Find the probability current J = i~
2m

(
Ψ∂Ψ∗

∂x
−Ψ∗ ∂Ψ

∂x

)
for the free particle wave

function Ψk(x, t) = Aei(kx−
~k2
2m

t).

3. Analyze the odd bound state wave functions for the finite square well. Derive
the transcendental equation for the allowed energies, and solve it graphically.
Examine the two limiting cases. Is there always an odd bound state?
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Chapter 3

Formalism

3.1 Hilbert Space

• So far we have studied a few quantum systems. Now we would like to put
them into a coherent formalism.

• Note that in the few systems studied so far, we dealed with two kinds of
mathematical constructs: wavefunctions and operators.

• In these systems, the state of a system is represented by its wave function,
wherease observables are represented by operators.

• Mathematically, the wave functions satisfy the defining conditions for abstract
vectors.

• Operator acts on these vectors as linear transformation.

• Now, you will need to recall the linear algebra learned in ZCA 110 (vector
space, linear transformation, basis, etc.)

• Consider an N -dimensional space in which a vector |α〉 lives. The vector is
represented by the N -tuple of its components, {an} with respect to a specified
orthornomal basis:

• |α〉 = |a1, a2, · · · , aN〉.

• The inner product, 〈α|β〉, of two vectors

〈α|β〉 = a∗1b1 + a∗2b2 + · · ·+ a∗NbN .

73
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• Linear transformation, T , is represented by matrices (with respect to the
specified basis). It acts on a vector to produce another vector

|β〉 = T|α〉 ⇒ b = Ta =


t11 t12 · · · t1N
t21 t22 · · · t2N
...

...
...

tN1 tN2 · · · tNN



a1

a2
...
aN .


• In QM, the “vectors” are actually functions. The algebra obey by vectors (e.g.

inner product, transformation) also applies to functions.

• Remember in ZCA 110 we studied vector space. There we learned that the
collection of all vectors constitute a vector space.

• In fact, the collection of all functions of x also constitute a vector space. You
can safely take the symbol |α〉 mentioned above as referring to a function f
without lost of generality.

• In many ways a function is mathematical not different from a vector. A N -
dimensional vector has N components:

|α〉 = |a1, a2, · · · aN〉

where these components are defined with respect to a specific basis set,

{|ê〉}.

The dimensionality of the vector space for the collections of these vectors is
N .

• In comparison to a finite dimensional vector, a function can be understood
as a “vector” with infinite number of components. The dimensionality of the
vector space for functions is infinite.

• As an example, a function f(x) can be expanded into a Taylor series containing
infinite terms,

f(x) =
n=∞∑
n=0

f (n)(0)

n!
xn =

n=∞∑
n=0

anx
n.

The components are {an} = {f
(n)(0)
n!
}, and the basis set is {xn}, n = 0, 1, 2, 3, · · · .

• One can alternatively expand the function in other basis, such as in Fourier
series:

f(x) =
n=∞∑
n=0

an cos(nπx) + bn sin(nπx).
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The components are {an} and {bn}. The basis set is {sinnπx}, {cosnπx} ,
n = 0, 1, 2, 3, · · · .

• The choice of basis set is arbitrary. This is similar to the fact that a finite
dimensional vector can be expressed in many basis set of choice.

• However, some bases are more preferred than another. For example we usually
prefer bases that are orthogonal and is normalised to 1, such as the Fourier
bases.

• In QM, the physical state represented by a wave function must be normalised:∫
|Ψ|2dx = 1.

• The collection of all square integrable functions on a specified interval

f(x) such that

∫
|f(x)|2dx <∞,

constitute a smaller vector space called Hilbert space.

• Wave functions live in Hilbert space.

• For two functions in a Hilbert space, the inner product of two functions, defined
as

〈f |g〉 ≡
∫ b

a

f(x)∗g(x)dx,

is guaranteed to exist. This can be proven on the basis that all functions in
Hilbert space is square-integrable.

• In particular, note the property

〈g|f〉 = 〈f |g〉∗.

“permuting the order in the inner product amounts to complex conjugating
it.”

•

〈f |f〉 =

∫ b

a

|f(x)|2dx

is real and non-negative.
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• Schwarz inequality: For f, g that are both square-integrable,∣∣∣∣ ∫ b

a

f(x)∗g(x)dx

∣∣∣∣ ≤
√∫ b

a

|f(x)|2dx
∫ b

a

|g(x)|2dx,

or equivalently, in short hand notation,

|〈f |g〉|2 ≤ 〈f |f〉〈g|g〉.

• The only function whose inner product with itself vanishes is 0, i.e.,

〈f |f〉 = 0⇒ f(x) = 0

• Two functions are said to be orthogonal if

〈g|f〉 = 0.

• A set of functions, {fn}, is orthornomal if they are normalised and mutually
orthornomal:

〈fn|fm〉 = δmn.

• A set of functions is complete if any other function (in Hilbert space) can be
expressed as a linear combination of them:

f(x) =
∞∑
n=1

cnfn(x).

• If the functions {fn(x)} are orthornomal, the coefficients can be “projected
out” by Fourier’s trick:

cn = 〈fn|f〉

• How to make sense of all these definition?

• Make contact with Chapter 2 - the stationary states for the infinite square
well constitute a complete orthonomal set on the inverval (0, a);

• The stationary states for the harmonic oscillator are a complete set on the
interval (−∞,+∞).
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Notes on vector space
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3.2 Observables

3.2.1 Hermitian Operator

• The expectation value of an observable Q(x, p) in QM is expressed in terms of
inner-product

〈Q〉 =

∫
Ψ∗Q̂Ψdx = 〈Ψ|Q̂Ψ〉.

• The observable has to be a real number, and it is the average of many mea-
surement:

〈Q〉 = 〈Q〉∗.

• Since 〈f |g〉∗ = 〈g|f〉 according to the definition of the inner-product, 〈Q〉 =
〈Q〉∗ leads to

〈Ψ|Q̂Ψ〉 = 〈Q̂Ψ|Ψ〉

for all wave function Ψ. You can see this easily by identifying f ≡ Q̂Ψ, g ≡ Ψ.

• The operators representing observable in QM, Q̂, has the property that

〈f |Q̂g〉 = 〈Q̂f |g〉 for all f(x), g(x).

Such operators are called Hermitian.

• The Hermitian operator Q̂ can either act on the first member or the second in
the inner product, with the same result.

• Hermitian operator arise naturally in QM because their expectation values are
real.

• Definition: Hermitian conjugate (or adjoint) of an operator Q̂ is the operator
Q̂† such that

〈f |Q̂g〉 = 〈Q̂†f |g〉

for all f and g.

• You can try to find out what is p† and x† based on this definition. It turns
out that p̂† = p̂ = ~

i
∂
∂x

, and x̂† = x̂.

• In general, a Hermitian operator is equal to its conjugate, i.e.,

Q̂† = Q̂.
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• Example: Take Q̂ ≡ p̂ = ~
i
d
dx

, the momentum operator.

〈f |p̂g〉 =

∫ ∞
−∞

f ∗
~
i

dg

dx
dx = · · · = 〈p̂f |g〉.

This can be shown by integration by parts, and the requirement that the func-
tions f(x), g(x) behave properly, i.e., they approaches to zero when x → ∞.
In QM, all wave functions obey this requirement.

Exercise: Show this.

Observables in QM are represented by Hermitian operators Q̂

3.2.2 Determinate States

• An determinate state for an observable Q is one in which every measurement
of Q is certain to return the same value (call it q).

• Example: Stationary states are determinate state of the Hamiltonian (which
is the observable energy), i.e., a measurement of the total energy on a particle
in the stationary state Ψn is certain to yield the corresponding allowed energy
En. Mathematically, such a situation is described by the statment σE = 0.

• Hence, the variance of Q in a determinate state is zero.

σ2 = 〈(Q̂− 〈Q〉)2〉 = 〈Ψ|(Q̂− q)2Ψ〉 = 〈(Q̂− q)Ψ|(Q̂− q)Ψ〉 = 0.

