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Part I
The kinetic theory of gases

Introduction

+ Mechanical system

» Law of dynamics — Newtonian, Quantum, GR

+ Interactions

+ Initial conditions

« Determination of system's detail evolution

« Time scales: observations vs. interactions

» Time averages

« Classical thermodynamics — details striped-
off

« System of many Degree of Freedom (DOF) —
statistical treatment (thermo + classical
mechanics + statistics)

Chapter 1

Velocity and Position Distributions of
Molecules in a Gas
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1.1 Avogadro’s law, or the Equation of state of
an 1deal gas




Avogadro’s law

» At equal pressure and temperature, equal
volumes of gasses contain an equal number
of molecules

« N, Avogardo's number, 6.023 x 10* at STP

Gas molecule colliding with the
piston

For a fixed v
Ap=2p=2mv_ v _AtA-n(v)
P(v)=2mv.n(v,)

P=Zv120 P(vx)=2mszIZO [Vil’l (Vx)]
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Derivation of ideal gas pressure
with classical Newton's law

* Pressure exerted by ideal gas on wall of
container can be derived with Newton's law

« Equation of state for ideal gas can be derived
from from such consideration

Pressure of gas
in terms of average KE

TAEE IR

n=2 =2, n v 2, ()

P=2mzvx20[vin(vx))=mn-<v§>

=tl=pi)=t)
P=lnm<v2>=gﬂglmv2 =2£
3 3V \2 3V
 Independent of detailed structures of
molecules of gas




I Average KE and temperature

I « Identify average KE with temperature:
<lmv2>=3~lkT
2 2
I « EOF for ideal gas is obtained: PV=§E=NkT

* Total energy of system E = N-(3kT/2)

« Each degree of freedom DOF of the point-
like molecule has an energy kT/2

1.2 Temperature and thermal
equilibrium
Ideal gas

PV=nRT
n= N/N0 .number of moles

k= R’/N0
N, Avogardo's number, 6.023 x 10%

k=138 x10%JK
R =8.31 JK'

Two gases at equilibrium

* For a volume containing two ideal gases
(masses m_, m,) at equilibrium, the number

of molecules with velocity v does not depend
on the direction, but only on |v]|

. Igvx>=<vy>=<vz>=o' _ |

» For two molecules (of different type) with
independent v, v,

y = (m v, +m,v,), v, ,=v,—v,

cm

T | | 3 kT
<v1-v2>=0©<vm-vrd>=0 :><5m1vf>=<5m2v§>=57
« Two gases at same temperature => same
average KE per molecule, irrespective of m
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Avogardo's law is consistent
with <lm v2>=3'lkT
2 2
Consider a separate scenario of two gasses with
same volumes pressures:

_2 N /1 N\, 2N,/ 1 2\ .
£1=3 V1<2m1"1>’P2'3 AV

If both systems have the same volume and

pressure, and are at the same temperature:

lmlvf = %mzvi =%kT

2
This implies both gases contains same N =N _=N:

Avogardo's law proven
There is consistency between the known ideal gas
law and identification of temperature with kT




NOTE

« We have so far assume the molecule as
structureless, point like object

Chap 1.3
Equipartition of energy per molecule and its
constituent parts — a fundamental problem

« Thermal motion

lmv2 =§kT

is only for point-like particle

« For an ideal gas system made up of point
particle (monoatomic gas). [ZEmVZ§)=%kT

« Molecule comprised of atoms

« Description of monoatomic gas has to be

modified in order to describe thermal motion of

molecules
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Average KE of CM of molecule

« Want to obtain the average KE of a molecule

» WIill derive this for the simple case of diatomic
molecule

« First consider the CM of a molecule

ar\ [ 1 2 \_3 m ni, 3
o5 >—<5MCMVCM>—5kT+(mI+m2)<v1-v2>—5kT




I Average KE of CM of molecule

« Next, obtain the average KE of a molecule

I (which includes that contribute by the
individual atoms)

» Consider the case of a molecule made up of r
atoms oy

- Each atom's average KE is| £+ /=541

<E}Z°l>=r%kT=%kT+(r—1)%kT

O

o/—O /*O

1 3 I energy associated with the internal motion of
(r— )'5 I molecule (atom's motion)

Energy associated with internal
motion

Fig. 1.1.4 Rotations and vibrations of a triatomic molecule.

or=3

EM=3Ljr=24r
(B )=3Lur=2

I Molecule with 3 atoms
|

% kT for translational motion of the CM

% kT for rotational motion of the molecule

3 Lo : .
> kT forvibrational motionof the atoms relative to eachother

atotal of 9(=3+3+3) DOF
Fach DOF has%kT of energy
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DOF for diatomic atoms

1 DOF for 2 DOF for
total DOF 3 DOF for vibrational rotational
=3r=6 translational 1 4tion motion (each

motion of CM  pyatween two atom rotate
atoms around the

CM)

o
o/*O /*O




I Modification of EOF for

structured molecule Heat Capacity problem

o) 2 * ymeasures experimentally does not match
PV==E—->PV=—EF : :
3 2 that deduced by classical physics
I E =total kinetic energy of the moleluce , potential energy ignored * Diatom:

DOF (CP) = 3r= 6;
y(CP)=1+2/3r=4/3=1.33

But y(EXP, T=100TC)=1.4

= DOF (EXP, T=100C)=3r=5#6
“Freezing” of DOF

CP fails to provide explanation why DOF # 3r

Deﬁne y= 14+ i Definition as according to
3 p classical physics

PV=(y—-1)E

* ycan be measured, providing info on the
number of atoms making up the molecule

« ¥=>5/3 for monoatomic molecule

« y=4/3 for diatomic molecule

Effective number of DOF, f AE vs. ~ kT
I « Quantum mechanical excitation energy level of
According to strictly classical physics y:HL_ vibrational, rotational motion and internal DOF
I 3r from internal forces are discrete
However , this definition does not seems consistent with experiments e AFvs. ~ kT
1 [ ~ - ~
Sedaiiian: VoLt AE ~>eV; kT ~0.01 eV at room temperature

« Experiments only sees lower energy excitation
states at low T, hence DOF measured < 3r

.
e
.

.
» 5

Effective number of DOF, f, number of portion of
kT/2 that are contained by the average KE of the
molecule

A4 A A
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I fis temperature dependent Diatomic molecule at high T
E?S‘”%kT y(EXP, T=2000C) = 1.286
I Ingeneral , f #3r * = DOF (EXP, T=100C)=f=7

+ An extra DOF from internal forces is de-
ForkT < AE, f=3(seeonlyr=1) frozen

ForkI'’>AE, f=3r

(see all r (vibration + rotation) + internal
excitations from internal forces)
Forintermediate kT ,3< f <3 r

I NOTE
I AVERAGE KE of atoms in a molecule #KE
of the atoms in the molecule Chapter 1.4

The density in an isothermal atmosphere — the
Boltzmann factor in the potential energy
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I Isothermal gas in closed volume under gravitational

I force

I P(z+dz) /
g [ .
N e
7 A
P(z) .
v
A
I Dependence of density on T
n(z) 4
I variationin density in dz depends on Ak]{]
I . The larger kT as compared to A U,

the less in the variation of n(z)

Fig. 1.1.6 The dependence of the density on height in an isothermal atmosphere at
three different temperatures. Note: n(0) also depends on T'.
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Number density of ideal gas at
high z
AF=(mg)n(z)(AzA)
At B,

|P(z)—P(z+Az) A=AF; P(z)>P(z+Az)

Combining bothequations above ,
dP(z)

L mgnl(z)

dz
Apply PV =nRT tothe layer A z to obtain
P(z)=n(z)kT
mgz

n(z)=n(0)exp(—7E2)

Total number of molecules

Nn=A[ n(z)dz
mgh

(01 X oxp( 18R
N(h)/A—n(O)mg(l exp(——=-))

Assume container of highh has N molecules :

=i
Nmg mgh
0)=—=|1— ==
0="r eXp( kT)




I Probability of finding a
I molecule

—Ul(r
nirl=nirjes| =
I n(r) . :
Trepresem‘s probability to find a molecule indV atr

P(ﬂdV:%dV

The force field U (r)is associated with the spatial
distribution of the particles, n(r)

The force field U (r)drives variationin the number density,
wherease the thermal motion term k1 tends to’ counteract '
the variation of ndue tothe force field by randomising
the number distribution

I 1.5 The Maxwell-Boltzman

distribution

« How many of the particle in volume dV around
I r, i.e. n(ndV have velocity inside the volume
elementdz= dvxdvydvz in velocity space?
* n(r)dv f(v)dT=NP(r)f(v)dTdV
» f(v) dz = probability for a particle indz
« f(v) is the MB distribution
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Probability of a given
configuration

wlpory e )dv dv,..dv =P (r)dV P,(r,)dV,.. Py(r,)dV,

N kT

*This is to be read as "the probability to find particle 1 in the volume
of size dV, located around r,, particle 2 in the volume of size dV'

located around r, ... ,particle V in the volume of size dV, located
around r,'. Each possible set of {r r....r,} 1s a "configuration',

N
nir — -_
={ ( 0)] exp[—lz;jU(ri)]dVlde...dVN

*Hence, there is a tremendously large number of possible
configurations. Each configuration has a probability to occur. The
probability of the configuration (sometimes called probability
distribution) in general depends on £ and temperature 7'

Derivation of the Maxwell-
Boltzman distribution, f(v)

« Assumption 1: In EB, no preferred direction

: Sv)=h(v?)

« Assumption 2: Orthogonal motions are
independent of one another




Derivation of the Maxwell-
Boltzman distribution, f(v)

(cont.)
I v2=vi+vi+vzzt=x+y+z
h(v)=h(vitvi+vi)=g(v)) g(v})g(v])

2 y

z

=h(t)= g(X)g(y)g(Z)

Taking total derivative of h(t) with respect to t, and then apply chain rule

d/dt = (dx/dt)-d/dx + (dy/dt)-d/dy + (dz/dt)-dfdz to the RHS, we conclude that (1/h)(dh/dt)
must be a constant

h(v¥)=C eAv2:>f(v)=Ce”2
C>0,A<0

A 3/2
Normalisation gives : C =(;) ,A=—A>0

Derivation of A (cont.)

4 32
:(F) f,w 2 —Avd J" 2 —Avd J“ 2 —Av =

z

f = 2 —Av 1 Ig'l’!’ 21/2
dv =—|=—
oz K X 2 3
The integration above makes use of the Gamma
function

=[ et

I'(z)=(z—1)I'(z—1);T(

3KT [mn?\ 3m m
= = > 4=—

2 2 44 2kT
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Derivation of A

A system of N particles

+ A system of N particles is fully characterised
by the set of all spatial position (3/V) and
momentum (3/N) = 6/N parameters

{x BARIRENRST ’vz’ Xy Yo Za Ve s Vy s Ve ons

X YN 2y Ve, Vs } {" RS rN VN}
probability ofa confguratlon (or 'state’) is

P(r)dV f(v)dT

—Cexp{—lli—TZ; f[; ml.vl.z+U(rl.)]}dV1dV2...dVNdTlde...dTN




I 1.6 Averages and distributions Dimensional argument for <z>
» Distributions of coordinates n(r) and f(v) * [o] = L", wis the length scale of the problem
I allows the calculation of averages of any * The function Z() has dimension of L
function of r or/and v - o * = Z(a) < 1
jo zn(z)dz_fo zexp(—kT )dz c =(a)=Kla

(z)= sz(z)dz= = =
fo ) jo n(z)dz fwexp(—

Z((x):fo exp(—oz)dz °
, Zexp(—az)dz

R P =L 7(a)
f exp(—oz)dz x

a="g

kT

d . K, _1_KkT
)= )= = e

I Dimensional argument for <|v?|>

eyt d D,

J‘ F(v)dv, v, dv, Part Il Statistical physics with paramagnets

d
<v2>=—d—an f exp(—
m 7Y\ 12
a—mé[(x]—(z) =[velocity]
|Z () ]=] ve[oczty
Z(a)=C
o d ol 3T
<v >_ d(xl n(Ca )_20( m
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a A A ldantificration of toamvmaratiira anel antram

Describing a system

@ System
@ Dynamical model:

© Physical laws governing the system
© Forces/interactions

DOF
Detailed trajectory of all DOF not required

e o ¢

Only interested in statistical averages

@

Time scales: t for observation vs. time for microscopic change

(]

Examples: microcanonical ensembel (equienergetic); canonical
ensembel(equitemperature)
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@ Introduction

0.1 The first law

1.2 The first law in magnetic variables

3

A A ldentifimation ~f toammearatura anel ambrem,

@ What is an Ensembel?

@ Time averages are replaced by ensemble averages

@ “Relative occurance of allowed states” in an ensembel is given
by the probability density

@ Knowing the probability density of the ensembel allow us to
calculate the averages




e Chapter 0 Essential Background in Thermodynamics
@ 0.1 The first law
@ 0.2 The second law and the entropy
@ 0.3 Thermodynamic Potential

@ For concreteness, think of ideal gas system.
1.2 The first law in magnetic variables @ Conserivation of energy: dE = §Q — dW.
@ W = PdV.

o dE =486Q — PdV.

51

A A lelontifimationn ~F tomvmaratiires anmel anteang

State space of a thermodynamical system Types of thermodynamic varibales

@ A thermodynamical system at EB is characterised by a set of

macroscopic variables. @ Extensive (proportional to system’s size), e.g. volume,
@ A minimal set of these varibales defines the state space of the number of particle
system in question. @ Intensive (not proportional to system’s size), e.g. pressure,
o {P, V, T} for ideal gas. temperature
@ Equation of State (EOF), e.g. PV = nRT. @ Function of state (e.g. internal energy) vs. not function of
@ Given any set of two variables, the third one is determined via state (e.g: work, heat).
EOF. @ Jasin §Q,0W. § signfinies path-dependence of Q, W on the
@ Any variable which is determined by the elements in the state process.
space is called a function of state. @ Operator ‘d" as in dE signfinies path-idependence of E on the
o f=1"f(a,b,--+), {a,b---} € state space. Process.
@ V =nRT/P, with { P, T } as two independent variables.
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The condition for A(x,y)dx + A,(x, y)dy to be an exact

differential

Checking if a variational expression is an exact differential

o Consider the expression da = A,(x, y)dx + A,(x, y)dy, where
Ax(x,y) and Ay(x, y) are two functions of two variables x, y.

@ By definition, da is an exact differential if it is equal to the
difference between some function z(x, y) evaluated at two
neighboring points, i.e., if da = z(x + dx,y + dy) — z(x, y).

@ The sufficient and necessary conditions for §a to be an exact
differential is 0A«(x,y)/0y = 0A,(x,y)/0x.

@ If this condition holds, then A, = %, A, = g—; for some
function z(x, y) and da is the difference of the values of this
function.

@ Often, we enconter variational expression in the form of
f(p,q)dp + g(p, q)dq in stat mech. If we can prove that it is
an exact differential, then we can integrate them to obtain the
function z(p, q) corresponding to the exact differential, of
which dz represents the difference between z(x, y) evaluated
at two neighboring points.

o If dz is an exact differential, then the integral z = f dz
depends only on the end points of the limit of integration and
does not depend on the path over which the integration is
performed.

What's good of an exact differential
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@ Put simply, given any two functions M(x,y) and N(x,y),
obtain their partial derivatives, %—’\y”, %—’)\(’. Then check whether
%—A;’ = %—’)\(’. If it is, then the expression M(x, y)dx + N(x,y)dy
is an exact differential.

@ For any exact differential, we can find a function z(x, y) such
that dz = M(x, y)dx + N(x, y)dy. By integrating both sides,
we can obtain the full expression of z(x,y) via

z(x,y) = [dz = [ M(x,y)dx + [ N(x,y)dy

)@ 1s not an exact differential

@ Consider ideal gas: E = NfkT /2.
@ 0Q = PdV + dE = PdV + (Nfk/2)dT.
@ Take P = P(T, V) and use EOF

P(T,V)=nRT/V = NkT/V = §Q = Nk (5dT + LdV).
@ Compare this to da = A.(x,y)dx + A,(x,y)dy
® 0A. /0y =0(f/2)/0V =0, 0A,/ox=0(T/V)/O0T =1/V.
@ 0A. /0y # 0A,/0x.

