
ZCT 205   Quantum Mechanics 

Tutorial 2.1 (40%) 

Q1 Separation of Variables 
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LHS is a function of   alone while the RHS is a function of   alone. Equation above is true only 

if both sides equal to a constant. We will call this constant E, so that  
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Show the solution to the time-independent part is  

 ( )          

 (2%)  

Solution   

Time-independent part of the equation : 
  

  
  

  

 
  

By using separation of variables, 
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           where        

As the arbitrary constant is being absorbed, the solution to the time-independent part is  
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Q2   
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Show that the total solution (above) is a solution to the time-dependent Schroedinger equation 

(TDSE), which is given by 
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Solution   

Let   (   )  ∑   (   )
 
    ∑     ( ) 

        
    

  (   )

  
  

 

 
∑       ( ) 

        
     ✓ 

   (   )

   
 ∑   

    ( )

   
         

     ✓ 

LHS of TDSE :    
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RHS of TDSE :  
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Q3 

(i) For an infinite square well, 
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  must be positive. Why? 

(ii) Using Euler relation, show that 
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Solution 

(i) For an infinite square well,       .   must be larger than     so that the wave function 

is valid and normalizable.   ✓ 

(ii) Euler relation is given by                   
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Let    (     ) and   (     ) 
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Q4 The TISE solutions are mutually orthogonal 

Given    solution to a time-independent Schroedinger equation (TISE) 
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Prove 
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Solution 

For an infinite square well,   ( )  √
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When    , employing trigonometry identity :          
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 Q5 

Prove that 

   ∫  ( )
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This can be simply proven by making use of the orthogonally of the TISE solutions : 
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Solution 
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Since      {
         
         

 , all terms vanish except for   . 
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Use 
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   ( )       

to prove 
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Solution 

At    ,   
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Q8 

Consider the solutions to a quantum harmonic potential. 

(i) Assume   is  , write down  ( ), hence the stationary wave function,   ( ). 

(ii) Assume   is 2, write down  ( ), hence the stationary wave function,   ( ). 
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Solution 
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Q9 

Consider the solutions to a quantum harmonic potential. 

(i) Derive   ,   ,    from the Rodrigues formula. 

(ii) Derive   ,    from   ,    using the recursion relation. 

(iii) As a check, the function    derived using both methods must agree. 
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Solution 

(i) Rodrigues formula :   ( )  (  )
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(ii) Recursion relation :     ( )      ( )        ( ) 
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(iii) Function   ( ) derived from both Rodrigues formula and recursion formula are the same.✓ 

 

 



Q10 

The time-dependent “stationary” solution is a travelling plane wave : 
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Solution 
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