• Since the only function whose inner product with itself vanishes is 0, so

Q̂Ψ = qΨ
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• This is the eigenvalue equation for the operator Q̂; Ψ is an eigenfunction
of Q̂, and q is the corresponding eigenvalue. Thus

Determinate states are eigenfunctions of Q̂

• The collection of all the eigenvalues of an operator is called its spectrum.

• Example: determinate states of the total energy are eigenfunctions of the
Hamiltonian:

Ĥψn = Enψ.

The spectrum are the set of discrete eigenenergies {En}.

• Sometimes two or more linearly independent eigenfunctions share the same
eigenvalue. In that case the spectrum is said to be degenerate. For exam-
ple, in certain quantum states of an atom characterised by quantum number
(l,m), two distinct eigenfunctions ψm1,l1 , ψm2,l2 may share the same eigenen-
ergy. In this case the energy spectrum is said to be degenerate for the states
ψm1,l1 , ψm2,l2 .

• Eigenfunctions and eigenvalues can be considered as intrinsic parts of an oper-
ator. In other words, given a Hermitian operator Q̂ in QM, there always exist
a set of eigenfunctions and the corresponding eigenvalues. Our task is to find
out what are the engenfunctions and the corresponding eigenevalues of that
operator.

• Example: Consider the operator

Q̂ ≡ i
d

dφ
,

where φ is the usual polar coordinate in 2D. Is Q̂ hermitian? Find its eigen-
functions and eigenvalues.
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• As an example of a non determinate observable, consider the stationary state
n = 1 of a particle in an infinite well. The position of the particle in such a
stationary state is non determinate. Every measurement on an ensemble of
identically prepared state will yield a different measured value for x. Mathe-
matically, such a situation is described by the statment σx 6= 0.

• If a given state is determinate for an observable A in general does not mean
the same state is determinate for other observable B. In the example given
above, stationary state n = 1 of a particle in an infinite well is determinate
state for the energy observable but not for the position observable.

3.3 Eigenfunctions of a Hermitian Operator

• Two categories of Hermitian operators: those with discrete eigenvalues and
those with continuous eigenvalues.

• Eigenfunctions with discrete eigenvalues are normalisable and lie in Hilbert
space. They represents physically realisable states.
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• Eigenfunctions with continuous eigenvalues are not normalisable, hence do not
represents physically realisable states.

• Hermitian operator with discrete eigenvalues: e.g., Hamiltonian for harmonic
oscillator, Hamiltonian for infinite square well, etc.

• Hermitian operator with continuous eigenvalues: e.g., Hamiltonian for free
particle.

• Hamiltonian for finite square well has both.

• Renormalisable eigenfunctions of a Hermitian operator have three important
mathematical properties: (1) Their eigenvalues are real, and (2) eigenfunctions
belonging to distinct eigenvalues are orthogonal. (3) The eigenfunctions of
an observable operator are complete: Any function in Hilbert space can be
expressed as linear combination of them. The statement (3) is taken as an
axiom of QM.

• (1) is mathematically expressed as: Q̂f = qf , then q = q∗.

• (2) is mathematically expressed as: Q̂g = q′g, Q̂f = qf . If q 6= q′, then
〈f |g〉 = 0.

• That explains why in the harmonic oscillator or in the infinite square well, the
stationary states are orthogonal: because they are all eigenfunctions of the
Hamiltonian of distinct eigenvalues.

• Orthonormality of eigenstates are very useful as it allows Fourier’s trick to be
used in quantum mechanical calculations to kill off orthogonal terms.

• For eigenfunctions that are degenerate, it is in principle possible to construct
orthogonal eigenfunctions within each degenerate subspace through Gram-
Schmidt orthogonalisation procedure. This allow the originally degen-
erate eigenfunctions to be re-expressed in terms of eigenfunctions that are
orthogonal, thus restoring orthogonality even in the present of degeneracy.

• As an example, f(x) = e−x, g(x) = ex are two degenerate eigenfunctions of
the operator d2/dx2 with eigenvalue 1. One can construct linear combinations
from f(x), g(x) such as z1(x) = αf(x) + βg(x), z2(x) = αf(x)− βg(x), where
α, β satisfy 〈z1|z2〉 = 0, 〈z1|z1〉 = 〈z2|z2〉 = 1 on (-1,1). z1(x) and z2(x) are
now two orthogonal functions with a common eigenvalue 1.
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3.3.1 Continuous Spectra

• For eigenfunctions with continuous spectra, reality, orthogonality and com-
pleteness still hold but the proof are not so straight forward (we will not show
it). We will show these properties through examples.

• Example: Find the eigenvalues and eigenfunctions of the momentum operator
for a free particle, p̂ = ~

i
d
dx

. Note: momentum of a free particle is a continuous
observable.

• Let fp(x) and p be the eigenfunction and eigenvalue for p̂, so that p̂fp(x) =
pfp(x).

• The general solution is fp(x) = Aeipx/~.

• This is not square-integrable for a generic value (complex in general) of p, as∫ ∞
−∞

f ∗p′(x)fp(x)dx = |A|2
∫ ∞
−∞

ei(p−p
′∗)x/~dx

does not converge - the momentum operator has no eigenfunctions in Hilbert
space.

• However, if we restrict only to real eigenvalues, then we obtain “orthornoma-
lilty” in the continuous sense, i.e.,∫ ∞

−∞
f ∗p′(x)fp(x)dx = |A|2

∫ ∞
−∞

ei(p−p
′)x/~dx = |A|22π~δ(p′ − p).

Show that the Dirac delta function can be expressed in the integral form as
given by: ∫ ∞

−∞
ei(p

′−p)ydy = 2πδ(p′ − p). (3.1)

Solution:

Using Plancherels theorem, we express the Dirac delta function in terms of its
Fourier transform F (k),

δ(x) =
1√
2π

∫
F (k)eikxdk. (3.2)

F (k) =
1√
2π

∫
δ(x)e−ikxdx. (3.3)
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But F (k) in Eq. (3.3) is

F (k) =
1√
2π

∫
δ(x)e−ikxdx =

1√
2π

That means Eq. (3.2) can be expressed as

δ(x) =
1√
2π

∫
F (k)eikxdk =

1

2π

∫ ∞
−∞

eikxdk,

which is straight forwardly generalised to

δ(x− x′) =
1

2π

∫ ∞
−∞

eik(x−x′)dk,

which is just an equivalent form of Eq. (3.1).

• Choosing A = 1√
2π~ ,

〈fp|fp′〉 = δ(p′ − p).

• This is orthornomalilty for the continuous case. We call this “Dirac or-
thornomalilty”. The Dirac delta function now plays the role of Kronecker
delta function as in the discrete case.

• The eigenfunctions with continuous, real eigenvalues are complete in the sense
that the any square-integrable function f(x) can be written as an integral of
the form

f(x) =

∫
c(p)fp(x)dp =

1√
2π~

∫
c(p)eipx/~dp.

• The coefficients c(p) appeared in the expansion of f(x) can be obtained using
Fourier’s trick (thanks to the orthogonality of the eigenfunctions fp):

〈fp′ |f〉 =

∫ ∞
−∞

f ∗p′(x)f(x)dx =

∫ ∞
−∞

f ∗p′(x)

{∫ ∞
−∞

c(p)fp(x)dp

}
dx

=

∫ ∞
−∞

c(p)

{∫ ∞
−∞

f ∗p′(x)fp(x)dx

}
dp =

∫ ∞
−∞

c(p)δ(p′ − p)dp = c(p′).
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• Example: Find the eigenvalues and eigenfunctions of the position operator.
Note: position is a continuous observable.

Solution: Let gy(x) be the eigenfunction and y be the eigenvalue.

x̂gy(x) = ygy(x).

The eigenfunction turns out to be

gy(x) = Aδ(y − x),

with A = 1 for normalisation.

• The eigenvalue y has to be real (else gy(x) is not square-integrable).

• gy(x) is orthonormal in the sense that 〈gy′ |gy〉 = δ(y − y′).