@ Hence heat transfered Q between two states in a process is
not given by the difference in a 'heat function’
Q(x + dx,y + dy) — Q(x,y).




Types of thermodynamical processes Heat Capacity

@ Cy =(0Q/dT), Heat required to change the temperature of
a system per T at constant volume.

@ Isothermal @ From §Q = Nk (ng + ¥ dV), we obtain Cy = Nkf /2; Note
@ lIsochoric that at constant volume, dV = 0.

@ lIsobaric ® Cp = (8Q/3T)p Heat required to change the temperature of
o Adiabatic a system per 8T at constant pressure.

@ From 4Q = Nk (ng + %dV) and PV = nRT we obtain

Cp = Nk(1+ f/2) with P a constant.

G
C—C:'y:l—i—%.

Second law of thermodynamics Definition of entropy, S

@ 4Q is not an exact differential, but ‘STQ is.

@ Entropy change dS = ﬁ is an exact differential between two

@ It is impossible for any engine working continuously in a cycle states

to transfer heat from a colder to a hotter body and to

produce no other effect @ Entropy S is an extensive variable.

@ Since dS is an exact differential, S is a state function, which
can be expressed as a function of the state variables, e.g.
S=S(T,P)orS=S5(T,V).

@ Furthermore, e.g. the values of S at two different states, e.g.
S(Ty,Py),S(Ts, P2) do not depend on the path between the
two states.

& Kelvin formulation: It is impossible for an engine working in a
cycle to extract heat from a single reservoir, produce an equal
amount of work and have no other effect.

Printed with FinePrint - purchase at www.fineprint.com



First law in terms of entropy Heat capacities in terms of entropy

o Let S=5(T,V), = %2 =dS = 23dT + 5 dV.
@ Taking 6—? at constant volume (= dV = 0),

@ First law: dE = TdS — PdV'.

@ Entropy S is an extensive variable.

- | C = (39), = T ()
@ For ideal gas, the entropy at {P,V, T} is 4 STIV aT/v-
S=[dS= [ =Nk[ (5 +9) = Nkin(bVT?/2), b o Let S=S(T,P), = %8 = dS = 224T + Z3dP.
constant of integration, fixed by initial condition at the o Taking g at constant pressure (= dP = 0),
reference system with zero entropy. Cp = (g_Q) —T (ﬁ)
=\eT/p ™ T /P

Heat capacities from other state function £ Entalpy and heat capacity at constant pressure

@ Previously we have seen that heat capacities can be derived if
from entropy, which is one example of state functions in

@ Define Entalpy as H = E+ PV.

thermodynamics. ® 6Q =dE+ PdV.
@ The total energy of the system E is also a state function from ® 6Q =dH — VdP.
which heat capacities can be derived. o Let H=H(P, T)
OE OE
o Let E=E(T,V), = §E = $5dT + 95dV. °06Q= () dT + (2L -Vv)dP
= ) _ _ (OH
@ 8@ = dE at constant volume ° = (_CT?>P =Cp= (W)P'

° Cy= (%)v - (g_7E')V'
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Energy as thermodynamic potential Entropy as thermodynamic potential

@ The energy is a thermodynamic potential when expressed in
terms of Sand V : E = E(S, V)
) o dS =4 4 PV
@ dE = TdS — PdV, {S,V} as variables, {T, P} as the _ T T _ _
coefficients to the exact differential dS, dV. ® Given the thermodynamic potential S(E, V), {T, P} can be
@ Given the thermodynamic potential E(S, V), {T, P} can be derived from it. o5 o5
derived from it. ° S=5(E, V)~ dS = (52) dE + (§7) aV
1 _ /0S _ oS
o dE = (35) dS + (§7) dV. ° =+ =(5)v P=T(We
OE
o T=(3) v
o P=—(§0)s

Thermodynamic potential, Function of states Chemical potential, 1

@ S, E, H are examples of thermodynamic potential (a.k.a

function of states) from which the thermodynamical ® When N changes in a thermodynamical process, chemical
information of the system can be derived. work is done, via dE = TdS — PdV + pdN, with
@ Once a thermodynamic potential is given, all the E=E(V,5N)

thermodynamic properties can be derived from it.
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More ‘convenient thermodynamical potential (for
experiment)’

®

S, E are difficult potential to control experimentally.

(7]

Legendre transformation to obtain more convinient potential
Example: H = E + PV, where the T.P E is transformed to H
by shifting it by the product of two thermodynamic varibales
P, V.

Helmholtz free energy, F = E — TS.

o = dF =dE — TdS — SdT = dF = udN — PdV — SdT.

o= F=FN,V,T)

©

(%}

@ {T,S} or {1, P,S} can be derived from F
° (g_E)S,T =1 (g_g)E,T =-T, (a_q')E,T =-S5
° (g_/,\:/) v,T — M (g_\,;)N,T = —P, (g_l';)N,V =—5.

Maxwell relations (cont.)

N
Q|
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S—

~

=
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N
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| \
TN TN
QJ|Q3 QD|Q)
=l 2T
e
~ <
= ~
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Maxwell relations

OF _ dp _ [ _&F
° (gu)vr=r= (W)VN = (8T6N)TVN'
(8) .0 = (s¥m)
oV )y T \OVON ) 1y
oF _ oP _ [ &*F
° (Wlnr=—P=-(F)vw (8TBV) VN
(9B, = (52h
on)v,r = \amov )+,
oF - _ op _ (2%F
° (5rlwy="5= (8T>VN_ (8T8N TUN
ou _ [ _0%F
ov )y = \aVaN )

Grand potential (‘thermodynamic potential’),

@ Q=F—-uN=E—-TS—puN.
@ Take Q =Q(T,V,u), and use dE = TdS — PdV + udN
o dQ? = —PdV — S5dT — Ndp.




s o -

0.1 The first law

© Chapter 1 Thermodynamics with Magnetic Variables
@ 1.1 Introduction

h h ived f F: )
® Show that Cy y can be derived from @ 1.2 The first law in magnetic variables

o Cyn = (g—[;),\,,v =T (g_?)/v,v =-T (3—27’::)1\/ A

)

3

A A ldentifimation ~f toammearatura anel ambrem,

Magnetic moment system M,P as thermodynamic variables

@ Magnetic dipole moment, . @ Magnetisation, M = VM = N(u).
® Unag = —p-B = —uBcos@. This is a potential energy @ {H, M} is a pair of variables characterising the magnetic
(orientationally dependent) moment system (c.f. the set of variables {P,V} charactering
@ For a collection of atoms in an external magnetic field H, M, an ideal gas system).
magnetization density or magnetization per unit volume will @ We wish to formulate the first law §Q = dE + ¢W in
be induced as a response to external magnetic field. magnetic variables {H, M, T}
@ M in turn will give rise to an induced magnetic field via @ Work done by system when H change by dH, dW="7
Bing = 47 M. ® AUmag = [-p- (H+dH)] — [~ -H] = —p - dH. Work done
@ An individual magnetic dipole moment in the material will by the system (comprised of only one moment) is obtained via
interact with an effective field, called magnetic induction conservation of mechanical energy, dW = —AU = u - dH.
B=H+B;,yg=H+4rM. 0 dE=0Q—p-dH= TdS =dE + u-dH
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Derivatives of S

® dE=TdS—M-dH =S = S(E,H) .

° (g_g)H = %; (g_fl)E = %

0.1 The first law

1.2 The first law in magnetic variables
0 Chapter 2 Microscopic States and Averages
@ 2.1 Magnetic states, angular momentum and paramagnetism
@ 2.3 Probabilities and averages

A

A A ldantificatinn ~f tamnaratira and antran
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E*=E+M-H

¢

By Legendre transformation, define the potential function
E*=E+M-H

dE = TdS — M - dH.

@ dE* = TdS + M - dH.

° (;%)H = %? (g_l\sﬂ)E* = _#-

©

Types of magnetic system

@ Type of magnetic systems depend on how the system
responses to the external magnetic field.

@ Paramagnetic
@ Diamagnetic

@ Ferromagnetic




spin-half magnetic moment Configurations of spin-1/2 system

@ Electron’s orbital motion in an atom L and the intrinsic spin S
of the electron give rise to magnetic moment of the atom.

@ Magnetic dipole moment of an atom is usually measured in
unit of Bohr magneton, (15 = 26_77 m mass of electron. @ The mircoscopic state (configuation) of a spin-1/2 magnetic
! mv . . . .
system comprised of N spin-1/2 magnetic moment in an

@ In simplest case, angular momentum does not contribute to | < field is ch , h ¢
the magnetic moment of an atom: g = —25S, with external magnetic field is characterised by the set o
S—+lz {01,002, ,on}.

o E(oy,00,- -+ ,on) = _NBHZZ?[ ;.

@ ‘spin-half’ magnetic ion.
@ The system has 2V microscopic states.

@ A single spin-half magnetic moment in external magnetic
field, E = —pu-H = cHpug, with 0 = +1(—1) if H parallel
(antiparallel) with .

@ ¢ is called the ‘projection’ of the spin. A spin could have two
possible projections, either ¢ = +1 or ¢ = —1.

PDF Average of an observable

@ In statistical mechanics, we wish to know the probability for a
certain microscopic state to appear along the systems

trajectory in configuration space, so that we can calculate the @ Examples of observable: -
. . =
averages of a system’s macroscopic properties. E(o1,02, -+ ,on) = _HMBX/;/ZI Tiy
— 1= .
@ The probability of a system in a configuration M(o1, 02, on) = pB 2i=; oi
{61,002, ,on} is denoted by P(o1,00,--- ,0n), — @ Note that an observable’s state depends on the configuration
probability distribution function (PDF). {o1,02,-- ,on}.
@ Each microscopic state {¢1,02, -+, oy} has a probability of ® The average of an observable is
occurence, denoted by P(o1,02,--- ,0n) (A) = Z{a} P(o1,02, - ,on)A(01,02, ,0N)-
@ In most cases in stat mech, PDF is the single most important @ In the present case, Z{U} is the sum over 2" states.
piece of information we are after. Once we know what
P(o1,02,--- ,on) is, calculation of the averages is simply a

technical problem.
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(0)

@ Consider the summation P(o/) = Z'{o} P(o1, - ,0N).
° Zl{a} sums all the o;'s except one (). ® >, ,—+1 0/P(a/) then represents the average projection of
@ oy is the projection of spin with index | € {1,2,--- ,N}; oy sp.nn with index /, i.e. Z:0/=:|:1 a1P(ar) = (o)
can has only two values, 1 or -1. o Since | € {1,2,--- , N}, (01) = (02) = --- = (o).
@ P(o)) is the probability of the spin with index / to have a @ Convince yourself that the average projection of the spin-1/2
projection . paramagnetic system is
I=N6,P(s > o =x1 NoyP(oy)
@ Spefically, P(o; = +1) is the probability that spin with index (o) = 2= 7 1) — 2 jEl/\/ =2 o=2x101P(o1)

I has a projection +1; P(g; = —1) the probability that spin
with index / has a projection -1.

W 20 (&)

(M) = Npso)

= pughN- Z o1P(a)) ® P(oj,0j) = ZZ_ P(oi, -+ ,0;), S>" sums all spins but that of
—11 indices i,/ (i.e. the sum involves only N — 2 terms).
= ugN-[6:P(oy)+ 0 _P(o_)] @ Convariance between any two spins,
— ugN-[+1-P(o = +1) + (=1) - P(o = —1)]. C(i,J) = (oi,0;) — {oi){0)).
@ C(i,j) =0 if spins i and j are independent of each other.
@ C(i,j) > 0(< 0) if one spin encourages the other to have the

(E) = —H{M) = —NHpg - [+1- P(6 = +1) + (—1) - P(c = —1)] same (opposite) value.

Note that the relation (E) = —H(M) is obtained from considering
the potential energy of a single spin i coupled to magnetic field H,
e=—pu-H=Ne=—-Ny-H=E=-M-H.
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Fow does Prs.—— ) looks ke

0.1 The first law

@ Wait until the next chapter

. . 1.2 The first law in magnetic variables
@ Once the explicit form of P(o1,---,on) is known we can

proceed to calcualte (M), (E).

© Chapter 3 Isolated Paramagnet - Microcanonical Ensembel
@ 3.1 Number of states and probabilities
@ 3.2 Calculating averages and corrrelations

3

A A ldentifimation ~f toammearatura anel ambrem,

Macrostate, microstate,representative point and phase

Macrostate, microstate,representative point and phase

space (cont.)

space

@ Representative point is a point in phase space that represents

' _ @ A given macrostate is an effective ‘state’ resulted from the
the instantaneous microstate of the system.

averaging of all accessible microstates of the system.

@ ‘Trajectory’ of a system refers to the 'movement’ or time
evolution of the representation point in the phase space of the
system.

@ Each microstate has a certain probability to be ‘visited’ as
compared to others, and their probability distribution are
subjected to different boundary conditions or physical

@ The representative point will visits all accessible microstates constraints.

(subjected to physical constraints) at certain probability for
each microstate in the phase space. (Imagine the rep. point
'moves around’ the phase space at an amazingly fast rate,
visiting the microstates so fast that it effective samples all the
accesible microstates in an macroscopic time scale).

@ The collection of all the accessible microstates is called an
ensemble.

@ The averaging of all the accessible microstates can be
calculated if we know probability distribution of the ensemble.
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Macrostate, microstate,representative point and phase Thermal equilibrium

space (cont.)

@ Thermal equilibrium: A state to which the system has evolved

@ Knowing the probability distribution of an ensemble is crucial after a long enough time, so that by now all the microscopic
as it allows us to abstract many desired. physical in.formatio.n states appear at the same occurrence rate during its time
(e.g. heat capacity, mechanical properties, magnetic/electric evolution.

susceptibility, pressure, etc.) related to the system.

Microcanonical ensemble Derivation of I'(E)

@ System subjected to different physical constraints are

described by different types of ensembles.
o N= N—‘r +N_, qg= N+ - N_, E(Jla”’ 70N) = _N'BHq

(individually N_, N4 can vary but their difference and their
sum must not).

@ The description of an ensemble with constant energy
(microcanonical ensemble) is different from that which is not
(e.g. that with constant temperature and in thermal contact

: ' : o Si ) ) ) g
with a heat reservior - a canonical ensemble.) Since for a microcanonical ensemble, E is a constant, so is g

® In a microcanonical ensemble, all accessible microstates has @ The number of ways of dividing N objects into two groups,

_ N
the same energy, and each of the microstate are equally N(E) = N TN
probable (this is generally not the case for other types of (%lfﬁ)g(%ﬁ)g
ensemble) - equal a priori postulate ® P(o,---,on) = 1/I(E) = !
@ P(oy,- ,on) = %E) I'(E) the number of microstates with
energy E.
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Calculating (M)

@ In a microcanonical ensemble, E is a constant, leading to
g = Ny — N_ also a constant.

@ For any microscopic state r, M, = g
= (M) = ugq = —E/H simply because all microstates are
identical.

Calculating P(o)

Plo=+1)="T
Express P(¢ = +1) in terms of E, H, N (by making use of
neq = —E/H) gives
— _1 E/N
P(o=+1)=1 (1 - MH)
N_ E/N
P(o:—l)zwzl—P(a:H):%(1+2ﬂgH)

What is the preferred orientation of the spins with respect to
the field H when (/) E <07 (i) E > 07

[

(%)

[

©

[

Graphical representation of P(«)

P A

p

»>E/upHN

Limiting cases of the spin system

@ Max of the energy is E = ugHN. When this happens,
P(—1) =1,P(+1) = 0, = all spins are anti-parallel to the
field H.

@ Min of the energy is E = —ug HN. When this happens,
P(—1) =0, P(+1) =1, = all spins are parallel to the field H.

@ When E =0, P(—1) =1/2,P(+1) = 1/2, = a 50-50 mixture
of spins parallel and antiparallel to H.

@ Note that we can control the energy of the system E by
controlling H.

° (0)=> ,_.P(o)o=P(+1)— P(-1)= —@ =g

Q
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Combinatoric correlation effect Comparing I'(E) at different energy

o C(i,)) = ﬁ (% — 1) < 0 = correration exist between any @ Note that '(E) varies sharply with “BLH, esp when N is large.
two spins. (Since there is no interactions among the spins, we The denser the number of states (a.k.a larger I') for a given E
intuitively expect no such correlation in the first place.) the more probable are these states (as compared to states at

other energy for which I is less as dense). Table below shows

@ Such correlation effect is independent of the distance between
for the case N = 10.

spin i and j. It is an effect arised not from interactions among
the spins but from the combinatorics: the combinatorics of E/fupH —-10 -8 -6 -4 -2 0 2 4 6 8 10
N —1and N — 2 are different. I 1 10 45 120 210 252 210 120 45 10 1

@ Taking thermodynamic limit N — oo eliminate such spurious
effect as this correlation scales as 1/N. @ Largest I occurs at £ = 0.