• gy(x) is complete:

f(x) =

∫ ∞
−∞

c(y)gy(x)dy

.

• The coefficient c(x) in the expansion can be easily obtained via Fourier’s trick:

f(x) =

∫ ∞
−∞

c(y)gy(x)dy = · · · =
∫ ∞
−∞

c(y)δ(x− y)dy = c(x).

3.4 Generalised Statistical Interpretation

• In QM, the results of any measurement is not deterministic but “spread out”
according to a probability distribution. In this section we would learn how to
calculate the possible results of any measurement.
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• Generalised statistical interpretation: If you measure an observable Q(x, p) on
a particle in the state Ψ(x, t), you are certain to get one of the eigenvalues of the
hermitian operator Q̂(x,−i~d/dx). If the spectrum is discrete, the probability
of getting the particular eigenvalue qn associated with the orthornomalised
eigenfunction fn(x) is

|cn|2, where cn = 〈fn|Ψ〉

• |cn|2 is the probability that a measurement of Q will yield the value qn. |cn|2
can also be understood as the probability that the particle which is now in the
state Ψ will be in the state fn subsequent to a measurement of Q.

• If the spectrum is continuous, the real eigenvalues q(z) and associated Dirac-
orthonormalised eigenfunction fz(x), the probability of getting a result in the
range dz is

|c(z)|2dz where c(z) = 〈fz|Ψ〉.

• Upon measurement, the function “collapses” to the corresponding eigenstate.

• The eigenfunctions of an observable operator are complete, e.g., the wave
function can be expressed as a linear combination of them:

Ψ(x, 0) =
∑
n

cnfn(x).

• Since eigenfunctions are orthonormal, the coefficients can be projected out by
Fourier’s trick:

cn = 〈fn|Ψ〉 =

∫
fn(x)∗Ψ(x, 0)dx.

• cn tells you how much fn is contained in Ψ. The probability a measurement
will return a particular eigenvalue qn is determined by the amount of fn in Ψ,
which is in turn given by |cn|2.

• Note that although we consider only the static case t = 0, the argument can
be generalised to dynamic case, t > 0.

• Based on the interpretation for |cn|2 as mentioned above, the sum over of all
possible outcome of a measurement got to be∑

n

|cn|2 = 1.

•
∑

n |cn|2 = 1 can be easily derived from the normalisation of the wave function,

〈Ψ|Ψ〉 = 1.
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• The expectation value of Q for a particle in a state Ψ is defined as

〈Q〉 = 〈Ψ|Q̂Ψ〉.

It should be equal to the sum over all possible probability-weighted outcomes:

〈Q〉 =
∑
n

qn|cn|2

• We can prove 〈Q〉 =
∑

n qn|cn|2 from the definition 〈Q〉 = 〈Ψ|Q̂Ψ〉 (see chapter
2).

• The discussion above are for discrete spectrum. However the argument are
easily generalise to the continuous case, for example, 〈R〉 =

∫
r(k)|φ(k)|2dk,

where R represent a continuous variable, |φ(k)|2dk the probability density to
find the continuous eigenvalue r(k) to lie in the interval [k, k + dk].

3.4.1 Checking consistency of the formalism on position
measurement

• We will now show that the above discussion is consistent with the statistical
interpretation for position measurement, that the probability a measurement
will result in an specific eigenvalue y in the range [y, y+ dy] in a measurement
is

|Ψ|2dy.

• In this case, the observable is x, observable operator x̂, eigenfunction gy(x) =
δ(x− y) and eigenvalue y.

• In this case, x̂gy(x) = ygy(x).

• We wish to show that indeed |c(y)|2dy is just equal to the probability |Ψ|2dy.

• c(y) = 〈gy|Ψ〉 =
∫∞
−∞ δ(x − y)Ψ(x, t)dx = Ψ(y, t). That establish our consis-

tency check, |c(y)|2dy = |Ψ|2dy.

3.4.2 Momentum measurement

• For the case of momentum, p̂fp(x) = pfp(x), fp(x) = (1/
√

2π~) exp(ipx/~), p̂ =
−i~d/dx.
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• The coefficient c(p) can be projected out from the wave function Ψ(x, t) using
Fourier’s trick:

c(p) = 〈fp|Ψ〉 =

∫ ∞
−∞

f ∗p (x)Ψ(x, t)dx.

• Φ(p, t) ≡ 〈fp|Ψ〉 is a very important quantity called momentum space wave
function.

•
|Φ(p, t)|2dp.

is the probability to obtain an eigenvalue p in the range dp in an momentum
measurement.

• Φ(p, t) is in fact the Fourier transform conjugate of Ψ(x, t). Both form a
Fourier conjugate pair, i.e.,

Φ(p, t) =
1√
2π~

∫ ∞
−∞

exp(−ipx/~)Ψ(x, t)dx,

Ψ(x, t) =
1√
2π~

∫ ∞
−∞

exp(ipx/~)Φ(p, t)dp.

• Nomenclature: Ψ(x, t) is sometimes called “wave function in position space”
or “wave function in position representation”.

• Φ(p, t) is called “wave function in momentum space” or “wave function in
momentum representation”.

• Example. A particle of mass m is found in the delta function well V (x) =
−αδ(x). What is the probability that a measurement of its momentum would
yield a value greater than p0 = mα/~?

• Solution: The position wave function is given by Ψ(x, t) =
√
mα
~ exp(−mα|x|/~2) exp(−iEt/~),

E = −mα2/2~2. The momentum space wave function is therefore

Φ(p, t) =
1√
2π~

∫ ∞
−∞

exp(−ipx/~)Ψ(x, t)dx

=

√
mα

~
exp(−iEt/~)√

2π~

∫ ∞
−∞

exp(−ipx/~) exp(−mα|x|/~2)dx

=

√
2

π

p
3/2
0 e−iEt/~

p2 + p2
0

.

• The probability to measure the momentum to lie between p and p± dp is

Prob(p± dp) = |Φ(p, t)|2dp =
2

π

p3
0

(p2 + p2
0)2
dp. (3.4)
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Figure 3.1: Shaded area showing probability to find particle with momentum lying
in p0 ± dp.

• The probability to measure the momentum p to lie above p0 is simply

Prob(p > p0) =

∫ ∞
p0

|Φ(p, t)|2dp =
2

π

∫ ∞
p0

p3
0

(p2 + p2
0)2
dp

=
2

π

[
pp0

p2 + p2
0

+ tan−1

(
p

p0

)]
∞

p0
=

1

4
− 1

2π
(3.5)
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FHp L2 vs.p; p0=1

Figure 3.2: Shaded area showing probability to find particle with momentum larger
than p0.
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3.5 The Uncertainty Principle

3.5.1 Proof of Generalised Uncertainty Principle

• For any observable A, the variance is

σ2
A = 〈(Â− 〈A〉)Ψ|(Â− 〈A〉)Ψ〉 = 〈f |f〉,

where f = (Â− 〈A〉)Ψ.

• Like wise, for other observable B, (e.g., A is position, B is momentum)

σ2
B = 〈(B̂ − 〈B〉)Ψ|(B̂ − 〈B〉)Ψ〉 = 〈g|g〉,

where g = (B̂ − 〈B〉)Ψ

• Due to Schwarz inequality,

σ2
Aσ

2
B = 〈f |f〉〈g|g〉 ≥ |〈f |g〉|2, (3.6)

where z ≡ 〈f |g〉 (a complex number).

• The square of the amplitude of a complex number is less than the sum of the
squares of both of its real and complex parts, i.e.,

|z|2 = (Im z)2 + (Re z)2 ≥ (Im z)2 =

[
1

2i
(z − z∗)

]2

. (3.7)

• In terms of f and g, Eq. 3.7 reads

|〈f |g〉|2 ≥
[

1

2i
(〈f |g〉 − 〈f |g〉∗)

]2

=

[
1

2i
(〈f |g〉 − 〈g|f〉)

]2

(3.8)

• Furthermore, one can show that z = 〈f |g〉 = · · · 〈ÂB̂〉 − 〈A〉〈B〉

• Similarly, z∗ = 〈g|f〉 = · · · 〈B̂Â〉 − 〈B〉〈A〉.

•
z − z∗ = 〈f |g〉 − 〈g|f〉 = 〈ÂB̂〉 − 〈B̂Â〉 = 〈[Â, B̂]〉, (3.9)

where

[Â, B̂] ≡ ÂB̂ − B̂Â.
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• Putting everything together (i.e., combining Eqs. 3.9, 3.8 and 3.6),

σ2
Aσ

2
B ≥

(
1

2i
〈[Â, B̂]〉

)2

This is the generalised uncertainty principle.

• The commutator relation for the pairs of operators x̂, p̂ is known as cononical
commutation relation. It is taken as the axiom of the theory and everything
in QM stems from it:

[x̂, p̂] = i~

• Plug in the canonical commutation relation into the generalised uncertainty
principle,

σ2
xσ

2
p ≥

(
1

2i
i~
)2

= (~/2)2 ,

or
σxσp ≥ ~/2.

• We just recovered Heisenberg’s uncertainty principle from a more general con-
sideration.

• There is an “uncertainty principle” for every pair of observable whose operators
do not commute - incompatible observables.

• Incompatible observables do not have shared eigenfunctions.

• Example: there is no eigenfunction of position that is also an eigenfunction of
momentum, because these operators are incompatible, i.e.

p̂f(x) = pf(x), x̂g(x) = xg(x)⇒ f(x) 6= g(x)

because
[p̂, x̂] = −i~ 6= 0.

• There is no eigenfunction of position that is also an eigenfunction of momen-
tum.

• This is due to the fact that two noncommuting matrices cannot be simultane-
ously diagonalised by the same similarity transformation.

• Similarity transformation: VaAU
†
a = Da = dia{a1, a2, · · · , an}, VbBU †b = Db =

dia{b1, b2, · · · , bn}.

• If [A,B] 6= 0⇒ {Ua, Va} 6= {Ub, Vb}.
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• In contrast, compatible (commuting) variables do admit complete sets of si-
multaneous eigenfunctions.

• Example: Hamiltonian H, magnitude of angular momentum L̂ and the z-
component of angular momentum L̂z do share a common eigenfunction: L̂2f(x) =
`(`+ 1)~2f(x), L̂zf(x) = ~m`f(x), Hf(x) = Ef(x).

• The uncertainty principle is a consequence of the statistical interpretation of
the wave function.

• When a sharp position is measured, the wave function is collapsed into a spike
which carries a broad range of wave lengths (hence momentum) in its Fourier
decomposition. That corresponds to the momentum being not sharply defined.

• On the other hand, if the momentum is now measured to a share value (i.e.
the wavelength being sharply defined, and there is no spread in it), the particle
no longer has the position you got in the first measurement. The measurement
of momentum will destroy the previous position of the particle.

Figure 3.3: A narrow wave packet (small ∆x) corresponds to a large spread of
wavelengths (large ∆p). A wide wave packet (large ∆x) corresponds to a small
spread of wavelengths (small ∆p).

• Only if the wave function were simultaneously an eigenstate of both observ-
ables would it be possible to make the second measurement without disturbing
the state of the particle.
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• Other than σxσp, other very important results obtained from the generalised
uncertainty principle include σHσx and σHσp. The following exercises are
meant to illustrate these results.

Exercise: Show that [H, x] = − i~p
2m

. Hence, show that σHσx ≥ ~|〈p〉|
2

. Hint:
You need the relation

[AB,C] = A[B,C] + [A,C]B

Exercise: Show that [H, p] = i~ d
dx
V (x). Hence, show that σHσp ≥ ~

2
〈dV (x)

dx
〉.

Hint: You need the relation

[f(x), p] = i~
df(x)

dx
.

3.5.2 The Minimum-Uncertainty Wave Packet

• A revision:
Schwarz inequality for standard deviations of two operators A,B, i.e., σ2

Aσ
2
B ≥

|〈f |g〉|2, where f = Â− 〈A〉Ψ, g = B̂ − 〈B〉Ψ.

• z = 〈f |g〉 a complex number in general.

• We wish to know what is the minimum uncertainty limit - i.e., when the
inequality becomes an equality for the incompatible pair {x, p}.

• The inequality becomes an equality when
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1. g(x) = cf(x) where c a complex number, and

2. z contains only imaginary part.

• In this limit, 〈f |g〉 = c〈f |f〉, so that Re〈f |g〉 = Re(c〈f |f〉) = 0.

• Since 〈f |f〉 must be real, Re(c〈f |f〉) = 0 means c is purely imaginary, c = ia,
a a real number.

• Hence we found that in this limit,

g(x) = iaf(x).

• Now, take A ≡ x̂, B ≡ p̂ = ~
i
∂
∂x

,

f =
(
Â− 〈A〉

)
Ψ = (x̂− 〈x〉) Ψ,

g =
(
B̂ − 〈B〉

)
Ψ =

(
~
i

∂

∂x
− 〈p〉

)
Ψ,

• Slot these two into g(x) = iaf(x), we obtain(
~
i

d

dx
− 〈p〉

)
Ψ = ia(x− 〈x〉)Ψ.

• The general solution is a gaussian (bell shaped function)

Ψ(x) = Ae−a(x−〈x〉)2/2~ei〈p〉x~.

• This corresponds to the minimum-uncertainty wave packet.

3.5.3 The Energy-Time Uncertainty Principle

• We will derive the energy-time uncertainty principle in this subsection

∆E∆t ≥ ~/2.

• Note that unlike other dynamical variables such as p, x, E, time t is an inde-
pendent variable of which the dynamical quantities are functions.

• ∆t is not the standard deviatioin of a collection of time measurements; it is
the time it takes the system to change substantially.
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• We wish to quantify how fast the system is changing. To this end, we calculate
the time derivative of the expectation value of some observable, Q(x, p, t):

d

dt
〈Q〉 =

d

dt
〈Ψ|Q̂Ψ〉 = 〈∂Ψ

∂t
|Q̂Ψ〉+ 〈Ψ|∂Q̂

∂t
Ψ〉+ 〈Ψ|Q̂∂Ψ

∂t
〉.

• Combine it with the Shroedinger equation

∂Ψ

∂t
=

1

i~
ĤΨ,

d

dt
〈Q〉 = − 1

i~
〈ĤΨ|Q̂Ψ〉+

1

i~
〈Ψ|Q̂ĤΨ〉+ 〈∂Q̂

∂t
〉

=
i

~
〈[Ĥ, Q̂]〉+ 〈∂Q̂

∂t
〉. (3.10)

The last line is due to the fact that Ĥ is a Hermitian, 〈Ψ|Q̂ĤΨ〉 = 〈Q̂Ψ|ĤΨ〉.

• Typically, Q̂ does not depend on time explicitly, hence we could approximate

〈∂Q̂
∂t
〉 = 0.

• Ignoring the 〈∂Q̂
∂t
〉 term, we now has an equation telling use how the expectation

value of Q evolves in time.

• The evolution is determined by the commutator of the operator Q with the
Hamiltonian.

• Furthermore, if Q̂ and Ĥ commute, i.e., [Q̂, Ĥ] = 0, the expectation of Q is a
constant in time. Q is an conserved quantity in the sense that its expectation
value is not changing with time.

• Two very important results of Eq. (3.10) are d
dt
〈p〉 and d

dt
〈x〉.

Exercise: Show that d
dt
〈p〉 = −〈dV (x)

dx
〉.

Exercise: Show that d
dt
〈x〉 = 1

m
〈p〉.
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• Now recall the earlier result on generalised uncertainty principle for two oper-
ators A,B:

σ2
Aσ

2
B ≥

(
1

2i
〈[Â, B̂]〉

)2

.

• Let A→ H,B → Q,

σ2
Hσ

2
Q ≥

(
1

2i
〈[Ĥ, Q̂]〉

)2

=

(
1

2i

~
i

d

dt
〈Q〉
)2

=

(
~
2

)2(
d〈Q〉
dt

)2

σHσQ ≥
(

~
2

) ∣∣∣∣d〈Q〉dt

∣∣∣∣.
• Define ∆E ≡ σH ,∆t ≡ σQ

|d〈Q〉/dt| , we then obtain

∆E∆t ≥ ~
2
.