States with high probabilities vs. states with lowest energy Stirling formula and Boltzmann's formula

@ If the system were allow to exchange energy with surrounding

(no more a microcanonical ensemble), the system can also o nl~n"e="/2rn = Innl~ (n+ 3)Inn— n (the approx.
visit microstates with different energy E. In such scenario the become more accurate as n > 1)
system will tend to prefer states with lowest energy (which is @ Boltzmann formula: InT = %5 P

generally not E = 0). (N _E V(L ENY (N, _E Vg (Ll4 E/N
: . : 2 2ugH 2 ZugH 2 T 2ugH 27 2ugH )-
@ Hence, for system in a non-microcanonical ensemble a . / e N .
. ) . @ S is an extensive quantity, indentified as the entropy in
tag-of-war’ between the more probably microstates (states h q )
with large ') and states with lower energy (but with lower I') thermodynamics.

will be fought.

[

S is obtained by applying Stirling’s formula to InT as
appeared in the definition of S, S = kInT, where [ = ﬁ

@ We would like to know what happen to the system in the
oInF=InN!—InN_! —InN ="

tag-of-war when N — oo.

@ To do so we will have to deal with large number, N ~ 10?2,
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S per spin in unit of k vs. energy per spin in unit of jigH

@ Note that despite being a poor approximation at the limit
N — 0, S/Nk as given by the Boltzmann formula reproduces
expected behavior at E/ugHN = +£1 where S/Nk vanishes.

@ Since I = e*°, a vanishing S means only I = 1 state is
possible.
S/Nk
In2
1 >E | ugHN

Fig. 2.3.2 The “entropy” per spin for the paramagnet.

[ at the mit N — oo

@ When N > 1, T(E) = C(N)exp (—#22,42) a Gaussian
B
curve sharply peaked at %’,\41):0

@ C(N) is a E—independent constant that is determined by the
normalisation condition [T (E)dE = 2N.

250 @ 1029 ® 3x10299 ©
N=10 N=100 N=1000
INugH E/NpgH J k E/NugH
>
-1.00 1.00 1.00 1.00 -1.00 1.00
Fig. 2.3.3  Graphs of the number of states as a function of the dimensionless variable

E/(NupH), [or (a) N =10, (b) N =100, (¢) N = 1000. The vertical scale is diflerent
in each of the graphs.

0.1 The first law

1.2 The first law in magnetic variables

@ Chapter 4 Isolated Paramagnet - Subsystems and Temperature
@ 4.1 Microscopic states and thermodynamic equilibrium
@ 4.2 3 and the temperature
@ 4.3 Sharpness of the maximum

a A A ldantificaticnn ~f tamnaratiira and antran:

Two systems at thermal contact

@ Consider two systems a, b (with number of spins N,, N, and
external magnetic fields H, = H, = H) at thermal contact.

® The combined systems can be considered as a microcanonical
ensemble (with energy E and number of particle N >> 1)
artificially ‘seperated’ into two sections.

@ E=E,+ E,, N= N, + Np are constants, and
Es= —ugH; le\ﬁl agj

@ Take the system's independent variable as E;

NN+ Ny BB Bl =1,
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Condition for thermal equilibrium

o T7(Es) =T, Tp=T(E) T(E — Ep) = exp(=32).

o At thermal equilibrium, T'7(E,) will be sharply peaked at some
value E, = E,, for which I'(E,) is a maxima

8F(Ea)‘ —

8Ea E:Ea -

2 lﬁa‘ - _,l%‘ . _l%‘ - _
kBEa E.=E;, — k 8Ea E,=E; — kaEb Eb:Eb:E_Ea

@ Note the constraint E = E, + Ep,.

. : : 10S 19S
@ Hence we identify the quantity 5 = Ea_l:‘ﬂEa:E'a_ = _%8_Eﬁ|Eb:Eb
on both systems must be equal at thermal equilibrium.

@ Since
P(o = +1)

P(c = —1)
If we write P(6 = +1) = Cexp (+8ugH - 1),
P(o = —1) = Cexp (BugH - (—1)), Eq. (2) is reproduced.

o Define ¢(0) = —uupHao, where o represents the projection of
the spin along the field H (¢ = +1 if the spin is parallel to,
and ¢ = —1 if the spin is antiparallel to, the external field H).

@ Then P(c) = Cexp(—fe(o))

@ This is the probability of the spin to have a projection ¢. The

probability depends exponentially on the product of the 3
parameter and the energy of the spin ¢(¢) on that projection.

— exp(2ugHB). (2)
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The parameter [

@ One can define the parameter 3 = %ﬁ for any system with

E
entropy S(E).
@ The parameter 3 for an isolated paramagnet system is
E/N
(%zgﬁ)]

_ 1
ﬁ T 2ugH In [(%+M

ngH

@ The log term can be identified as In [gggij” so that

@ ggiﬂ% = exp(2ugHp).

The normalisation constant in P(5) = Ce=%(")

@ P(c) = Cexp[—fBe(o)]

> s 1y Plo)=1=
Clexp(—pe(o = +1)) + exp (—Pe(o = —1))] =
Clexp (—BupH) + exp (fugH)] =1

o C 1 = g BusH + eBusH

@ In a more convenient form (to be used later)

€ =Yy uye PO




[T, %ST as a function of E,

E2 E—E.)?
o 1(E))=T,-Tp=Cexp (—W) - Cpexp (_2(Nbu25f)-12)'
E2 E—E;)?
o ST(E)/k =InT7 = In(C,Co) — 53 [W + ((,\,7,\,3)]
@ By completing the square, max of S1/k as a function of E,
can be easily obtained:

1 1 _ N,E
;ST‘max — ;ST(Ea— a— N )

@ In terms of E,,
= 2
#57(Ea) = In(CaGo) — 57 |y (Bo — Bo)* + 7 -

Figure showing I as function of EW

/ .

E,/N E N

Fig, 24.1 The number of states of the combined system {2.4.16)

wan® A it 21085 A @)

N,slVya100

B, 1N gkl

100 ~050 023 100
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Width of [ 7 in the thermodynamic limit

B N
o I'r(Es) = Crexp _ZH%HENaNb(Ea—Ea)Q]-

@ A gaussian distribution with width AE, = pgH,/ Nal

2
® Note: The general form of a gaussian is ~ exp (—(X;s‘;) ) .

. N . .
@ The ratio &8 ~ N 1/225° 0 = extremely sharp peak’ in

the thermod;namic limit.

Entropy of paramagnet in terms of M

@ The paramagnetic system as a whole has induced
magnetisation M due to its response to the external magnetic
field H. The interaction between the magnetisation
(= Nug Z,N o;) and the external magnetic field H gives rise
to the potential energy E = —MH.

@ The entropy S for the paramagnetic system can be expressed
in terms of magnetisation M = —E /H:

S=S(M)= —SKI(N+ M/pg)In(L+ M/Npue)
+(N — M/ug)In(1 + M/Nug) — 2N In2].




dS in terms of dM

aS k (1+M/Nu3

dS = == dM = — 1M/NMB)dI\/I:—kﬁHdI\/I (3)

N oM 211,3 "

@ Compare this to the thermodynamical equation for the
paramagnetic system TdS = dE* — HdM, where
E*=E+ MH.

® But for paramagnetic system we know
E=—-MH= E*=0= dE* = 0 = the first law for
paramagnetic system is reduced to

dS=—(H/T)dM (4)

0.1 The first law

1.2 The first law in magnetic variables

A

A A ldantificatinn ~f tamnaratira and antran
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Finally, we found what /5 is: the inverse temperature

@ Comparing Eqgs.(3),(4), = 8 = %

@ [ is called the inverse temperature.

Canonical ensemble

@ A microcanonical ensemble is isolated, characterised by
constant E, N

@ Subdivide the isolated system into one small section (system a
charactersied by E,, n) from the rest (the heat bath,
chatacterised by E,(>> E,), Np(>> n)).

o E.+EL=E,n+Ny=N

@ System a is a microcanonocal ensemble. It constantly
exchanges energy with the heat bath with AE < E so that

both a and b are maintained at constant common
temperature T = Both systems are in thermal equilibrium.




Comparison with microcanonical ensemble

@ Microcanonical ensemble = canonical ensemble + heat bath.

@ As a comparison, since E is constant in the microcanonical
ensemble, each state has the same probability of occurence
(this is called the equal a priori postulate).

@ A microcanonical ensembel is characterised by a constant
energy, while a canonical ensemble is characterised by a
constant temperature, exchanging small energy with a heat
bath.

® Microcanonical ensemble: {E, N, H} vs. canonical ensemble:
{T,N,H}

The normalisation constant, C

? C— nnc—l
(Z oyt € PAN) () €72 (S, g €70(0) =
2{01::&} Z{O'QZ:I:} Z{o-n::l:}e ﬁz €i(oy)

o Cl=3u Z}Z;j;ﬁ e B Y7 (o)
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Probability distribution of a canonical ensemble

@ The probability distribution of the canonical ensembel,

Plov. - .on) = P(or)- - P(on)
= Cl exp(—ﬁel) e Cn EXP(*ﬁEn)

= (N7G)exp(—8 Z €i)

= Cexp( ﬁz

° Cl= D {oi=t} e~ Peile)
o E= 276,'

@ ¢ = —[/LBHO,'

= Cexp(—fBE)

The Boltzmann distribution C exp(—/E)

@ Boltzmann distribution has also occurs in ideal gas system in
terms of P ~ exp M2
P\~ 2kT

@ Unlike the microcanonical ensemble, the total energy of the
microstates of a canonical ensemble E is not constant as the
system a exchanges energy with the heat bath.

@ Each state of the canonical ensemble (¢1,02,--- ,0,) of total
energy E = —ugH Y7 o; has a probability to be visited with
a weight exp(—fSE), so that those states with larger energy
will be relatively less visited by the system as compared to
those at lower energy.




Derivation of I+ based on canonical ensemble approach Comparison between the canonical and microcanonical

descriptions

®

We will derive T 1 for the isolated system (heat bath +
canonical emsemble) by assuming N, << n, E; << Ep, E,

- @ Both approaches are valid and equivalent, but the canonical
E = E, + Ep, fixed.

approach is easier to handle mathematically.

° ET =Tl = r(Ea)lr(Eb) = N(E)T(E — E2) = o ' =exp (+S(E) — E.f3) = const - exp (—E,/kT) looks more
% &xp (Sa+ Sp) = ¢ exp (S(Ea) + S(E — Ea)) natural and easier than that obtained from microcanonical

@ Use Taylor expansion to expand the S(E — E;) term to first approach.
order in E;, i.e.,

oS @ Canonical ensemble is more natural than microcanonical one.
o S(E—E,)~S(E)— E,2E) — S(E ) E.kB = S(E) — &

T @ In real life, its easier to fix temperature in experiments than
o [T~ exp [£(S(Ea) + S(E) — £)] mexp [F(S(E) — £2)] = fixing the energy of a subsystem, hence canonical ensembel is
const - exp (— a/kT) preferred
@ In the above expansion, we have use ag(EE) = k{3 and the @ Next, we would like to analyse the paramagnetic system using
approximation S(E) + S(E;) = S(E). the canonical approach

Partition function, Z The importance of partition function

@ The inverse of the normalisation constant as appeared in the
probability distribution of the canonical ensemble P = Ce~#F-

is defined as the partition function: @ In statistical mechanics we wish to calculate the averages of
e Z=C1l1=%__ iz?" =on} (=B Y] €i(0i) — useful physical observables of an ensemble.
= 0'1
S ol microstates e—BE(all microstates) @ This can be done if we know the probability distribution
o P(o;---0,) = LeBEs function of the ensemble P via
i Z

<Q> = Zallmicrostates Q(Ul’ T ’on)P(017 o ’0”)

@ However, instead of working with P, we can work with Z to
derive (Q) much more conveniently

@ From now on we will drop the subscrip a in E; as it is
understood from the context E refers to the energy of the

canonical ensemble.

@ The partition function is very useful as we can calculate the @ To know a system is to know its partition function

averages of many useful quantities of the ensemble by taking
partial derivative of it with respect to some controlled
variables.
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Deriving (E) from partition function

)

—~

E> - Zallmicrostates E(Ula T ,0’,,)/3(017 - 70n) —
1 Z{o} E(ol, .. 7an)e_5E(01"" 70—,_’)

8 - e n _
= o5 {Z{al,...,an} e~ PE(o1, .0 )] —
— Yfor, o (01, o)e—PE(T.00)
(E) = — %[Z{"la‘“,an} e #E(L- ,o,,)] B _% oz
2oy san) e—B(e1, - on)

@ Similarly, (M) = %’LHZ (derive this)

NI

©
SR

Z a3

Partition function of a single spin

@ Note that Z = I'I;zf (Za,-:i 67/864‘(0':')) =212y Zp
@ Each z are indentical

zi =z = (e PreH 4 ePret) = 2 cosh(Bug H)
® Hence Z = z" = 2" cosh"(BugH)

(E)and(M) as functions of 5pgH

o (E)= 7B(I9r;32 = 7% =...= —nugHtanh(ugHp)

@ Using (M) = %%LHZ, (M) = nupgtanh(ugHg). This can
alternatively be obtained using the simple fact that (M) and
(E) are simply related by (E) = —H(M)

(o) as function of x = JugH

@ The average magnetisation (M) can be expressed in terms of
the average projection of a single spin (o) via (M) = n{(o).
Note —1 < (a)/ug < +1.

@ (0)/pup = tanhx

Fig. 2.5.1 (o) as a function of x = BupH.
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‘Tug-of-war’ between kT and -H - o

@ x = fugH = @ (Note: x < 0 means we are taking H to

point in the opposite direction; T must always be positive)

® The spin system are under the ‘tug-of-war’ between the
thermal energy kT (that tends to randomize the spin
configuration) and the external field H's potential energy
-H - & (that tends to align the spins along the field's direction)

Physical interpretation of () vs x = SugH (cont.)

Holding T fixed (T > 0), and vary x
ex—=>0=H—=0 =0—0"
ox—=>0"=H—=0"=06—0"

@ As | — H-o| <« kT the system was dominated by the thermal
energy, causing the spins to fluctuate violently (thermal
fluctuation) and result in zero average spin.

oxXx—o00o =H—> 00" =0—1"
ox—o>tT=Hosxt=0—-11

@ As | — H-o| > kT the system was dominated by H field’s
energy, causing the spins to align along the H field's direction.

Physical interpretation of () vs x = SugH

Holding H fixed, and vary x

x>0 =T oot withH<0=0 — 0"

2x—=0"=T oot withH>0=0—0"

@ As kT > | — H - &| the thermal energy in the system
dominates over the H field's, causing the spins to fluctuate
violently (thermal fluctuation) and result in zero average spin.

ox—>00 =T—=0"withH<0=0—1"

ox—=o00tT=T—=0"withH>0=0—1"

@ As kT <« | —H - | the H field’s energy dominates over the

thermal energy in the system, causing the spins to align along
the H field’s direction.
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The temperature scale of the spin-1/2 paramagnetic
system ©

@ Define the characteristic temperature scale as © = ugH/k

o If T > ©, thermal fluctuation dominates, and we have
(¢) =0

o If T « ©, magnetic field's energy dominates, and we have
allignment (o) — +1.




X, magnetic susceptability per spin

@ (M) is the respond of the paramagnetic system when
subjected to the external influence, H

@ Hence we define the response function y, the magnetic
susceptability per spin, as a measure of how good a
paramagnetic system response the the H field.

o (M) =nxH

@ Our previous statistical treatment predicts y to behave
theoretically as

12
x=(M)/H=1E

Heat capacity at constant H per spin

@ By definition, heat capacity per spin (specific heat capacity)

of the paramagnetic system at constant field H is given by
— 104Q

CH = n(aT)H

@ First law on paramagnetic system at constant field,
3Q = d0E — MdA= 3E

o 0E =4 (nugHtanh(ugHp)) =
—nugHsech?(ugHB)d(SusH)

é
o L(28)y = —(usH)?sech?®(usHp) 32

_s(ly_ 3T B _ 1
e if=0F) = = 52
§ H)2 h2 H
@ C _( E — (MB )SiCQ(IJfB ﬁ)
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Curie law

@ The inverse dependence of x on T was indeed observed
experimentally in the region T < © = ugH/k.