• Notice that in the definition of ∆t as in

σQ =

∣∣∣∣d〈Q〉dt

∣∣∣∣∆t,
∆t represents the the amount of time it takes the expectation value of Q to
change by one standard deviation.

• ∆t depends on what observable (Q) you are looking at. Different Q has a

different rate of change in time d〈Q〉
dt
.

• If any observable changes rapidly, i.e., ∆t� 1, the “uncertainty” (∆E) must
be large.

Example 3.5
A stationary state has definite energy, so ∆E = 0, ∆t → ∞. But for a mixture
of two stationary states, we could show that the product of ∆E and ∆t obey the
uncertainty bound.

Consider a linear combination of two stationary states,

Ψ(x, t) = aψ1(x)e−iE1t/~ + bψ2(x)e−iE2t/~,

where a, b, ψ(x), ψ(x) are real.

|Ψ(x, t)|2 = a2ψ1(x)2 + b2ψ2(x)2 + 2abψ1(x)ψ2(x) cos

(
E2 − E1

~
t

)
.
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The period of oscillation is τ = 2π~/(E2 − E1).
Roughly speaking, ∆E = E2 − E1 and ∆t = τ , so

∆E∆t = 2π~ ≥ ~/2.

Example 3.6
How long does it take a free-particle wave packet to pass by a particular point?
Qualitatively, ∆t = ∆x/v = m∆x/p. But E = p2/2m, so ∆E = p∆p/m. Therefore,

∆E∆t =
p∆p

m

m∆x

p
= ∆x∆p,

which is ≥ ~/2 by the position-momentum uncertainty principle.
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Example 3.7
The ∆ particle last about 10−23 seconds, before spontaneously disintegrating. If
you make a histogram of all measurements of its mass, you get a kind of bell-shaped
curve centered at 1232 MeV/c2, with a width of about 120 MeV/c2. Why does the
rest energy mc2 sometimes come out higher that 1232, and sometimes lower? Is this
experimental error? No, for

∆E∆t =

(
120

2
MeV

)
(10−23sec) = 6× 10−22MeV sec,

whereas ~/2 = 3 × 10−22 MeV sec. So the spread in m is about as small as the
uncertainty principle allows – a particle with so short of lifetime just does not have
a very well defined mass.

In the previous examples, ∆t takes on a variety of specific meaning. In Example
3.5, it’s a period oscillation. In Example 3.6, it’s the time it takes a particle to pass
a point; in Example 3.7 it’s the lifetime of an unstable particle. In these examples,
∆t is the time it takes for the system to undergo “substantial” change.
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3.6 Problem Set

ZCA 205 Quantum Mechanics
Problem set for Chapter 3

1. Suppose Q̂ is hermitian, and α is a complex number. Under what condition
(on α) is αQ̂ a hermitian?

2. Show that the position operator (x̂ = x) and the hamiltonian operator (Ĥ =
−(~2/2m)2/dx2 + V (x)) are hermitian.

3. Prove that for a renormalisable eigenfunctions of a Hermitian operator (i)
Their eigenvalues are real, and (ii) eigenfunctions belonging to distinct eigen-
values are orthogonal.
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4. Derive
∑

n |cn|2 = 1 from the normalisation condition of the wave function,
〈Ψ|Ψ〉 = 1.

5. Prove 〈Q〉 =
∑

n qn|cn|2 from the definition 〈Q〉 = 〈Ψ|Q̂Ψ〉.

6. (a) Prove the following commutator identity:

[AB,C] = A[B,C] + [A,C]B.

(b) Show that

[xn, p] = i~nxn−1.

7. Show that for two operators P̂ and Q̂ that have a common eigenfunction f ,
then [P̂ , Q̂]f = 0.
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8. Solve (
~
i

d

dx
− 〈p〉

)
Ψ = ia(x− 〈x〉)Ψ

for Ψ(x). Note that 〈x〉 and 〈p〉 are constant.

9. Test the energy-time uncertainty principle for the wave function Ψ(x, 0) =
A[ψ1(x) + ψ2(x)] as mentioned in in Problem 2.5 and the observable x, by
calculating σH , σx, and d〈x〉/dt exactly.

10. Repeat the question above for another wave funciton as mentioned in Problem
2.43, Ψ(x, 0) = Ae−ax

2
ei`x, where ` is a real constant.
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Chapter 4

Quantum Mechanics in Three
Dimension

Acknowledgement: The content of this topic in this manuscript is mainly contributed
by Dr. Myo Thaik.

4.1 Schroedinger Equation in Spherical Coordi-

nates

• Generalising from one- to three-dimension, the potential energy V and the
wave function Ψ are now functions of r = (x, y, z) and t, i.e., V = V (r, t),
Ψ = Ψ(r, t).

• We will first solve the 3-D equation in terms of V (r) = V (r) without explicitly
specifying the form of V (r) except that it is assumed a central potential (a
function depends only on just r (the distance from the origin) rather than on
the angular positions.

• After that we will replace the generic central potential V (r) by the hydrogen’s
central potential V (r) ∼ − 1

r2
. Since the angular parts are decoupled from the

radial part, only the radial part of the solution to the TISE is tied to the form
of V (r), whereas the angular parts are independent of it.

• If the potential is independent of time, i.e., V = V (r) only, there will be a
complete sets of stationary states,

Ψn(r, t) = ψn(r)e−iEnt/~

103
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where the spatial wavefunction ψn(r) satisfy the TISE:

− ~2

2m
∇2ψ + V ψ = Eψ.

• The general solution to the TDSE is

Ψ(r, t) =
∑

cnψn(r)e−iEnt/~

with the constant cn determined by the initial wave function, Ψ(x, 0) in the
usual way.

4.1.1 Separation of Variable

• Typically the potential is a function only of the distance from the origin. In
that case it is natural to adopt spherical coordinates, (r, θ, φ).

Figure 4.1: Spherical coordinates

• Here we will assume V = V (r), i.e., V depends on r only.

• In spherical coordinates the Laplacian ∇2 takes the form

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
.

• In spherical coordinates, the TISE reads

− ~2

2m

[
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

(
∂2ψ

∂φ2

)]
+V (r)ψ = Eψ.

(4.1)
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• We begin by looking for solutions that are separable into products:

ψ(r, θ, φ) = R(r)Y (θ, φ)

•
∂ψ

∂r
= Y

dR

dr
;
∂ψ

∂θ
= R

∂Y

∂θ
,
∂2ψ

∂φ2
= R

∂2Y

∂φ2
.

• Put these back into Eq.(4.1),

− ~2

2m

[
Y

r2

d

dr

(
r2dR

dr

)
+

R

r2 sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

R

r2 sin2 θ

(
∂2Y

∂φ2

)]
+V (r)RY = ERY.

(4.2)

• Dividing by RY and multiplying by −2mr2/~2:[
1

R

d

dr

(
r2dR

dr

)
− 2mr2

~2
(V (r)− E)

]
+

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

(
∂2Y

∂φ2

)]
= 0

• The term in the first square bracket depends only on r, whereas the remainder
depends only on θ and φ; accordingly, each must be a constant.

• For reasons that will appear in due course, this “separation constant” can be
written in the form `(`+ 1):

•
1

R

d

dr

(
r2dR

dr

)
− 2mr2

~2
(V (r)− E) = `(`+ 1) (4.3)

This is known as the Radial equation.

•
1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

(
∂2Y

∂φ2

)]
= −`(`+ 1).

This is known as the angular equation.

• The separation constant ` is known as the azimuthal quantum number.
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4.1.2 The angular Equation

• This equation determines the dependence of ψ on θ and φ:

• Multiply by Y sin2 θ, it becomes

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+
∂2Y

∂φ2
= −`(`+ 1) sin2 θY.

• Again apply a separation of variable method: Plug Y (θ, φ) = Θ(θ)Φ(φ) into
the angular equation, we find{

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ `(`+ 1) sin2 θ

}
+

1

Φ

d2Φ

dφ2
= 0

• The first term is a function of θ only, and the second is a function only of φ,
so each must be a constant. This time the separation constant is denoted as
m2.

•
1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ `(`+ 1) sin2 θ = m2, (θ equation )

1

Φ

d2Φ

dφ2
= −m2, (φ equation )

• The φ equation is easy:

Φ(φ) = eimφ + e−imφ. (4.4)

m is known as magnetic quantum number. If we allow m to take both
positive or negative values, eimφ will also cover the domain of e−imφ, hence we
drop the second term in the solution so that Eq. (4.4) can be just compactly
represented by

Φ(φ) = eimφ.

The arbitrary constant that should appear in the solution is absorbed into Θ.

• The continuity boundary condition imposed on Φ(φ) reads

Φ(φ+ n2π) = Φ(φ)

or

exp(2πim) = 1.
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• From this it follows that m must be an integer:

m = 0,±1,±2, · · · .

• For the θ equation, the solution is not so simple. The solution is a special
function known as associated Legendre function,

Θ(θ) = APm
` (cos θ),

where

Pm
` (x) = (1− x2)|m|/2

(
d

dx

)|m|
P`(x),

and P`(x) is the `th Legendre polynomial, defined by the Rodrigues for-
mula:

P`(x) =
1

2``!

(
d

dx

)`
(x2 − 1)`.

• Notice that Pm
` (x) = P−m` (x).

• From the Rodrigues formula that defines the Legendre polynomial, ` must be
a non-negative integer (e.g., ( d

dx
)` make no sense if ` is negative or a fractional

number).

• From the definition of the associated Legendre function, since P`(x) is a poly-
nomial of order `, ( d

dx
)|m|P`(x) vanish if |m| > ` (can you see this?) In other

words, P
|m|
` (x) is non-zero only if

|m| ≤ `⇒ m = 0,±1,±2, · · · ,±`

for a given ` (non-negative integer).
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• Notice that for a given `, there are 2`+ 1 values of allowed m.

• The θ equation is a second order differential equation which should admit two
different solutions. The associated Legendre functions are only one of these.
The other solution,

Θ(θ) = A ln[tan(θ/2)],

is discarded because it is physically unacceptable (they blow up when θ →
0 or π).

Exercise: Derive the first 3 non-zero Legendre polynomial based on the Ro-
drigues formula.

Exercise: Derive the associated Legendre function P 0
2 (x), P 1

2 (x), P 2
2 (x) based
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on P2(x) that your have derived in previous exercise.

• The angular solutions are hence compactly expressed in terms of

Y ≡ Y (θ, φ) = Φ(φ) ·Θ(θ) ≡ Φ(φ) · APm
` (θ)

• A is the normalisation associated with the angular solutions Y (θ, φ).

• Next we would like to discuss the normalisation of Y . This is to be carried
out in spherical coordinates.

• The volume element in spherical coordinates is (see Fig 4.2)

dV = d3r = r2 sin θdrdθdφ

so that the normalisation condition becomes∫
all space

|ψ|2r2 sin θdrdθdφ =

∫ ∞
0

R2r2dr

∫ φ=2π

φ=0

∫ θ=π

θ=0

|Y (θ, φ)|2 sin θdθdφ = 1

• It is convenient to normalise Y and R separately:∫ ∞
0

R2r2dr = 1,

∫ φ=2π

φ=0

∫ θ=π

θ=0

|Y |(θ, φ)|2 sin θdθdφ = 1.

• The normalised angular wavefunctions are called spherical harmonics:

Y (θ, φ) = APm
` (cos θ)eimφ ≡ Y m

` (θ, φ) = ε

√
(2`+ 1)(`− |m|)!

4π(`+ |m|)
eimφPm

` (cos θ),

where ε = (−1)m for m ≥ 0 and ε = 1 for m ≤ 0.
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Figure 4.2: Volume element in spherical coordinates.

Figure 4.3: The first few spherical harmonics, Y m
` (cos θ, φ).

• The spherical harmonics are automatically orthogonal,∫ 2π

0

{∫ π

0

[Y m
` (θ, φ)]∗

[
Y m′

`′ (θ, φ)
]

sin θdθ

}
dφ = δ``′,mm′ .

Exercise (Problem 4.3): Check that the spherical harmonics Y 0
0 , Y 1

2 are nor-
malised and orthogonal.

4.1.3 The radial Equation

• Now let’s turn to the radial equation, Eq.(4.3).

• Let u(r) ≡ rR(r) so that R = u(r)/r
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dR

dr
=
r du
dr
− u
r2

→ r2dR

dr
= r

du

dr
− u

d

dr

(
r2dR

dr

)
= r

d2u

dr2
+
du

dr
↗ −du

dr
↗= r

d2u

dr2

so that the radial equation now reads

r
d2u

dr2
− 2mr2

~2
[V (r)− E]

u

r
= `(`+ 1)

u

r

Multiply it by − ~2

2mr
and rearranging, the radial equation becomes

− ~2

2m

d2u

dr2
+

[
V (r) +

~2

2mr2
`(`+ 1)

]
u = Eu (4.5)

• The square bracket term represent an effective potential

Veff = V (r) +
~2

2mr2
`(`+ 1)

which is the original potential V (r) modified by a `-dependent centrifugal term
~2

2mr2
`(`+ 1).

• The normalisation condition for the radial function, in terms of u(r) is∫ ∞
0

R2r2dr =

∫ ∞
0

u(r)2dr = 1.

4.1.4 Infinite Spherical Well

• Consider an especially simple case of spherical potential:

V (r) =

{
0, if r ≤ a

∞, if r > a.

• What is its wavefunction and the allowed energy?

• The wavefunction is Ψ(r, t) = R(r)Y m
` (θ, φ)e−iEt/~, where the angular solution

is the same as solved in previous subsection. Recall that the angular solution
is independent of the form of the potential as long as it is spherical (i.e.,
angular-independent).
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• We will use the machinery developed in previous subsection to solve for R(r).

• Let R(r) = u(r)/r, the radial part of TISE in inside the well is given as
Eq.(4.5), rearrange it into the convenient form

d2u

dr2
=

[
`(`+ 1)

r2
− k2

]
u, (4.6)

where k ≡
√

2mE
~2

Exercise: Show this.

• The solution is not so trivial. It is given by the linear combination of spherical
Bessel function of order `, j`(x) and spherical Neumann function of order
`,

u(r) = Arj`(kr) +Brn`(kr),

j`(x) = (−x)`
(

1

x

d

dx

)`
sinx

x
,

n`(x) = −(−x)`
(

1

x

d

dx

)`
cosx

x
. (4.7)

These are the generating functions for Bessel and Neumann functions.
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Exercise: Derive n0(x), n1(x), j0(x), j1(x). Do you think the Neumann func-
tion a physically acceptable solution? Explain.

• Due to the reason you have explained in the Exercise above, the radial solution
takes the form

R(r) = Aj`(kr).

• Based on the definitions of the generating functions for Bessel and Neumann
functions, Eq.(4.7), ` must be a non-zero integer, ` = 0, 1, 2, · · · .

• Now impose the boundary condition R(r = a) = 0:

R(r = a) = Aj`(ka) = 0⇒ j`(ka) = 0,

• ka is a zero of the `th-order spherical Bessel function, which values has no
closed form (they have to be solved numerically).

• Note that the Bessel functions are oscillatory (see Figure 4.2). For a given `,
there are many zeros correspond to that particular j`(x) (zeros in this case
refers to the values of x in j`(x) for which j`(x) = 0.)

• Say, for a fixed `, the zeros are labeled βn`, where n = 1, 2, 3, · · · . βn` are
discrete values labeled by a set of two non-negative integers {n, `}. They are
the “nth zero of the ` spherical Bessel function.” (note: n = 0 is forbidden by
the virtual of the Heisenberg uncertainty principle.)