@ The experimental observation that establishes y %- is called
the Curie law.

@ However, experimental behavior of x deviates from Curie law
in the region T <« © (Reason: ---)

kT
CH VS'M-BH

0.3
0.2 |-

0.1 -

l | 1 | l 1 -
04 08 12 16 20 3.0 kT /ugH

Fig. 2.5.2 The specific heat (2.5.18).




Entropy per spin as function of < S(T,H)vs. T at constant H

ugH

@ Earlier on we have mentioned

S(My=" KN+ M/pis) In(1 + M/Nps) 1
(N = M/pg) In(L + M/Nug) — 2N n2].

@ Now we know M = Nppgtanh(BugH). Substitute this into S
above, we obtain S = S(T, H) (after some algebraic
manipulation of the hyperbolic function,

H H H
S(T,H) = Nk {In [2 cosh (%ﬂ . “kLTtanh (“kLT)}
@ Note that here N refers to the number of spin in the system
(same definition as the symbol n used in earlier slide).

Sy

S(T,H)vs. T at constant H S(T,H)vs.H at constant T

@ As H increases to infinity, entropy per spin — 0

@ In the opposit limit, H — 0, entropy per spin saturates to the
limiting value kIn?2.

@ As temperature increases to infinity, entropy per spin .-

saturates to the limiting value kIn2. s

® As entropy saturates, system becomes maximally disordered
(system's states becomes totally randomized)

@ In the opposit limit, T — 0, entropy per spin — 0

@ As entropy is approaching zero, system tends to be totally r
ordered

@ System tends to be totallly ordered, as only the unique state

in which all spin alligned with H is allowed in this limit e

@ Note that entropy per spin shrinks to its minimum k In2 faster
at lower temperature than at a higher temperature,
illustrating the effect that thermal effect presents resistence to
the system to reduce in entropy.
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Outline General remarks

0 Chapter 1 Thermodynamics with Magnetic Variables
@ 1.1 The partition function and the internal energy

1.2 Thermodynamic work

1.3 Entropy, free energy, the first and second laws

1.4 The paramagnet revisited

1.5 On the statistical meaning of the free energy

@ All the conclusion obtained based on statistical mechanics
treatment on a system must pass the test of confirmity with
the laws of thermodynamics.

@ In principle the microcanonical ensemble and canonical
ensemble descriptions of a system are equivlalent. The
difference is that one description may be more convinient than
the other.

@ We will use canonical ensemble for the upcoming analysis.

@ The stat mech method applied on paramagnetic system to
obtain properties of interesting obsevables as averages of the
microscopic states is also valid to other thermodynamical
systems other than paramagnetic system, e.g. ideal gas,
photon gas and fermi gas (in near free electron gas model for
metal)
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Deriving thermodynamical laws from statistical mechanics

@ The relative probability for a state / to appear in the ensemble
is e=PEi to that ' = e~ B(Ei-E))

@ The partition funct|on Z(T,V,N)=>3"; e~(BE) allows us to
derive averages e.g. (E) = —%Lﬁz
@ Thermodynamical quatities (work,entropy, Helmholtz free

energy) can be derived using Z(T, N, V)

@ We can also find a correspondence between the first law and
statistical mechanics based on Z(T, N, V)

@ Our mission: To establish the statistical origin of the
thermodynamical laws.

@ Work done by a system in a quasi-static process, d W, due to
variation in X, is a macrocopic quantity.

® dW is an average of all the work done in all microstates:

Z(SWP 1Z5We BEi

all i all i

@ We will show that, after some algebra of plugging
§W; = —9%5.dX into §W above,

10InZ
oW =—-——dX
g 0X
where the ‘thermodynamic force’ is now expressed in terms of
partition function ,éai InZ

Macroscopic work done by a system
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Work done by a system in microstate i

@ In ideal gas system, 6 W = PdV/; In paramagnetic system ,
W = —MdH.

@ Variation in the external thermodynamic parameter X
(X =V in gas and X = H in spin system) causes work done
by the system W

@ Hence, in general, Z = Z(T, X, N)

@ Energy of a microscopic state 7, E;, hence must be dependent
on X: E; = E;(X)
@ ‘Force’ resulted from variation in X can be derived from

OE;
Fi=—-3x

@ Work done by the system in state / due to variation in X is
then SW; = FjdX = — 25 dX

Application of sW = l ZdX on paramagnetic system

@ The parameter X in this case is identified as X = H

@ The ‘thermodynamic force' in state i as appeared in

oW, = —%dX is actually the magnetisation M; in state i
OE; OE;
FF=——=—7=M,
’ X OH ’
@ Explicitly,

0E;
M, = ———
’ OH

0
= 8—H[MBH’(O'1+O'2+"‘+O',,)]
= pg-(e1+o2+ -+ on)

-7 _1285 _)3Ed ;aah;_lde




10InZ
3 oX

Application of sW =

dX on paramagnetic system
(cont.)

Application of SW = 1252

ox dX on ideal gas system

@ The coefficient to dH can be easily identified as

19InZ
=) (1)

a result we have encoutered earlier.

@ Note that the average of M can also be obtained in terms of
the probability P(O‘l, 0o, " ,O’n), <M> = Zi M;P; =
uB - Z{U}(O'l +02 + -+ Un) . P(O']_,O'Q,‘ B ,On).

@ Methematically it is obviously more cumbersome to obtain
(M) by summing over all configuration 3/, than deriving it
via Z as done in Eq. (1).

dlnZ

a5 dX on ideal gas system (cont.)

Application of YW = l

@ The coefficient to dV can be easily identified as

10InZ

Gav -1

a result we have encoutered earlier.

@ In terms of the propability, the pressure is

P=2z"1) PefE

]
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® The parameter X in this case is identified as X = V

@ The ‘thermodynamic force' in state i as appeared in

oW, = —g—fng is actually the pressure P; in state i
OE; _  OE;
fi=ax="av="
° OE, 19InZ
W=-z13 TlesEgy = 202 gy
’ Z av© Y

@ We introduce the generalisation of the definition of ‘work
done’ on a system due to variation of an external parameter
X. In this generalisation, the ‘thermodynamical force’ causes
the system’s energy to vary when X varies. In a sense the
‘thermodynamical force’ can be considered as a response of
the system due to variation in X. The response of the system
(the force) can be identified as the ‘conjugate’ variable to X
(e.g., if X is V, the ‘force’ is P).

@ By applying the generalised definitions of thermodynamical
force and work done on each microscopic state, we obtain the
macroscopic work done on a system by calculating the
statistical averaging of the microscopic work. And we recover
the known results

10Inz _ 10InZ

Fov -5 o
. This shows consistency between statistical mechanics and
thermodynamics.

=M




AE; for an ideal gas

@ So far we still have not worked out the expression of E;, the
microscopic energy state /i of the ideal gas system. We need

this expression since the ‘thermodynamic force' is —%

@ The dependence of E; on the volume V is somewhat subtle,
as on first appearance the energy of the system suppose to
depend only on the sum of the individual particle’s velocity,
E=3;¢=3mv?

@ The change of E; due to variation of the volume is effected by
the fact that the gas is confined in the volume, and the
number of particle is conserved.

@ We would like to explain in the next few slide how the effect
of the variation in volume leads to the change of the energy of
the system via the effect caused to the molecule’s velocity
distribution near to the piston.

Momentum of a particle after being bounced off the wall

moving with velocity u < v

@ For a particle bounced agaist the quasi-statically moving wall,
the momentum before and after bouncing off the wall is
respectively py = mv and pr = m(2u — v), causing the kinetic
energy of the particle to change by
pz/(2m) — p}/(2m) = —2muv

@ p; = m(2u — v) can be derived by, e.g. analysing the
bouncing in the moving frame of the wall. In this frame, the
velocity before and after bouncing is respectively v/’ = v — u
and vg¢' = —(v — u). Translate vg’ back to the lab frame (via
the Galilean transformation v/ = v — u),
VE=Vve'+u=2u—v=p =mve =mQ2u—v).
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AE; for an ideal gas (cont.)

@ A quasi-static variation in V causes slight variation in the
velocity of the gas near the piston, causing the energy E; to
vary at the order of u/v, where v velocity of the gas near the
piston, u(<& v), the quasi-static speed of pushing/expanding
the piston.

@ In fact we will only need to workout how E; is varied as V

varies; or in other words we would work out the quatity AE;
due to AV.

AE; due to the bounced particle

@ Within an time interval of At, the volume swept by the
particle from the left is vAtA

o (AE), = —2muv - n(v) - vAtA = —2mv? - n(v) - (UAXA) =
—2mv? n(v)-AV.

o (AE), = (AE), = —2m>, vZni(v)AV.

o Inthe limit AV — 0, 28 — 95 & —2m 3" v2n(v)

@ —2mY_ v2n;(v) is the pressure P; in mircorstate i.

x axis

3.1.1 A gas molecule transferring momentum to a piston.




Deriing AQ by malking use of the partition unctio

@ First law: 6Q = d(E) + oW

19InZ
o §W = 198Zdx

_8Inz
° (E)y=E=-%
Hence we have illustrated in the previous few slides the subtle @ Note also dE = dE(3, X). It means the internal energy
mechanism through which the variation in volume AV leads to change is due to variation in temperature and the external

variation in the energy of the ideal gas system with constant N. parameter X (e.g. volume)
o dE = 55dX + 45dp

. OE foud Z
o 2dx = —ZinZdx

2
o 88dp = -5t dp

n 2n n
o 00 - (HE — Hhfax - Zalas

0@ 1s not an exact differential but 50Q is S in terms of the partition function

@ 3@ is an exact differential

(BM) — 9(BN) = 0= 36Q = k~1dS

° 50*(%‘95';}(2 %iéng)dx ag'gzdﬁz ap oX
M(X, 5)dX + N(X, B)dp. @ Wish to find § = S(8, X)
° Q{%—W;&OéﬂQ is not an exact differential. 0 BIQ =k 1S=k1[dS=k" fanX+fan)5’
2 n
k— (f((?an l@)%)(lrég dX fﬁ@aﬁl22 _

—1(f8_x [lnz I@@InZ} dX+fa_5 [lnz I@@InZ:| dﬁ)
° S(B,X)=kInZ — kp%pt =kinZ + £
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Helmholtz free energy F = E — TS in terms of the
partition function

@ By definition, Helmholtz free energy as defined in
thermodynamicis F = E — TS

@ Compare thiswith S=kInZ+E/T = —kTInZ=E—-TS
@ F = —kT InZ, which is consistent with the thermodynamic

relation S = — (g—'.,:.)x y (check this)

Deriving paramagnetic system’s thermodynamics from its

canonical partition function

¢

Z(T,H,N) = [2 cosh (%)} !

o F=—kTInZ = —NkT In (2cosh 4}
o S=— (g—i)xw = Nk [In (2cosh ’%) — /%tanh %ﬂ
@ E can be obtained from

F=E - TS=E=F+TS= - = Npugtanh £

®

cH can be obtained from S via the
oS
C o (0Q _ (TdS _ [ Ta7dT _
following:cy = (JT)H,N = (57 )H,N = ( L

(T2S), == 5 H?
T/H,N kT2 cosh?(pigH/KT)
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Thermodynamics and statistical mechanics

@ The thermodynamical quantities 6Q,6W,S, E and F are all
derivable from the canonical partition function Z

@ In other words, knowing Z knows the thermodynamical
properties of the system

S is maximal for isolated system with constant energy

@ For two system a, b in thermal contact, but with E; + E, = E
a constant, thermal equilibrium between them is characterised
b OS(E,) ~ _ OS(E-E)) — — T Thi |

Y 3E le—E = 6—Eb’Eb:E_Ea = T. This also means

the total entropy is a maximum,
8iEa [S(Ea) + S(E — Ea)]g,—g, = 0. A maximal entropy of the
combined system corresponds to the most probable
macrostate, where [ 1(E; = E,) is the highest. This is the

case for the microcanonical ensemble.

® On the other hand, consider a canonical ensemble at constant
temperature and is in thermal contact with a heat bath. The
ensemble can exchange energy with the heat bath, so that the
microscopic states can have different energies E;. What
quantity at thermal equilibrium is maximum?




S/k E

in canonical ensemble

vs. e~/

e

@ The probability for a canonical ensemble in a macroscopic
energy E is P(E) = Z e PET(E) = Z-te FEeS/k,

@ e E favours lower energy (note that T is kept constant)
whereas e/ favours large entropy (tug-of-war).

o Writting P(E) = 7 1ex(5=%) = Z e F/KT  the most
probable state will be achieved for maximal —% (equivalent
to mininum in F/kT)

@ Condition for maximum in —F /kT

is
2] el S

F and P as function of E for paramagnetic system

E/ugHN

—1.00 —0.4621 1.00
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F as function of E for paramagnetic system

o F(E)=E—-TS=E +
€7 (% = zim) n (5~ 2m) + (5 + =5m) 0 (5 + 2555
e P(E)= 7-1e—BF(E)

@ From the graph for N = 200 we see that F(E) has a
minimum and P(E) has a maximum, both are attained at the

same energy E = E.

1.3 Entropy, free energy, the first and second laws

© Chapter 2 Harmonic Oscillator and Einstein solid
@ 2.1 Microscopic states
@ 2.2 Partition function for oscillators
@ Einstein’s solid




Quantum harmonic oscillator

@ A single spin’s projection is represented by o = £1, where
there is only two states per spin.

@ The energy of the spin is simply given by E(0) = —oH

@ Now consider another similar ‘spin-like" object, where there
are more than two possible states per ‘spin’. We call this a
QHO. In fact the number of state per QHO, n, is not 2 but
unlimited, n=0,1,2,---

@ The energy of a QHO is given by ¢(n) = (n + )hw.

@ A QHO is a good representation of atoms oscillating with
fixed angular frequency w, and is pegged at the equilibrium
position at lattice site.

@ The energy of a QHO is quantised

Energy levels of a QHO

effw A
7, )
1y ) _.%=%W
Y/ —_———-
177 .
A‘;

Fig. 3.2.1 The energy levels of a harmonic oscillator: Dashed lines — the quantized
levels; full line — energy of classical oscillator vs amplitude A.
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Quantum harmonic oscillator (cont.)

@ n = 0 correspond to the ground state of the QHO. n < 1, the
QHO is said to be exicted. n is also referred as ‘degree of
excitation’'.

@ A QHO excited to state n corresponds to n phonons, each
with energy %hw.

Quantum harmonic oscillator vs. spin

@ In comparison to a 2-state spin, such a QHO is not subjected
to any external field, hence its energy does not depend on the
external parameter such as in the case of E(¢) = —oH

@ Instead of ¢ = £1, the QHO has n=0,1,2,---

@ The natural unit of energy of a spin is ugH; for a QHO it is
hw.




What we want to know of the QHO ensemble Example of a particular microstate of QHO ensemble with

6 oscillator

@ Consider a canonical ensemble with N non-coupling (in other
words, non-interacting) QHO in a heat bath.

@ The micorstate of the system is characterised by the set

{n1,na,--- ,nn}, where each oscillator i takes on values Tk
n=0,1,2,-.

92

@ The energy of the system in one particular microstate is o

5/2

a2

i=N
E(ni,m, -, ny) = ex(m)+e(n)+--+en(nn) = Y e(m),
i=1

2

1 2 3 4 5 6
Fig. 3.2.2 A state of a system of six oscillators: y = 1,ny = 3,n3 = O,ny = 4,0

where ¢;(n;) = ¢(n;) = (n; + %)hw. B2

@ We would like to calculate the averages of the macroscopic

observables e.g. (n), (E), free energy, etc., using stat mech
method.

What we want to know of the QHO ensemble Partition function for system of uncoupled oscillators

@ Consider a canonical ensemble with N non-coupling (in other

words, non-interacting) QHO in a heat bath. Z = Z e~ AE(n,n2;++,nn)

@ The micorstate of the system is characterised by the set {n1m2,0n}
{ni,na,--- ,ny}, where each oscillator i takes on values = Z e Bedm) g=Be(n2) ... g=Fe(nw)
n=012---. {ny,np,+ ny}

@ We would like to calculate the averages of the macroscopic = NizNzi=zzp-- - zy = 2", (2)
observables e.g. (n), (E), free energy, etc., using stat mech
method. where z; = "= ° e=Peni) — Py e Bt — 7 = 7, =

= zZy =z,
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Calculating average energy of a single QHO

2oy o _ e

1 1
hw (§ + eX—l)

° n=0 = 1w
@ Note that 37 x" = 13-, x < 1 (geometric series)
® (¢) = —85”62
° Letx:ﬁhw:g—g:hw
ol dx 01 dx 0 —
° () =~ = —$2p2 =~ A5 —In(1— e

Bose-Einstein distribution:

1
(n) = o
exm —1
1 1w
lim (n) = lim e X = e W
KT < hw x—o0 X — 1
. . 1 1 X
lim (n) = lim A } ~—
kT3> hw x—0 eX —1 (I+%5-%5+)-1 2

Behaviour of (n) at low and high temperature limits

Calculating average degree of excitation (n) for a single

Zn neiﬂEn Zn nefﬁ("+%)hw
° (m= Ype PR T s Blrephe T D™ T S e
o] — _ 0 1 1 1
5", ™)== =3==
ekT —1

—nx 1

@ Note that Zn e~ ™ = T—e—x

@ (n) is the average value of the degree of excitation of the
oscillator. It is also known as Bose-Einstein distribution. Note
that in this distribution, the number of phonon excited, n, in a
single oscillator is not limited, n =0,1,2,3, ---

is a result from series expansion.
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. - . hw
Graph showing average excitation number vs. 7=

<n>

A ﬂ\w

il
€

; ! >

0 1 2 3 KT/ hw

Fig. 3.2.3 The temperature dependence of the average degree of excitation of a har-
monic oscillator.

(n) changes more readily wrp to kT /hw in the limit kT >> hw; In
the limit kT < hw, variation in kT /hw does not change (n) much
because kT is too small to excite the oscillator from ground state
n = 0 to the next excited state, a process which requires at least
an energy of the amount fiw.




Free energy of a QHO, f

°z=1six= %
1 1 _
o f=—kTlhz=—glnz=5+3In(l —e™) =

hw

%“’ + kT In(l — e™ 1)
f

(%}

_ =
f=¢—Ts=s= T

(2]

Entropy per QHO, s can be obtained either via f = ¢ — Ts or
of
s=(57)

@s—...——k [|n(1—e_x)—x(ex—1)_1]

QHO system as Einstein solid

@ Einsteid model of a simple solid:

@ A solid made up of N atoms vibrating in 3D can be modelled
as a simple system comprised of 3N QHO, where each QHO
discribes vibration of an atom about its EB position in one
direction.

©

Each QHO representing the atom does not interact with each
other but vibrate independently.

@ Each atom is executing a SHM (simple harmonic motion) in
x—, y— and z— direction in space.

@ Each of this vibration mode can be modelled as a QHO in
that direction.
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Transitional temperature

@ kT vs. hw

@ The temperature at which both energies are 'half-fight’ is
The =~ hw/k

@ In the region T & Tpr (T > Tpr), we are in the region of
'low temperature limit’ ('low temperature limit').

Helmholtz free energy and average energy of the Einstein
solid

©

(E) of a Einstein solid can be computed using expression of
the previous calculation for €: (E) = 3N(e), since an Einsteid
solid comprised of N atoms are to be represented by 3N
independent QHOs.

_ _3N. _ _ e Bw/2
o/ =z ,Z—m

InZ =3NInz = 3N [—52‘“ ~in(l - e—ﬁfW)]

[

o F= —kTInZ=—3NkTInz=3N [%ﬂ + Lin(1 — e F")

©

E=—2Z - 3NZ |52 in(l - )| =

3N |3+ g |

ePhw 1




Average energy of the Einstein solid at kT > hw limit

lim (E) ~ 3NKT
kT >»hw

@ High temperature (large kT), and/or soft solid (tiny Aw)

@ Equipartition law of classical physics is in operation here.
According to the law, each DOF has an an average energy of
kT /2. In the case here, for each QHO, there are 3 + 3 DOF:
3 for KE, and 3 for PE. Each DOF of the kinetic energy has
average KE of kT /2, whereas each of the potential energy
DOF has average PE of kT /2. 3N QHOs then make up the
total energy of 3NKT.

Equipartition theorem

@ Equipartition theorem: Every variable of phase space on which
the energy depends quadratically, contributes %kT to the
average energy.

@ Since the kinetic energy is Ex ~ p® for all three components
(i.e. all x,y and z components) the average kinetic energy of
each of these DOF is %kT.

@ In the special case of a harmonic oscillator as it is here, the
petential energy U ~ r?, hence the average energy of
(U) = KT for all three DOF.

o However, in general, if U+ r?, (U) # kT

Average energy of the Einstein solid at kT < hw limit

lim (E) ~ 3NKT (e—f—‘%’ + 1)
KT < hw 2

@ Low temperature (tiny kT ), and/or stiff solid (large fw)

@ The classical law of equipartition fails in this limit as the
effectively DOF 3N (e“Z_UTJ + %) is less than 3N (some DOF is
‘frozen’)

@ The freezing of DOF is due to the onset of quantum
mechanical effect at low x limit.

Molar specific heat capacity of Einstein solid

@ limyrs 5, C = 3R (Dulong-Petit law)
) |ika<<rM C= 3R(,6ﬁw)2efhw5
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Heat capacity problem in classical physics and its solution Einstein temperature

@ According to classical physics, solid's molar specific heat o Of = hw/k (the “half-fight’ temperature, with w constant)
capacity is expected to be 3R irrespective of temperature, as characterises a given solid, which is in turn characterised by
each DOF in the solid should contribute equally kT /2 to the the stiffness of that solid.

average energy per atom, (€). o Soft solid: Lead, ©f ~ 90 K

@ Hard solid: Diamond, ©¢ ~ 2000 K

@ In terms of Einstein temperature the specific heat capacity is

@ However, experimental measurement of molar specific heat of
solid shows that the DOF inferred from the measured heat
capacities in these solid are much smaller than was expected 2 or
by equipartition law. C=3R (9_7_5) ﬁi

[exp(=F)-1]2

@ Plotting C vs. e_TE for different solid should yield a common

curve.

@ Classical physics cannot provide satisfactory explanation to
these ‘missing’ (or ‘frozen’) DOF as inferred by the

experimental results.
@ For lead, room temperature is ‘hot’ as ©g(lead) = 90 K c.f

Tioom = 300K; For diamond, room temperature is ‘cold’ as
©f(diamond) =~ 2000 K c.f T.oom = 300K

@ Hence at room temperature, their molar specific heats are
generally different.

@ This posses a big problem to the validity of classical physics in
explaning the heat capacity of solid.

@ The Einstein model of solid solves the heat capacity problem
by quantising the energy of the vibration in terms of phonon
modes.

Curve of Cy/R as function of el Incompleteness of the Einstein model

§ A Dulong-Petit law
. - =
e « .
e @ Behaviour of C vs. T as predicted by Einstein model confirms
21 3 / well with experiment only in the limits x <€ 1 and x >» 1, but
e / Debye theory mmmm not perfect in the intermediate range of x & 1.
B / Einstein theory =— — — . . .
4} / Experiment o%+®+® @ Reason: Interactions between the oscillators are not taken into
.l / account - Debye model corrects for this effect.
/
/
/
/
0 s | | : 3
0 05 10 15 Tle,
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1.3 Entropy, free energy, the first and second laws

© Chapter 3 Statistical Mechanics of Classical Systems
@ 3.1 Statistical mechanics of a single particle
@ 3.2 Statistical mechanics of a classical gas

Classical system comprise of a particle moving in 1D space

(cont.)

@ In other words, we need 1+1 variables to specify the state of
the system, {x; px}.

@ The state of the one-particle system hence is specified by a
point in a 2-D phase space.

@ The point representing the system'’s state shall trace out a
path in the phase space, which is a curve p, — x which
mathematical relation is determined by the dynamical
equation that relates p, to x.
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Classical system comprise of a particle moving in 1D space

@ Consider a classical mechanical system comprised of a particle
with mass m that can move along the x-axis, and is subjected
to a potential field, U(x).

@ The potential U(x), or called the force field, will excert a
force on the particle, and this force tells the particle how it
should move according the Newtonian law, F = md2x/dt2.
Usually the force on the particle depends only on the location
x but not on the momentum (equivalent to its velocity).

@ {px, x} are the two variables that completely characterise the
1-particle system.

Example of a 2-D phase space

@ As an example, consider a particle that is subjected to a
gravitational field (where U = —mgx), and is moving only
along the vertical direction x.

@ The dynamical equation that relates px to x is obtained via

conservation of energy, E = K(py) + U(x) = p2/2m — mgx,
where E is a constant. The curve traced out by the particle in

the 2D phase space is thus py = £+/2m(E — mgx)




2D phase space curve of a classical particle in gravitational Partition function of one-particle system

field

@ The total energy of the particle is E = K+ U
@ The probability of finding a particle in a state {x, p} is
P(x,p) = Z—lce_ﬁE(X“”)dxdpx = %e‘ﬁ(%ﬂl(x))dxdpx, where z
is the single particle partition function.
e e T @ dxdp is the ‘volume element’ in the (141)-D phase space.
@ Generically, for a particle moving in 3-D real space, its

|
|
—————————————— b=
\ [ ‘volume element’ in the phase space is given by
|
|
|
|
|

|
\2mE \ : dx - dy - dz - dpy - dp, - dp, = d3rd3p = dVdr. We can think
|
/ : in the 6-D phase space.

that such a 6-dimensional quantity is the ‘volume’ of a point
E/mg dx=dV 6{—&+U( )}

oz.=[e dxdp,
@ Knowing z. allows us to calculate averages of desired
observables of the system, e.g. (x), (K), (U), etc.

o (A) = [Ax, Px)P(X px)dxdpy =
L [A(x, px)e ™ 5400 gdlp,

Average KE of 1D classical particle Average potential energy of 1D classical particle

2

Lu\\‘“ { \Ce
\_,\\ar

P
2 2 p2 - fefﬁ(ﬁ)dpxif U(x)e=PUX) dx fU(x e By
e AU gx. —&ef’ﬁ % dpx B&efﬁ(ﬁ)dpx b <U> - 02 BUX) g -
Y <K> f f P)2< — f2m p)2( — fe BU(x dxfe zﬁ)dpx fe X
J e #UCdx- [ ™ Lom)dp, J e Pemdp, —38—/3 Inzy; zo = [ e PV dx
x I @ For illustration purpose take U(x) = 5kx° (Hooke's law)

2

@ The integration similar to zx = [ e ) dpx has been @ Use dimensional argument: [zy] = L;

2 _ ML2T=2 _ -2.

encountered in Part |. The explicit expresssion of zx can be [k] = [energy]/L* = S =MT

obtained (without carrying out the integration explicitly) by (5] = ﬁ =m 2T2 = ([s][B])~ 1/2

. . . . _1
using dimensional argument to yield zx = Ca™2, where @ To match the dimension between [zy] and [ﬁﬁ], zy is epected
o= 2‘:1 to be related via zy = c(k8) /2, giving
1 — _1 _1
@ Hence, (K) = 7% Inzx = 70% In(C(L)~2) = 3kT. Inz,=Inc—3Ink—3In3=

o (Uy=—&Inzy =55 = 3kT.

L
28
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Generalisation to 3D case

@ In previous 1-D example, we see that for the 1D particle
subjected to a force field ~ r? and in contact to a heat bath,
the particle has two DOF (one associate with kinetic energy
and the other potential energy), for which the particle’s total
energy is being shared. Each DOF carries kT /2 of energy,
making up the total energy of kT /2 + kT /2 = kT.

@ The 1D scenario can be easily generalised to a particle moving
in 3D

@ In the case of a classical particle moving in 3D, there are 3
DOF associated with the thermal motion
(p2/2m, p2/2m, p2/2m). Each of these kinetic energy DOF
carries average energy kT /2.

Partition function for a system with N particles moving in

3D

@ The phase space of such a system is 6/N dimensional, where
each point in the phase space is specified by 6/N cooridnates,

{(r1,p1), (r2,p2), -~ ,(rn,pn)}. Each of the allowed
microstates of the system is represented by a point in the

phase space.

@ The probability to find the system in a particular
configuration:

pl(ri,p1), (r2,p2), -, (rnv, PN)] =

1

7 exp{—/3 [E((rh pl)v (I"z, p2)7 T >(rN7 PN))]}
c

d\/ld\/2 s dVNdTlde s d‘TN

d7 = dp.dp,dp; is the volume element in the momentum
subspace.

Generalisation to 3D case (cont.)

@ In general a clasical particle moving in 3D is subjected to an
potential U(x, y,z). The potential energy shall also contribute
to the total number of DOF to the particle. The number of
potential DOF depends on the forms of the potential (e.g.
U(x,y,z) = —mgz or U(x,y,z) = %(ﬂxxz + Kyy? + k;Z?).

@ Each of the potential energy DOF may or may not contribute
%kT of energy to the average energy.

@ If the potential is quadratically depending on the spatial
coordinate, it is; else, it is not.

@ Counting the potential energy DOF could be not as straight
forward as is for the kinetic energy DOF.

@ Note that in the 3-D ideal gas system, the average energy is

3. % as it has no DOF associated with the potential energy.

Partition function for a system with N particle moving in
3D (cont.)

The N-body partition function is written as

Z.= / (dVdr)N exp {(—BE [(r1, p1), (r2,p2). - » (v pr)]}
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Total energy of a microscopic state

@ The total energy of a microstate,
E[(r1,p1),(r2,p2), -, (rn, Pn)], is made up of the kinetic
energy part and the potential energy part. In most cases, the
kinetic energy terms depends only on the momenta, whereas
the potential energy on positions of the particles of the
system:
E[(r1,p1),(r2,p2), -, (rn, Pn)] =
Ex(p1,p2,- - ,pn) + U(r,ra, - 1)

i=N p2
EK(p17p27”' 7pN) = Z —
i=1

Q U(I’;7 ro, -+, rN) = Z:i{v Ulp(l‘,') + Z:jii\l Uzp(l',', I’J') +

1.3 Entropy, free energy, the first and second laws

@ Chapter 4 Statistical Mechanics of an Idea Gas
@ 4.0 Mean Free Path
@ 4.1 The ideal gas
@ 4.4 ldeal gas of quantum particles
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Averages of observable in a system of N classical particle

@ Given the form of U(r1,r2,--- ,ry) and Ex(p1,pP2, - ,PN),
we can derive the partition function of a classical
microcanonical ensemble,

Z. = /(deV)Ne—BE[(rLPl),(r2,P2)v"‘:(vapN)]'

@ And then we can calculate the average of any observable,

(A[(r1,p1),(r2,pP2),- -+, (ry, P)]) =
Zic / (drdV)Y Al(rr, pa), (r2, p2). - (rs )]

e—BE[(l’l,Pl),(Q,pz),"' 7(vapN)]

Mean Free Path

@ The mean free path or average distance between collisions for
a gas molecule may be estimated from kinetic theory

I6=""T0 @ 2=
—0 0O\9

A=nd
@ In time t, the circle would sweep out the volume shown and
the number of collisions can be estimated from the number of
gas molecules that were in that volume.

canter loation
. oftarget molecule

i & b g e
; \_’j s Volume = 14"t !
Molecular \" L g
s | vt *

n= molecules per unit volume




Mean Free Path (cont.)

@ The mean free path could then be taken as the length of the
path divided by the number of collisions.

Distance traveled Mean distance
Ny per collision
; Vi |
Mean free paih estimate = — =—
M n mdn,
Volume of Number of
interaction ~ Molecules per
unit volume

@ Ideal gas system with N particles subjected to vanishing
external potential field will be treated with partition function
method to derive all the known results obtained from
thermodynamics and kinetic theory.

@ Assume ‘1 particle approximation’: the energy of the system
can be written as a sum of energies, each depending only on
the state of one particle, so that the probability of a given
state of the system can be written as the product of the
probabilities of the separate particles.

@ This means that knowing one particle’s partition function z.
allows us to derive the properties of the system easily via

N
ZC:ZC

Mean Free Path (cont.)