• Hence we arrive at the quantisation of energy:

k = kn` = βn`/a⇔ E = En` =
~2

2ma
βnl.
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• The stationary wavefunction are

ψ(r) = ψnlm(r, θ, φ) = Anlj`(
rβn`
a

)Y m
` (θ, φ).

• Notice that each stationary state φn,`,m(r, θ, φ) is indexed by a set of three
quantum numbers, {n, `,m}. That is, when you want to specify a particular
stationary state, you have to specify the set of these three quantum numbers
(or else it is not a qualified specification).

• Compare the above situation to the 1-D stationary states encountered so far.
There only one quantum number is required; here we have got three instead.

• Notice that the normalisation constant for the radial function An` is labeled by
two quantum numbers, {n, `}. They are to be determined by normalisation,∫ ∞

0

A2
n`j`(

rβn`
a

)2r2dr = 1

which turns out to be quite complicated. We are not going to derive their
explicit form anyway, except to note that they have to be evaluated for different
set for each set of {n, `}.

• Another important feature to take notice is that: The energy is dependent on
both quantum number n and `. For a given set of {n, `}, the energy is given
by En`. However, there are actually 2`+ 1 (= number of allowed values of m)
stationary states that carry the same energy.

• We say: Each energy level En` is (2` + 1)-fold degenerate, since there are
(2`+ 1) different values of m for each value of `.

• For example, there are there stationary states that have the same energy
En=1,`=1, i.e., ψn=1,`=1,m=−1, ψn=1,`=1,m=0, ψn=1,`=1,m=+1.

Exercise: What is the solutions and allowed energies for ` = 0?

Answers:

For ` = 0, the allowed values for n is n = 1, 2, 3, · · · ; and the allowed
value for m is m=0.

The allowed energies are E`=0,n = ~2

2ma2βn0, n = 1, 2, 3, · · ·

The solutions are ψn,`=0,m=0, n = 1, 2, 3, · · ·
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4.2 The Hydrogen Atom

•

• Coulomb potential is a special case of central potential:

V (r) = − e2

4πε0

1

r

where r is the distance between the electron and the nuclease.

• We assume Mproton � me.

• Plug into the radial equation

− ~
2m

d2u

dr2
+

[
− e2

4πε0

1

r
+

~
2mr2`(`+ 1)

]
u = Eu.

• To solve the equation means we wish to determine (1) u(r) hence R(r) = ru(r),
and (2) the allowed energies E.

4.2.1 The radial wave equation

• Define κ =
√
−2mE

~ . For bound states, E is negative, so κ is real.

• The radial equation is cast into the form

1

κ2

d2u

dr2
=

[
1− me2

2πε0~2κ

1

κr
+
`(`+ 1)

(κr)2

]
u.

• The equation is further simplified in terms of a new variable ρ ≡ κr and a
constant ρ0 ≡ me2

2πε0~2κ
, so that

d2u

dρ2
=

[
1− ρ0

ρ
+
`(`+ 1)

ρ2

]
u. (4.8)

Exercise: Show this.

• We then examine the limiting behavior of the solutions in order to guess the
form of the solution as a products of the solutions in these limits. Doing so
allow us to “peel off” the divergent parts out of the general solution so that a
physically acceptable solution (that without infinities) could result. The whole
idea is very similar in spirit to the method used when solving the QHO. The
following is how we do this:
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• Taking the limiting case ρ→∞, Eq.(4.8) becomes

d2u

dρ2
= u,

with the solution u(ρ) = Ae−ρ+Beρ. In order for the solution to remain finite
when ρ→∞, B has to be set to 0.

• In short, the solution must behave like u(ρ) ∼ Ae−ρ when ρ→∞.

• Taking the limiting case ρ→ 0, Eq.(4.8) becomes

d2u

dρ2
=
`(`+ 1)

ρ2
u. (4.9)

with the general solution u(ρ) = Cρ`+1 +Dρ−`.

Exercise: Check this.

In order for the solution to remain finite when ρ→ 0, D has to be set to 0.

• In short, the solution must behave like u(ρ) ∼ Cρ`+1 when ρ→ 0.

• In the intermediate region, we assume the general solution to take on the form

u(ρ) = ρ`+1e−ρυ(ρ)

(note: υ is pronounced as “upsilon”.)

• Slotting this ansatz into Eq.(4.8), we arrive at (after some algebra)

ρ
d2υ

dρ2
+ 2(`+ 1− ρ)

dυ

dρ
+ [ρ0 − 2(`+ 1)] υ = 0. (4.10)

• We seek the solution υ(ρ) in terms of the power series

υ(ρ) =
∞∑
j=0

cjρ
j.

• Twice differentiating the power series term by term, and plugging the result
back into Eq.(4.10), we have

∞∑
j=0

j(j+1)cj+1ρ
j+2(`+1)

∞∑
j=0

(j+1)cj+1ρ
j−2

∞∑
j=0

jcjρ
j+[ρ0−2(`+1)]

∞∑
j=0

cjρ
j = 0.
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• Equating the coefficients of like powers yields the recurrent formula

cj+1 =

{
2(j + `+ 1)− ρ0

(j + 1)(j + 2`+ 2)

}
cj. (4.11)

• Based on the recurrent formula, starting from c0, all the subsequent cj=1, cj=2, · · ·
can be derived. In other words, we can expressed all cj, j > 1 in terms of c0,
an overall constant which would be fixed by normalisation.

• Now let’s investigate cj in the j →∞ limit:

cj+1 ≈
2

j + 1
cj.

• Suppose for a moment this relation is exact (instead of being just an approxi-
mation), the solution to cj+1 ≈ 2

j+1
cj can be expressed as

cj ≈
2j

j!
c0,

so that the power series now read

υ(ρ) = c0

∞∑
j=0

2j

j!
ρj = c0e

2ρ ⇒ u(ρ) = c0ρ
`+1eρ

ρ→∞−→ ∞.

• What that means is: if we allow the power series to sum up to j →∞ terms,
the solution u(ρ) in the limit ρ→∞ will blow up (this is bad).

• To avoid this from happening, the only way is to terminate the power series
at certain maximal integer, jmax such that cj = 0 for all j > jmax.

• Such a requirement when is translated into the recurrent relation Eq.(4.11),
reads

2(jmax + `+ 1) = ρ0.

• Defining the so-called principle quantum number

n ≡ jmax + `+ 1, (4.12)

which is obviously a non-negative integer, we have

2n = ρ0 ⇒ E = −~2κ2

2m
= − me2

8π2ε20~2ρ2
0
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• The allowed energies are

En = −

[
m

2~2

(
e2

4πε0

)2
]

1

n2
=
E1

n2
, n = 1, 2, 3, 4, ...

• Known as Bohr formula.

• The Bohr radius is defined as a = 4πε0~2

me2
= 0.529× 10−10 m.

• E1 (= -13.6 eV) is the ground state energy (the lowest allowed energy)

• In terms of Bohr radius, ρ = ρn = r
an

.

• Hence, ψn,`,m(r, θ, φ) = Rn`(r)Y
m
` (θ, φ), Rn`(r) = 1

r
ρ`+1e−ρυ(ρ), υ(ρ) a poly-

nomial of degree jmax = n− `− 1 in ρ = r
na

, whose coefficients are determined
by the recursion formula Eq.(4.11).

• Ground state corresponds to the state with lowest energy. This occurs for
n = 1. Since n = jmax + ` + 1, ` = 0. Since |m| ≤ `, m = 0. In short, the
three quantum numbers that label the ground state is {n, `,m} = {1, 0, 0}.

ψ100(r, θ, φ) = R10(r)Y 0
0 (θ, φ).

R10(r) =
c0

a
e−r/a, Y 0

0 =
1√
4π

• Normalisation:
∫∞
r=0

R2
10r

2dr = 1⇒ c0 = 2/
√
a, so that

ψ100(r, θ, φ) =
1√
πa3

e−r/a.

• The first excited state corresponds to ether

n = 2, ` = 1,m = −1, 0, 1,

or
n = 2, ` = 0,m = 0.

ρ2 =
r

2a
.