@ The expression of mean free path for idea gas is obtained (i)
by replacing v — /27 to correct for the effect of relative

motion among the colliding particles, and (ii) ny = % to
give

_RT

© V2d2NoP

@ At STP (N = Ng ~ 10?3, P ~ 10°Pa, kT ~ 1072 J), the
mean free path is much larger than average size of the
molecule (d ~ 107°m) and also the distance between the
molecules ~ (%"-)1/3

@ Hence we can ignore the effect arise from collision among the
particles in our consideration of ideal gas system.

1-particle approximation
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Probability density for the ideal gas system

P [(r17 pl).’ B (rN7 pN)]

1

® Total energy E[(r1,p1),- -+, (rv, Pn)] = 32127 €ilri, pi),

where

0
1

i(ri,pi) = 57— + U(x

e p) = 2+ ()

The probability for a configuration is

pl(ri,p1), - ,(rn,Pn)]
= P|[(ri,p1), -, (rn, pn)] dVidT - - dVivdy

1
= S exp {=BE[(r1,p1), -, (rn, pn)]} dVaid7y -~ dVindTy

= i(e_ﬁqdvldﬁ) e l(e—ﬁ‘wdv,\,df,\,)

Zc Zc




The partition function for one particle z.

Assuming all masses in the ideal gas system are identical,
m; =m,v¥i € {1,2,--- N},

2
ze = /d\/’.dTie—6€i(ri7Pi) :/dV,'e_’SU(r")‘/ dT;e_B% = \/,-(21rka)3/2

@ The potential U(r;) vanishes for all particles in the ideal gas
system, = [dV;e 8V = v, = v

Deriving all the familiar quantities for ideal gas from z.

0 z.—~>Z= zéV —F -5 — Cy — Cp — Maxwell-Boltzmann

distribution.

olZ=Inz= Nin [V(Zﬂka)%} = NinV + 3NIn(2rmkT)

@ F=—kTInZ="---=—NKT [InV + 3 In(2rmkT)]

o P=— (g—C)T y = NKkT /V (volume 'pops’ up from this
approach)

o S=—(95) = Nk[InV+3in(2rmkT) + 3]

o cv =T(82)vn = 3Nk.

@ Cp = T(g_ﬁs-)P,N = %Nk

o (E)=—9nL = ... 3NKT
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Integration of [ e dr

@ Dimensional argument only solve z. up to a constant, so need
to integrate explicitly.

o Let a=p3/2m = ﬁ, t = apy? so that dt = 2al/2t1/2dp,.

2
px—o0 _ —Bpx 2 pt—oo .- 1/2
s 00 € 27 dp = w73 Jo T ettt

o Gamma function: T(n) = [;° t"te~tdt;T(1/2) = /7

2
;X:foooe 22 dpy = (2mkTw)Y/2,

_gp? px—>00 py—00 pz—>00 76(p)2<+p§+p§)
/e 2m dT = / / / e 2m dpxdp,dp,
px—+—o0 J py——0o0 J p;——00
= (2mkTr)3/?

Maxwell-Boltzmann distribution

The N particle system probability distribution is composed of the
product of all individual 1-particle probability densities:

Pl(ri,p1), -, (rn,pn)] dVidry - dVy, d7n
= P(I’l, p1)d\/1d7'1 s P(I’N, pN)dVNdTN




Maxwell-Boltzmann distribution (cont.)

2
. . —ﬁ[%JrU i:|
@ For any particle i, Pi(ri,p;)dVidri = z%e 2 UL dV;dr;,

which is just the Maxwell-Boltzmann distribution we
encountered in Part | when investigating the ideal gas system
with kinetic theory (there the MB distribution is in velocity
representation, P(r)dV - f(v)dr).
® Pj(ri,p;i) is obtained by integrating out all N particles DOF
except one from P [(r1,p1), -, (rn, Pn)], i-e.,
Pi(ri, pi) =
JPIl(r1,p1), -, (rn,pn)] dVidr - dVi1dTi1dVip1d i - - dVy

Pictorial description of quantisation of de Broglie

wavelength in a 1-D infinite quantum well

However, in quantum view, particle

becomes wave...
A A n=3
_('{m L
- \_\:Q_:.l;_(v m’)\) P . n=2
(x) X
: @

U=0 , n=1

0 L

* The “particle’ is no more pictured as a paticle
bouncing between the walls but a de Broglie wave that
is trapped inside the infinite quantum well, in which

they form standing waves
15
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A guantum particle in an infinite quantum well

@ Consider a quantum ‘particle’ confined in a quantum well
which is finite in width (a) but infinite in height.

@ In the quantum picture, the ‘particle’ losses its particle
character; it is instead be pictured as a matter wave that is
mathematically represented by a wave function.

@ The 'well’ is actually a potential trap that confines the
‘particle’. If the ‘particle’ hits the wall, it feels an infinite
bouncing force that keeps the particle from being found
outside the well.

@ The wavefunction of the quantum particle forms a standing
wave in the well, where each standing wave mode is
characterised by n=1,2,---:

@ The momentum of the quantum particle is related to its

_ ) . 2 2.2
wavelength via p, = AL so that its energy is €, = 23,;'; = —é’mgz-
n

We refer each ¢, as ‘energy level n'.

@ For a quantum particle confined in a 3D quantum well (which
is effectively a ‘cube’ with sides a x b x c), the energy levels
are characterised by three positive integers, n, p, g:

o n2 2 2 h2
enpg=(2+ 8+ &)am

Energy levels of the infinitequantum well




Pictorial description of the quantised energy levels in a 1-D

infinite quantum well

* Some terminology
* n=1 corresponds to the ground state

* n=2 corresponds to the first excited state, etc
E

oy
n=3isthesecond s\ g %,
excited state, 4 \ W
nodes, 3 antinodes \yﬂ /\/\/

n=2is the first i)

excited state, 3
nodes, 2 antinodes
n=1isthe ground— __
stete (fundamental : &
mode): 2 nodes, 1 + Note that lowest possible energy for a
antinode particle in the box is not zero but

E, (= E, ), the zero-point energy.

+ This a result consistent with the
Heisenberg uncertainty principle

Partition function of the quantum particle in a 3D

Quantum particles vs. classical particles

@ In the present case, the particle obeys a different set of
physical laws than a classical particle. Specifically, the
quantum particle is picutured as a wave and has a
‘wavelength’ (de Broglie wavelength) which is related to the
momentum of the particle.

@ The momentum in turns is related to the particle's energy via
€npq = 2 (P2 + pf, + p2). Hence, the energy levels of the
quantum particle trapped in the infinite well is specified by a
set of 3 positive integer quantum numbers n, p, g via

(> P @R
€n,p,qg = (? + b2 + ?)S_m

@ Apart from this the calculation for the partition function is the
same as for a classical case.

@ There are other more subtle differences between a quantum
particle and a classical particle, which effects are not
considered here (e.g. identical particle effects that arise when
considering the quantum nature of the particles). Anyway
such subtle quantum effects will NOT change the way we
calculate the partition function using the method discussed so

The length scale characteristic to the quantum well in a

quantum box

@ We will now derive the partition function of a quantum
particle in a 3D quantum box, in which the particle is
immersed in a heat bath at a constant temperature.

z = ZEXP (—Bénp,q)

n,p,q

_ Zexp( IBthZ B ,8’72[32 B ﬁh2q2)

 8ma2 8mb? 8mc?

np,q
g 2 s L gRP
= e 8ma? - e smp - E e 8mc?
n=1 p=1 qg=1
= Zy- Zy cZy
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heat bath, At

@ The length scale of the problem is the size of the de Broglie
wavelength when the particle is in thermal equilibrium with the

2 >
p- _ _h 1 _ h
heat bath, namely, when £— = 75— = 5kT = A1 = NCTA
@ This length scale is to be compared to the length scale of the
quantum well, ~ a.

@ We would need the ratio of the length scale é—; in the
summation for the partition function.




Converting the Riemannian sum of z, into an integral Riemannian sum of f(n)

Write the partition function for the x-component of the quantum £ (n) = exp[(-1/2)(nAr/2a)]
particle z, in terms of Ar: A
°
X _gr2e? © 1,m T2
Zy = Ze 8ma? = e 2= ) =
n=1 n=1 Anfily
1A 2X i
67%( QQT)Z(An)_Fei%(Q_aT)Z(An)_I_...
=00 14!1/!2)
= Z An - f(n).
n:1 ”AHI(S]
. 1 . V)
This is a Riemannian sum of a function f(n) = e~ 3% with . -
interval An =1, where s, = %1 ‘ S .
L2 3 4 7' >
_ (A . A .
o ts=(3) An

Converting the Riemannian sum of z, into an integral The variable s is related to the momentum

(cont.)

@ The Riemannian sum written in terms of s = s, is

O _prA2 e 1.2/ 2a @ The particle’s wave function forms a standing wave in the
Ze_f?ar - Z e 2’ <_T) As, well. pThe x— component of the standing wa%/e obeys %ﬂ = a,
n=t =L and the standing wave is related to the momentum pyx = )\_h,,
where we have replaced An by As (f—j) The summation @ Hence s = ’\Th”x.
over the descrete variable n is now tranformed into the @ We can then convert the integration over s into an integration
summation over s, which is approximately a continuous over py (with ds = ’\TpoX):

variable in the limit % — 0. Hence,

2a ® 1o 2a o0 _ﬁﬁ a /°° _ 802
> _ 2n2 0 il e — 25 d fd _— 2h d I = —_ 2m d %
Ze o — Z e 25’ (—ia) As =5 (—28) /e_%s2ds ()\T>/O ) ’ ( h >/0 © P (h) —ooe P
T T

n=1 s:%t
a

. 2a 12
lim z = (— e 2% ds
);—aT—>0 AT 0
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The partition function for the 3-D infinite quantum well,

Z =2z, 2, 7 in the limit A\ < 2a

@ In the limit A+ < 23,

Z = ZxZy Zg
T
— % _Ze_%p2d3p

@ Here we use the notation d3p = dpxdpydp; in place of dr.

z in the classical limit reduces to z., except for a factor of

1
el

@ Note that A1 <« 2a corresponds to the classical limit where
the de Broglie wavelength is too tiny to cause quantum effect.
This is also the limit of high temperature.

@ The result for z for the particle trapped in a 3D box in the
limit A+ < 2a should reduce to that of the classical one, z,
except for the fact that z is dimensionless due to the presence
of h® (more on this in a few more slides later).
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Comparing z in the A7 < 2a limit with z,

@ Compare z (in the A7 < 2a limit) to the 1-particle partition
function of a classical ideal gas system (where U = 0):

. V [ 82 3
)\121282 = F/_ooe P d°p  vs.
o0 o0
zZe = /dVe_BU(')~/ e_%p2d3p = V/ e_%p2d3p.
—0 —00

® [z:] = [L]3[momentum]® whereas in the case of a particle in a
3D quantum well, [z] = 1 due to the presence of hS.

@ It is reckoned that a dimensionless canonical partition function
(z as above) is a more ‘natural’ than that with a dimension
(zc as above) (more on this later).

z in the quantum limit

@ In the opposite limit, where the A\t > 2a (e.g. at extremely
low temperature, during which the de Broglie wavelength
becomes very large as compared to the characteristic length
scale of the system), the partition function z. is no more

. _B52
given by [ dVe AU 7, e P d3p.
@ In this limit very interesing quantum phenomena will arise
(such as Bose-Einstein condensation) ...

@ In this limit the approximation A1 < 2a is no more valid. The
summation over n as appeared in the 1-particle partition

oo M2
function e.g. z, = 5.7=5° e Pem? has to be carried out in a

way different than that was done previously. We will not
derive z in the quantum limit here.




A quantum state in the phase space has a volume dThZV

Z the canonical partition function of N particle in the

classical limit

@ From the derivation of z in the classical limit, we reckon that
this partition function, z, is in principle a descrete sum (not

an integration over a continuous varibales {p,r}). o 1-particle quantum partition function

ﬁpi) NS z= FlgdedTexp{—ﬁ [%2” + U(r)}}

zZ= exp (—
; 2m

@ In the descrete sum of the 1-particle partition function z, the

h3 @ For a system of N particles in a 3-D infinite quantum well,
Z = ZN = f (—d\;gT)Ne_ﬁE({ri:pi})

‘point’ in the phase space has a ‘volume’ of %, but not o (AA=1] (%)NA({r,-, p;})e BE(ripi})
AT AV as was thought earlier (see the relevant part in Chap
3, Part IlI).

‘Correction’ to the classical partition function, z. (to make

it dimensionless)

@ In the view that a partition function should be dimensionless
(like in the case of z, which is more natural), the classical

partition function obtained in earlier attempts can be made
dimentionless by ‘correcting’ it via the replacement z. — 75. Part IV From Ideal Gas to Photon Gas

@ With this correction, the free energy F in the classical system
will admit an extra constant ~ In h3, and so is the entropy.

o Despite this additional term most of the derived
thermodynamical quantities would remain unchanged because
they are mostly derivatives of the free energy or the entropy.

@ The effect of the correction term In A3 in F and S will be
mostly cancel out and disappear.

@ From now on, all classical partition function should be

replaced by z. — z. = 45 [ dVe PUM) . [* e~ 3P d3p.
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Energy of uncoupled oscillators in Einstein solid Total energy of a coupled homonic oscillator system

@ We will consider a solid crystal of size L x L x L =V

@ Einstein solid is a system comprised of N uncoupled atoms comprised of N coupled vibrating atoms.

which vibrations are modelled as oscillations of 3N

independent harmonic oscillators. The partition function of @ In general, in the presence of an interaction between the

each DOF is atoms, w, will not the same (as it was in the case of Einstein
solid, see Eq. (1)).
= _ghw _Xx . . .
S = fe_ﬁ("J“%)hw € F72 e 2 X = hw @ Hence, in the presence of an hormonic potential between any
— 1—ePhw 1 —ex"" " kT’ pairs of atoms, each w, are different in the sum in the total

energy E given by

|3+ o] ) E = Yot ey @
2 e 1]

@ The average energy of a single oscillator in the Einstein solid
is easily derived via

78|nz B
o3

& =

@ We need to know what are the characteristic frequencies of
the normal modes w,, in order to obtain E.
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“Collective vibration” - the normal modes

@ In the presence of inter-atomic “spring” (a.k.a the force arise
from harmonic potential) the vibration has to be pictured not
as the vibration associated to a single atom but as a collective
vibration of the whole crystal about their equilibrium positions.
These collective vibrations are called ‘normal modes’.

@ We can think of the vibrations of the N coupled HO to be
effectively described by N independent normal modes.

@ In a system of N vibrating atoms, where each atoms is to be
represented by a 3-D harmonic oscillator, the system is
effectively represented by 3N independent normal modes,
a=123-.- 3N.

@ ‘Decoupling’ N 3D coupled harmonic oscillator into 3N
independent (decoupled) normal modes.

Example of 2 normal modes comprised from two coupled

HO

k k
—x; =1,
mxy = —kx1 — kxy + kxo; mxo = —kxo — kxo + kx1
m5&1 = 7kX1 — k(Xl — Xz)mj.(z = 7kX2 — k(X]_ — X2)

Linear combination of the solution to the coupled equation
Xxy1 = x1+x2 = at cos(wyt+ay); xy2 = x1—xp = a_ cos(w—_t+a_)

Xy1, Xy2 are the normal modes. Each of them describes an
independent HO with angular frequencies w_,w, respectively

(w— # wy). This analysis illustrates the trick to ‘decouple’ two
coupled oscillators into two independent HO, hence making the
mathematical description of the motion of the whole system much
easier.
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Picturing the decoupling of coupled oscillators into normal

(independent) modes

decoupled into
normal modes

Wo=1 Wo=2 Wo=73 Wo=4 Wo=5 Wo=...

S

Polarisation modes of a wave

We will compare three different types of waves categorised
according to the relative orientations of the oscillations with
respect to the direction of the propagation of the wave.

@ Electromagnetic wave is a transverse wave. It has two
independent polarisations, each in a direction perpendicular to
the wave's direction of travel. There are two polarisation
modes here, both are transverse modes.

@ Acoustic waves in fluids are longitudinal waves. The direction
of oscillation of the elastic medium is along the direction of
travel. In this case, there is only one mode of polarisation, i.e.
the longtitudinal polarisation mode.

@ For sound waves in an solid medium, there are three
polarizations: one longtitudinal mode, and two transverse
modes.




Polarisation modes of a wave (cont.)

@ We can think of a polarisation mode as a DOF in which the
energy of the wave is being carried. For example, if there are
three polarisations in the sound wave in solid, that means the
wave's energy in the solid is being carried by three
independent ‘channels’.

transverse oscillation (alpng
z direction)

ed
fransverse A7 o
oscillation (along.a” s (\i/\r;c‘{\()l(n of ;
y direction) e propagation
e (along x direction)
e _————
4#9 » X
_Aongitudinal
.~ oscillation (along

e x direction

Figure: Relative orientations of the oscillations with respect to the
direction of the propagation of the wave.

Debye’s assumptions

@ The systems of coupled harmonic oscillators is an elastic
medium. The normal modes are sound waves. These normal
modes form standing waves within the boundary of the solid.

@ To find the normal modes under the Debye assumptions, we
need only to find the different modes of standing waves which
are possible in the medium.

@ To do this, Debye assumes that:

@ The wavelength of these sound waves A, >> a, a the
interactomic distance for all frequencies w,,.

@ The medium is isotropic.

© The medium is non-dispersive.

Debye's assumptions (cont.)

@ Assumption (1) means one can ignore the discrete atomic
structure of the solid and desribe it as a homogeneous elastic
medium.

@ Assumption (2) means that the velocity of propagation of
elastic waves is independent of their directitions.

@ Assumption (3) means that dispersion relation that relates the
angular frequency w with the wave number g = 2% is simply
w = vq, v the phase velocity of the sound wave.

@ The group velocity v, is given by Z—;‘,’ = vg. For non-dispersive
medium, vg = v = %. In other words, the phase velocity and
group velocity of the sound wave are the same.

Counting the number of statationary wave modes in an

angular frequency interval dw

@ For sound waves in the Debye solid of volume V/, the number
of stationary waves modes with angular frequency between w
and w + dw is given by the product of density of state g(w)

with dw:
Vwldw [ 2 1
dN = dw=— "2 12 4
g(w)dw 272 vL3 v?

@ Density of state, g(w) = number of microstates per unit
frequency of a single photon. Its derivation shall be presented

shortly.
do

1|WvMMW ®

o1 @ = constant @3v= b

dN, Number of mode with
frequency o within interval
do is dN=g(w)dw
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Derivation of density of state DOS function g(w)

@ Consider a box of dimension V =L x L x L, containing a 3-D
stationary wave in it (see figure).

Figure: Stationary waves in a box.

@ In each Cartesian direction, the equations of the standing
waves are

M A A
nX? = L,ny? = L7 an =1L
pais

@ Equivalently, in terms of the wave vector g = 5

n,mw nym n,m

qX:Tvqy: L an:T

@ Now, we ask the question: What is dN, the number of
standing wave modes with a wave vector whose magnitude
lying in the interval [q, g + dq]?

@ dN is given by dV x (number density of modes), where dV is
the volume of a shell with thickness dg in the first quadrant in
the g—space (see figure).

Figure: A shell of thickness dg, radius g, in the 3-D g—space. We
wish to count the number of modes contained in the first quadrant
of the sphere.

o dV =

~d(4rq®) =1 4xqPdq, dN = 1 4rq?dg x (L)3

=

Derivation of density of state DOS function g(w) (cont.)
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Derivation of density of state DOS function g(w) (cont.)

@ Each stationary wave is characterised by
a={axq,0:} = {55 4 4

® qg=|q

@ A stationary wave mode can be represented by a volume
element in the 3-D g—space, dq,dq,dq, = (%)3

y

/L 1

>

< > ay
w/L

Figure: 2-D representation of the g—space.

@ Number density of the modes, defined as the number of
modes per unit volume in g—space, is then given by (£)3.

Derivation of density of state DOS function g(w) (cont.)

@ We can express dN in terms of dw by replacing dg by
dg = g—zdw so that now we have

1 1 L
dN = - - 47> ——dw x (=)3
8 (‘ZI—ZJ) T

@ The magnitude of the wave vector q is related to the angular
frequency w via
(i) vp = w/q, vp phase volocity of the normal mode.
(i) vg = ‘;—‘;, vg group volocity of the normal mode.

@ In the special case of a non dispersive medium (Debye solid is
assumed to be such a medium), v, = v, = v.

1 21 L\® Vw2
dN = 8 -4 (w) —dw () Y dw = g(w)dw.

Vo) Vg T)  2m2y3
@ g(w) is the density of state, DOF, in frequency representation.
2 . .
° %dw = g(w)dw is the number of normal modes in the

frequencty interval [w,w + dw] for a given polarisation.




Derivation of density of state DOS function g(w) (cont.)

@ In an solid, there are three independent polarisations, and
each of them contributes independently to the number of
normal modes of the sound waves in the solid.

@ For the longitutinal polarisation, the number of normal modes
in the frequencty interval [w,w + dw] is

Vw?

dN[_((JJ) = %Tvdw,
L

and for the two transverse polarisations, their contributions are

Vw? 2V w?
dNTl(w) + dNTQ(u)) = mdw + mdw.
@ Totalling up,
dN(w) = dNL(w) + dNTl(w) + dNTz(w)
Vo [1 2
= — |5+ —=| dw.
272 {vf * v%} v (3)

Debye frequency wp (cont.)

_ Vildw
dw= 3+

3
equation, we obtain the explicit form of the Debye frequency,

NN 13
wp = (6n2v) v,

where v is the mean velocity of the sound waves defined as

@ Upon subsituting g(w) % + v% into the above
L

3_1+2
v oo u

@ Debye frequency of a solid depends on the avarage speed of
sound wave v in that solid, which is a characteristic of that
solid.
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Debye frequency wp

@ The total number of stationary modes is known to be 3N.
This sets a ‘cut-off’ angular frequency to w, known as Debye
frequency wp.

@ The total number of modes in the solid, obtained by
integrating dN = g(w)dw from from w = 0 to wp must be
approximately equal to 3N (see figure), i.e.,

w=wp
/ g(w)dw = 3N.
w=0

9(w)

(o] wn

Figure: The area under the curve g(w)dw vs. w represents the
number of modes, f° g(w)dw. .

Average energy E of the Debye solid

@ Now, we are ready to calculate the total energy
3V [1 hwe :
E =2 {3hwn + sy ) in Ea. ()
@ First, the average energy in the frequency interval w, w + dw

is given as dE = (no. of modes in the interval w,w + dw) x
(average energy of each mode with frequecy w)

1 hw
dE = dN —h -
I X{2 u’+ex;:>(mw)—1}’

where
3wldw




Average energy E of the Debye solid in terms of DOS and

BE distribtution

@ Integrating over w from w = 0 to w = wp, we obtain the total
average energy in terms of Debye temperature defined as

Op = hwp/k and xp = 9—79.

@ The average energy can be written in the following form:

hw
E = /dE /de{ Shw + ﬁhw—l}

3w2dw 1 hw
/w_o 2723 { t e 1 }

9 wo 1 3Vw?
= =—Nk© hw - . d
8 D+ 0 Bl _ 1 o239
wp
= %Nk@D + fw(n)g(w)dw (4)
0

Summing over o

Roughly speaking, in arriving at the expression for E, we simply do
the following (such calculation will be encountered again in
summing over the photon'’s contribtution when dealing with black
body radiation):

a =0 T
w=ap 1 | Vv
= (“‘)3X_A4ﬂ(i) —dw - =,
w=0 8 Vp o T
where we have used dg = dq dw, vp =V, vg = ‘jj" = v for the

sound wave in an elastic medium (dlsperS|on|ess).

wp 2
=E = / fuw(ePh —1)~1 (3&) V) dw
0

2v372

Ilgnoring the zero-point energy

@ Note that the constant term %Nk@D originates from %hw as
appeared in ¢, = (% + n)hw. It is associated with the zero
point energy of the QHC, which will not contribute to the
heat capacities of the solid. (Recall that heat capacities
involves taking the derivative of E with respect to the
temperature varibale T.)

@ In the following we will ignore the zero-point energy term as it
will (almost) not contribute to any physical observations.
Most physical observables (quantities that can be measured
experimentally) do not involve the absolute energy. Only the
differences between energy states matter.

Interpretation of [** hw(n)g(w)dw

@ (n) = eﬁﬁ—:ul)—l is the average number of phonon. We have seen
this expectation value while discussing the Einstein solid.

@ Interpretation of Eq. (4):
The average energy contributed by the normal mode with
angular frequency in the interval w,w + dw is

(the energy of a phonon, hw) x (average number of phonon
excitation, (n)) x (number of available states in the frequecy
interval w,w 4+ dw, g(w)dw)

@ The total energy is then obtained by integratinge over the
angular frequency from w = 0 till w = wp.
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Energy per unit frequency per unit volume, p(w)

@ It is also useful to define the energy per unit frequency per
unit volume, p(w), via

Ev= [ e

w=0
with

Heat capacity at high temperature limit

@ In the high temperature limit, T 3> ©p = xp < 1, i.e. the
variable 0 < x < xp « 1.

x*eX _ x* _ x4
(ex—1)2  (ex—=1)(1—e*) 2(coshx—1)
4
- X ~ X2

2(gege)

The heat capacity in the T > Op limit then becomes

Xp 4 Xd Nk XD
C = 3Nk %/ x et ] N / x2dx = 3Nk.
XD 0 (eX - 1)2 XD 0

This is just the Dulong-Petit’s law.
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Heat capacity from E

@ From first law, dE = §Q + pdV = Cy = (ﬁ—?)v = a—E’V =

OBOE|. _ 2.0 | 3V rw=wp hw 2
aTaglv =~k 53 [272\/3 w=0  ePhe_1¥ dw}j

c - 3k /wo (hw /KT )? /KT
2723 (ehw/KT —1)2

XD 4 x
_ 3Nk{i3/ xedxz}
XD 0 (eX—l)

Nk [>p
9—3 F(X)dX
X

D 0

@ C does not has a closed-form solution for finite wp (or
equivalently, xp); it has to be integrated numerically for exact
result.

Heat capacity at the low temperature limit, T <« ©p

@ In the low temperature limit, kT < kOp, xp > 1, and the
variable 0 < x < o0.

@ In the limit x — oo, the integrand in C behaves like

~ xte=X

@ Hence we can replace [;® F(x)dx by [~ F(x)dx.

F(x)
A

— 0.

T >

O Tx
XD

Figure: Area under the curve F(x) vs. x. In the limit T < ©p,

[° F(x)dx & [;° F(x)dx.




(n+1)=nlifn=0,1,2,---

The Riemann zeta function ((n) is

1 1 1 7wt
F—i_%—i_ﬁ'” %forn:4,

1 1 1
(— + =+ = ) s 1.202 for n = 3 (Apéry’s constant)

xoooe))((1(]’)(_r(4)(1l4 2—14+31_4) 3|_15
L0 Fqdx =T(3) (35 + %+31—3~.)~1.202><2!N2.404

Comparison between Debye and Einstein model with
experimental data

Debye model fits experimental curve well in all low, high and

intermediate temperatures.
Both models approaches Dulong-Petit law at high temperature,

T > G)D,GE (Why?)

A Dulong-Petit law
3 N0 PO PO Y PO S0 5 RS NI S * ST,
- - -
-
-
., -
e
2 %
‘E: / Debye theory
i / Einstein theory — — —
~ / Experiment «®e®e®
!
! /
/
!
/
0 = } } } >
o 0.5 1.0 1.5 T/eg
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Heat capacity C in the low temperature limit T < ©p

T 3
lim C = 9Nk ( )
T&©p @D

T 3
= 9Nk (@D)

@ Compare this with Einstein's model at low temperature,

2 ©/T
C=3R (%) mecrnm

/OO x*eXdx
o (eX—1)

4 12 , TY?
Tl-5rw(ey) ©




e Chapter 4 Thermodynamics of Electromagnetic Radiation
@ 4.1 General considerations of radiation at thermal equilibrium
@ 4.2 Radiatoin density
@ 4.3 Black body radiation

Energy density of the EM radiation in a cavity at thermal

equilibrium

@ At thermal EB, the amount of energy at each wavelength of
the EM radiation in the cavity is characterised by the energy
density around this frequency, p(w). p(w)dw denotes the
amount of energy (of the EM radiation) per unit volume for
wavelength between w,w 4 dw at temperature T.

@ Second law of thermodynamics assures that at EB, the energy
density p(w) is independent of the structure of the cavity or of
the surrounding material.

@ Furthermore, p(w) is independent of the position in the cavity,
i.e., at all points in the cavity, p(w) is identical.

@ We wish to know what p(w) is using stat mech treatment.
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Radiation inside a cavity in matter at thermal equilibrium

The system of wall + radiation reaches thermal equilibrium at a
characteristic temperature. When this is achieved, the temperature
at each point in space remains constant (with minor fluctuation).

cavity

matter at temperature T

Figure: Radiation inside a cavity in matter - the average energy does not
depend on either the shape of the cavity or the type of matter
surrounding it, but depends only on the temperature.

EM radiation in the cavity are harmonic oscillators

@ In solid, sound waves are treated as phonons, which are
excitation of independent harmonic oscillation modes,
characterised by n, and 3-component polarisation vector q.

@ In similarly manner, the EM radiation (instead of sound wave)
in the cavity is modelled as photons (instead of phonons).
These photons, like phonons, are independent harmonic
oscillation modes representing (just like the sound wave in
solid) standing EM waves that are established within the
cavity at EB.




Phonons in solid vs. photons in vacuum cavity

@ In the solid, oscillations of the atoms give rise to the phonons
(sound wave); whereas in the case of EM radiation in a closed
cavity, it's the oscillations of the atoms of the cavity wall that
give rise to the photon (EM radiation).

@ In the solid, we resort to the (model-dependent) Debye
assumption for the dispersive relation w = v|q|; whereas for
the EM radiation in the cavity (assumed to be vacuum), the
dispersion relation is well known (model independent):

w = clq|.

@ In both cases, the energy of the harmonic oscillators
(photon,phonon) are given by ¢, = (n + %)hw

Phonon has 3 polarisations

@ In addition, due to the fact that sound waves are mechanical
wave, it has three polarisations, which is reflected in the fact
that q has three components (qy, gy, q-).
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Number of phonon mode is finite

@ For phonon in solids, there exists an upper bound for the
phonon's frequency wp, which is the result of the fact that
the number of normal mode is finite (3N). The existence of
wp can also be understood as a result of the fact that the
sound’s wavelength must not be smaller than the distance
between two atoms (Reminder: the higher the frequency the
shorter the wavelength).

@ This boundary condition applies to sound wave in the solid
because of the nature of sound wave as mechanical wave.
(Reminder: mechanical wave requires a medium - the atoms
+ their ‘springs’ - to propagate).

@ Hence the contribution of, e.g. average energy and energy
density, from the phonon mode truncates when w > wp.

Photon's mode is infinite, and has only 2 polarisations

@ For photon in the vacuum cavity, there is no upper bound for
the photon’s mode because phonon is elelectromagnetic wave,
not mechanical wave.

@ Hence, for the case of EM radiation in a cavity, there is no
upper bound for the normal mode as in the case of phonon in
solid.