• For ` = 1 (jmax + ` = n− 1 = 1)

R21(r) =

(
1

r
ρ2

2e−ρ2
) j=jmax=0∑

j=0

cjρ
j
2 =

( r

4a2
e
−r
2a

)
(c0ρ

0
2) =

c0

4a2
re−

r
2a
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• For ` = 0 (jmax + ` = n− 1 = 1⇒ jmax = 1)

R20(r) =

(
1

r
ρ2

2e−ρ2
) j=jmax=1∑

j=0

cjρ
j
2 =

( r

4a2
e
−r
2a

)
(c0ρ

0
2+c1ρ

1
2) = · · · = c0

2a
(1− r

2a
)e−r/2a.

• For arbitrary n, ` = 0, 1, 2, · · · , n− 1, and for each ` there are 2`+ 1 possible
values of m.

• The total degeneracy of the energy level En is
∑n−1

`=0 (2`+ 1) = n2.

• For example, in the previous example of the first excited state, there are a
total of 4 states {n = 2, ` = 1,m = 1}, {n = 2, ` = 1,m = 0}, {n = 2, ` =
1,m = −1}, {n = 2, ` = 0,m = 0} all share the ssame energy level E2. These
are degeneracy states.

• The polynomial υ(ρ) (which is indexed by `, n), apart from an overall normal-
isation constant, is known as associated Laguerre polynomial,

υ(ρ) = L2`+1
n−`−1(2ρ), (4.13)

where

Lqq−p(x) ≡ (−1)p
(
d

dx

)p
Lq(x).

Lq(x) ≡ ex
(
d

dx

)q
(e−xxq),

is known as the qth Laguerre polynomial.
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• The normalised hydrogen wave functions are

ψn`m =

√(
2

na

)3
(n− `− 1)!

2n[(n+ `)!]3
e−r/na

(
2r

na

)` [
L2`+1
n−`−1(2r/na)

]
Y m
` (θ, φ).

• Note that despite the wave function depends on three quantum numbers, the
energy levels depend only on n – this is a peculiarity of the Coulomb potential
(c.f., in the spherical well, the energies depend on both n, `).
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• The wave functions are mutually orthogonal:∫
ψ∗n′`′m′ψn`mr

2 sin θdrdφ = δnn′δ``′δmm′ .

The orthogonality is due to the spherical harmonics (the δ`,`′ and δm,m′ terms)
as well as from the radial functions (the δn,n′ term).

• The δn,n′ term arises due to the fact that ψn and ψn′ are eigenfunctions of H
with distinct eigenvalues.
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• The density plot of hydrogen for a specific n, `,m, |ψn,`,m|2 can be visualised
using coloured density plot,

Figure 4.4: Figure adopted from http://en.wikipedia.org/wiki/File:Hydrogen Density Plots.png.

• Go to the online physlets (by Prentice-Hall) to generate your own density plot:
http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro hyd.html

http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro_hyd.html
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Figure 4.5: Surfaces of constant |ψ|2 for the first few hydrogen wave functions.
The are obtained by rotating surfaces of constant |ψ|2 (of the density plots) about
the vertical axis. Figures adopted from The picture book of quantum mechanics,
Springer, New York (2001).

• Observe that for the 3D plot in Fig.4.5:

– For all cases with ` = 0, the wavefunctions are spherically symmetric.

– For all cases with ` 6= 0, the wavefunctions are only cylindrical symmetric.
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Exercise:
What is the most probably value of r in the ground state of the hydrogen?

Solution
The most probably value of r is the value in r where the probability density
to find the electron, P (r), is the largest. If r = r′ is the value where the

probability density is the largest, then, dP (r)
dr
|r=r′ = 0.

By definition, p(r) = P (r)dr is the probablity to find the electron in the in-
terval ±∆r located at r. P (r) is the probability density of the electron at r.

The probability to find the electron in a volume element dV located at {r, θ, φ}
is

p(r, θ, φ) = ψ∗n,`,mψn,`,mdV = ψ∗n,`,mψn,`,mr
2dr sin θdθdφ

Integrating over all angular contibution results in a factor of 4π,

p(r) =

∫ φ=2π

φ=0

∫ θ=π

θ=0

ψ∗n,`,mψn,`,mr
2dr sin θdθdφ = 4πr2R2

n,`(r)dr

For ground state, n = 1, ` = 0, Rn=1,`=0 = 1√
πa3
e−r/a.

p(r) = 4πr2R2
n,`(r)dr = P (r)dr

P (r) = 4πr2R2
n,`(r) = 4πr2 1

πa3
e−2r/a

Optimising P (r) with respect to r, dP (r)
dr
|r=r′ = 0, gives r′ as r′ = a.

Exercise:

• Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen atom.

Solution
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• 〈Q̂〉 =
∫ ∫ ∫

ψ∗n,`,mQ̂ψn,`,mr
2dr sin θdθdφ. Here Q̂ = r and Q̂ = r2, ψn,`,m =

ψ1,0,0 = 1√
πa3
e−r/a.

For Q̂ = r,

〈r̂〉 =

∫ ∫ ∫
1√
πa3

e−r/ar
1√
πa3

e−r/ar2dr sin θdθdφ = 4π
1

πa3

∫ ∞
0

e−2r/ar3dr =
3a

2
.

For Q̂ = r2,

〈r̂2〉 =

∫ ∫ ∫
1√
πa3

e−r/ar2 1√
πa3

e−r/ar2dr sin θdθdφ = 4π
1

πa3

∫ ∞
0

e−2r/ar4dr = 3a2

4.2.2 The Spectrum of Hydrogen

• If in the beginning, a hydrogen atom is in a given stationary state {n, `,m},
it would stay there forever (including the state n > 1).

• However, upon perturbation (which in practice is constantly present), the
electron may undergo a transition to some other stationary state – either by
absorbing (“excitation”, e.g., when being irradiated by electromagnetic wave
or bombarded by other atoms) or giving off energy (“de-excitation”, usually
in the form of electromagnetic radiation).

• Let us now recall the Bohr hydrogen model (remember ZCT 104?). The Bohr’s
hydrogen atom is what we called the old quantum theory - an ad hoc model
combining quantisation of angular moment postulate, Planck’s postulate, and
classical mechanics. The Bohr’s atom is not a quantum mechanical treatment
of hydrogen atom.

• In the Bohr’s model, the energy difference in such a transition (from initial to
final states) is given by

∆E = Ef − Ei = −13.6 eV

(
1

n2
i

− 1

n2
f

)
.

• Planck formula relates the energy of a photon Eγ to its frequency ν via

Eγ = hν =
hc

λ

(λ is the wavelength and c the speed of light).
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so that
1

λ
= R

(
1

n2
f

− 1

n2
i

)
,

where R is the Rydberg constant,

R =
m

4πc~3

(
e2

4πε0

)2

= 1.097× 107 m−1.
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4.3 Problem Set

ZCA 205 Quantum Mechanics
Problem set for Chapter 4

1. Check that Arj`(kr) satisfy the radial equation for the case ` = 1 in the infinite
spherical well.

2. Work out the radial wave functions R32 using the recursion formula, Eq.(4.11).
Don’t bother to normalise it.

3. Referring to Table 4.7 for the radial function, normalise R21 and construct
ψ211, ψ210, ψ21−1.

4. Based on the definition of the associated Laguerre polynomial and the defini-
tion of Eq.(4.13), find υ(ρ) for the case n = 5, ` = 2.

5. What is the expectation value 〈r〉 for an electron in the ground state of hy-
drogen? Express your answer in unit of Bohr radius.

6. A hydrogen atom starts out in the following linear combination of the station-
ary states n = 2, ` = 1,m = 1 and n = 2, ` = 1,m = −1:

Ψ(r, 0) = 1
√

2 (ψ211 + ψ21−1) .

(a) Construct Ψ(r, t). Simplify it as much as you can.
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(b) Find the expectation value of the potential energy, 〈V 〉. (Does it depend
on t?) Give both the formula and the actual number, in eV.

Note: A linear combination of stationary states itself is not a stationary states.
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