@ The derivation procedure to obtain energy density of radiation
in a cavity is exactly the same as for phonon in solid except:
© There is no upper bound for the normal mode
@ Photon has only two polarisation component




Partion function of a single oscillator Partition function and free energy of the EM radiation in

the cavity as a sum over «

@ For a single harmonic oscillator (with index «),

2o = Y pegC e Pnahwa o = 1,2 3 ... Note that there is no 7 = 2y1Zo0Zacz---
upper bound to « which reflects the fact that number of ~1 ~1 ~1
_ —Bhw —Bh — B

photon mode is infinite. Also we have ignored the 3w term - (1 ! 1) (1 ﬁw) (1 € BM)

in the energy ¢, = ( + n)hw since it's contrlbut|on to most

calculation (e.g. that to the free energy, probability density,

etc.) will be cancelled out. Fe _kTinZ =
@ From the study of series, Zn X" = 1 for [x] <1 KT [In (1 _ e—ﬁﬁuq) in (1 _ e—/@hwg) T in (1 _ e—ﬁhw3) . }
@ By identifying x = (hwa /)1 (1 — efhwa)=1,

= kT Z In (l—e_m””‘)

a=172,3,

BRTGER T (oo

In arriving at the expression for F, we simply do the following
(such calculation was encountered before when we were summing

X ) over the phonon'’s contribtution in the Debye model):
@ Summing over «x means summing over all normal modes of

the EM radiation (or equivalently, all possible photons states)

. . g=00 1 %4
@ The summation ov.er & proceeds e>.<actly as the prewous- case Z( L) = / () x2x . »47rq2dq» .
for phonon modes in the Debye solid, except that now, instead . q=0
of 3 polarisations, the phonon has only two polarisations: w=00 1 wN2 1 v
= / (“‘)X2X§‘47T< ) md&)‘—?’,
— V =
Fo= kT 30 In(1-e ) w=0 b/ w7
a=1,2,3,- dw
KTV [> , where we have used dqg = dwdw Vp=C, Vg =g =¢C for EM
= ﬂ/ In {1 —e ﬁ“"} dw (6) wave in vacuum (dispersionless).
Cc T 0

/ hw(e™ — 1)~ (ij)dw
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DOS, energy density and number density

(4]

E= f0°°<n)ﬁwg(w)dw

(n) = (e —1)7"

Density of state (number of microstate per unit frequency) of
a single photon

®

[}

w2V 302V
(cf. ==
2v372

g(w) =

3.2 for phonons).

[}

Energy density of the EM field in the cavity = energy per unit
volume per unit frequency, ,
p(w) = {n) - g(w)  hw/V = 5 (eMe=1)

32

®

p(w)/(hw) = photon number density = average number of
photon per unit volume per unit frequency:
W2

_ Bhw—1)-1
n(w) = 32 (e 7).

What is a black body (cont.)

N

@ At the same time EM radiation that is being built up wihtin
the cavity due to re-emission of the wall atoms will escape
through the aparture at a certain rate. The emission of EM
radiation from within the cavity through the aparture is very
much similar to the scenario of a gas in a container escaping
through a small hole on the wall of the container. Here we
have a ‘photon gas’ instead of a gas molecule made of
classical particle.
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What is a black body

@ Now consider the cavity has a small aparture (tiny hole) with
area AA < A, A=the area to the cavity.

@ EM radiation that 'falls’ through the aparture and get trapped
into the cavity has negligible chance to re-escape from the
aparture via multiple internal reflection wihin the cavity.

@ Hence we can picture the aparture as a perfect absorbed of
any external EM radiation that fall on it. The aparture is
called the black body, so named because it is a perfect EM
absorber.

@ The wall is made up of vibrating atoms that has thermal
energy that is directly related to the non-zero temperature of
the wall. Effectively all EM radiation falls through the
aparture will be ‘absorbed’ by vibrating atoms, but later
re-emitted by the atoms as EM radiation at various frequency.

What is a black body (cont.)

@ As time passes, the temperature of the cavity wall will
gradually enters a phase where it becomes effectively
constant. The rate at which EM energy is absorbed via the
aparture is balanced by the rate EM energy is emitted via the
aparture. In this phase, thermodynamic equilibrium is
achieved: every single atom on the cavity wall has the same
constant temperature.

@ We can model the thermal EB between the EM radiation in
the cavity with the vibrating atoms at a constant temperature
T as a canonical ensemble: EM radiation in the cavity are
represented as the photon modes, whereas thermal vibration
of the atoms at constant T, with which the photons interact,
act as the background ‘heat bath'.




@ The rate of EM energy emitted through the aparture is
measured in terms of energy going through the hole per unit
time per unit area per unit frequency, /(w), the emissivity.

@ When considering the energy rate emitted through the
aparture, we must specified at which frequency the rate is
being considered. /(w)dw hence represents the amount of
energy per unit time per unit area emitted through the
aparture around the frequency w £+ dw

Experimental graph of emissitivity vs. frequency

I(103J/m2) A
5 1
pon
T=2000K

3
2 4
1 4

T=1000K
0 : : - >

1 2 3 - v(104sec1)
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Emissivity is the quantity measured in experiment

@ /(w) can be experimentally measured e.g., photodiod can be
used to measure dW(w) = l(w)dw, the power of radiation
emitted from a black body aparture at a given narrow
frequecy range, say w = dw. The width of the photodiod
determines the frequency width dw.

@ To measure dW(w) at a different w, a prism is used to
diffract the EM radiation so that their wavelength is ‘spreaded
out’ at different angles upon exiting the other sides of the
prism. Then dW(w)/dw as a function of w is plotted:

Emissitivity in terms of energy density

@ Emissivity of the black body (a.k.a. the aparture) is clearly
related to the energy density of the EM radiation within the
cavity. The larger the energy density is in the cavity, so is the
emissitivity.

@ It turns out that if the energy density in the cavity is p(w),
the emissitivity xdw through the aparture is

l(w)dw = —p(w)dw.

c
4




Deriving energy density from emissitivity

e

x

@ This relation is derived by summing all the contribution of the
EM radiation’s energy (at a particular frequency interval,
w £ dw) in all volume elements dV = r?drsin d0d¢ in the
cavity flowing through the aparture (of area AA) within an
time interval dt. The amount of energy flowing through AA
perpendicurly inwdt is
AE = [f" dr 7 d8 77 dpp(w)dwBrcost

4mr2

Planck’s equation for emissitivity

@ Putting everything together, we now can predict theoretically
how the emissitivity as a function angular frequency:

3 3
(o) = € hw (eFhe—1y~1 _ 1 hw
4 c3r2 4r2c2? B — 1

@ Emissitivity can also be expressed as a function of frequency v
instead of angular frequency w via v = 27w.
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Deriving energy density from emissitivity (cont.)

@ Integrating over d3r, AE =
Js8dr [, do [T dgdV p(w) dwBAsl — € () dwdtAA

@ By definition,

AE c

") = Aadoa: ~ 7'

Planck’s emissitivity in classical limits

@ In the classical limit, x = Shw < 1, the energy density
reduces to p(w) = ’;Zf; Note that the constant A has
dissapeared in the classical limit, signifying that quantum
effect has effectively dropped out from the picture.

2 .
@ p(w) = k?%y is a well-know classical law called

‘Rayleigh-Jeans law’ derived by classical physicists trying to
describe blackbody radiation spectrum using purely classical
statsitical physics arguments.

@ RJ laws only fits the experimental curve of a blackbody
radiation (at a give temperature) at low frequency but fails at
high frequencies.




Stefan-Boltzmann law

o W= f;jooo I(w)dw represents the total energy emitted per
unit time per unit area through the aparture contributed by all
frequencies.

1 hw3
o W=W(T)= 3=z Jo so—dw=0T* where

o= 2K =567 x1078Js lm 2K~

Wien's displacement law (cont.)

@ One can deduce Wien's displacement law and the value of the
e 3
constant from the emissivity /(w) ~ 2=, x = fhw.
@ To obtain the Wien's displacement law, one extremises the
emissivity curve, i.e. finds the value x5 at which the
emissivity is an extremum:

d1(x) |
8X Xmax

to obtain 3x2,,, (eXm — 1) — em>x3 = 0. Use numerical
method to find the root of this algebraic equation:

=0

hew max

Xmax = KT

= 2.82144.
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Wien's displacement law

@ Wien's displacement law:

hew max B he
kT kT Apmax

Note: recall that wA = 27c.

= 2.822.

@ Often Wien's displacement law is also stated as
Amax T = 2.898 x 1073 m-K.

Free energy of the EM radiation in the cavity

F pr—

| x = Bhw

Ly N
C3h37r2 o X n[ e ] X

kTV/ w?ln {1 — e‘ﬁm} wdw
c3n2 Jo

| integration by parts
kT)*V 1 [
= KTV —/ x3(1 — e ¥)dx
0

N - 332 3
_ 7(/(7_)4 V2 _ 7470\/7_4
45(hc)3 3c




Entropy, heat capacity and average number of photon of Chemical potential of the photon gas

the EM radiation in the cavity

()
S = —(8—F> :16—UVT3 ONJrn

oTr/, 3c
c = T a5 _ 16_0\/.,.3 @ The free energy is independent of p, hence the result
0 c (ﬁ) =0
, oNJ T,N
Ny = V/ n(w)dw = V - / w dw @ [ is zer'o for phot(?n is closedly rela.ted to the' fact that
0 o m2c3efw —1 photon’s number is not conserved in the cavity (due to
1 x = fhw absorption and re-emission by the wall).
_ KTNZ [ x2 d @ Photons are created and annihilated freely as a result of
B he /0 ex — 1 X absorption and emission by the walls of the container.

Pressure of the photon gas Average energy E and energy density u(T)

The average energy of the EM radiation in the cavity (with volume

V) is
] 2\/
. . OF E = / hu)(eﬁhw — 1)_1 W— dw
This can be calculated from the free energy via P = (6_V)T: 0 c3r2
| x = phw
Vh k*T* [ X3 dx
o[3vTt E = / ‘
P = (7[35\/ ]) = ;L—UT“ (7) m2c3 m* Jo (Bh)* e -1
c
T _Vh k*T4 7r_4 B Vk4 T472
© m2¢3 pt \15)  15R3c3

@ Energy density = energy per unit volume,

VK*T47?  4oT*
1583c3 ¢ (8)

u(T)=E/V =
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Pressure of the photo gas in terms of energy density u(T)

@ For photon gas, we can obtain the relation between photon’s
pressure P and the energy density u(T) by combining the
expression for P, Eq. (7), and u(T), Eq. (8), for the photon

gas to obtain ) Part V Of fermions and bosons

@ Recall for the case of ideal gas as we learned that
2 . .
P =inm(v?) = %%m(‘%) = 2E/V = 2u(T). This describe
an ideal gas system in which each particle is moving with
2 2
average energy (T~) = (£-).
@ The comparison above make it obvious that the photons in
the cavity indeed do bahave very much like a system of
classical gas which is corpuscular in nature. We hence think of

the quantum of light, photon, behaves like a particle.

Table of content

@ Chapter 1 Grand Canonical Ensemble @ Chapter 1 Grand Canonical Ensemble
@ 1.1 Definitions and motivations @ 1.1 Definitions and motivations
@ 1.2 Connection to thermodynamics @ 1.2 Connection to thermodynamics

© Chapter 2 Statistical Mechanics of Identical Quantum Particles
@ 2.1 Classification of states occupation numbers 2.1 Classification of states occupation numbers
@ 2.2 Quantum statistics - many-particle states
@ 2.3 Thermodynamics of fermion and bosons
@ 2.4 Average occupation numbers

© Chapter 3 Electrical Conductivity in Metals
@ 3.1 The Drude model
@ 3.2 A critique of the Drude model
@ 3.3 The Sommerfeld model
@ 3.4 Electrons at high and low temperatures
@ 3.5 Metals at room temperature
@ 3.6 Thermodynamics of the Sommerfeld model
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Grand partition function as generalisation of canonical

ensemble

@ In canonical ensemble comprised of N number of particles, the
partition function of the ensemble is Z(T,V,N) = 3", e PEi
where E; is the total energy of all the N particles in a

icrostate i, E; = SU=N
microstate i, E; = > iy ¢;.

@ Note that the summation in Z(T, V., N) implicitly assumes
that the system'’s total number of particle, N is fixed.

@ Grand canonical ensembel (GCE) is the generalisation of the
canonical ensemble. In GCE the constraint that N being a
fixed number is relaxed, i.e., N is made a variable, and the
effect of the variation due to N is to be taken care of by using
chemical potential.

Grand partition function

@ A microstate in GCE, labelled by «, is specified by

© N, the number of particle in state «, and
@ the microscopic state i of these N particles.

@ The PDF (probability distribution function) of a GCE takes

the form of
P, ~ e B(Ei—pN)

@ The partition function of a GCE, called the grand partition
function, is
Z(T,V, ) Ze B(Ei=pN)

@ Adding or taking away particle from the system (= variation
in partical number N) involve energy cost. Such energy cost is
taken care of by the term p/N in the exponent.

Summation over «v in the grand partition function

® The summatino in Z is devided into two parts: First, sum
over the states / at a constant N, and then in the second
step, sum over all N:

a function in termsof N
Y

Z(T,V,p)=>_ (eWN ZeﬁEf‘) => eMNZ(T,V,N)
i N

N

@ Since in GCE the number of particle (N) in the summation
e~ Bl E,{V:o(’ --) is treated as a variable, e =N Z,{V:O(' ) is
a function of N. Hence we would also need to sum over all
possible value of N, i.e. S, e P#N [Z,N:o(’ - )}

Summation over (v in the grand partition function (cont.)

@ This is to be compared with the canonical ensemble, where
the total number N is a constant, not a variable, hence no
summing over the variable N is to be done in evaluating the
canonical partition function.
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Free energy and averages in GCE

@ Since F(T,V,N)=—kTInZ(T,V,N) = Z(T,V,N) =

Z(T,V,u) = Z eBuN o=BF(T,V,N) _ Z eBIUN—F(T,V,N)]
N N

@ As for the case of canonical ensemble, the average of an
observable A is then simply given by

(A) = D APo=2Z"1Y AN, i)e PETEN)

= 27y (Z A(N,i)e‘ﬁ(E"_“N))
N i

Average number of particle N from Z

@ In the GCE, average number of particles N is given by
B(uN—Ei)
_ _ =1 B(uN—E;) | _ DN (Zi Ne )
N = <N> Z ZN: (z’: Ne ) ZN (Z, eﬁ(pN—E,‘))

@ Note the denominator in N is %‘% =Sy (3; peBN=E))

]

_ 18InZ

B Op
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Average pressure from Z

@ In the GCE, average work done by the system as a result of
variation in an external variable X is given by

19InZ

@ In the case of X = V/, work done by the system when V varies
by dV is W = PdV =

sW = pgy = L9In2

%
5 av

@ Comparing the coefficients to dV/, we can then easily identify

_ l@InZ
B av

Identifying the stat mech origin of the grand potential €2

@ Recall that in thermodynamics we mentioned the grand
potential €, defined as

AT,V,u)=F—uN=E —TS — uN,

from which we derived pressure and number of particle in the

system via (i) P = — (22) Ty ()N =~ (%)T v

@ Comparing these with what were just derived from the grand
canonical ensemble using Z, i.e.

P_lBInZ,7 _18|nZ
B oV B o

we then can easily identify that the grand potential Q is
related to Z via
Q=—kTInZ

which is a generalisation of F = —kT In Z.




Qutline Systems of classical particles are continous

1.1 Definitions and motivations

Q Chapter 2 Statistical Mechanics of Identical Quantum Particles
@ 2.1 Classification of states occupation numbers
@ 2.2 Quantum statistics - many-particle states
@ 2.3 Thermodynamics of fermion and bosons
@ 2.4 Average occupation numbers

@ For systems made up of classical particles, the states of the
system are specified by the simultaneous momentum and
coordinates of the particles {p;,r;}. Their states are
continuous in the sense the momentum and spatial position of
the particles are continous variables. The energy of the states

of the system is also continuous. e.g. ¢; = % because
!
momentum is continuous.

Systems of quantim particles are descrete A quantum particle is represented by a wavefunction, 1/

@ On the other hand, systems made up of quantum particles
(e.g. photons, phonons) are different from that made up of
classical particles:

@ A quantum particle is not to be treated as ‘particle-like’ but
rather as a wave, which is represented by a wave function .

© The states of the quantum system is descrete in the sense that
it requires a set of descrete number to specify the state

(instead of specifying the set of continuous variables {p;, r;}) @ The index k, a short-hand notation representing the set of
© The energy of a state of the quantum system is quantized, in descrete number k = {n, p, g} specifies the state of the
the sense that the energy can only assume values that are quantum ‘particle’.

specified by descrete numbers, e.g. energy of a phonon mode

. . . 2 2 2 2
in the Debye model is quantised ¢, , o = 2= (2—2 + =+ 3—2)

{n, p, g} a set of positive interger, zero included.
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Boundary condition on 7, quantises the momenta

@ The wavefunction ¢, must obey boundary condition arisen
from the finiteness of size of the system in each spatial
. . M
direction, e.g. % = na.
@ The wavelengths of the wavefunction in turn are related to
the momenta.

@ Since the wavelengths are constrained by condition of the
form % = na, the momenta of the quantum particle in each

spatial directions become quantized.

® As a result, px = )\i = ’2’—2 (similar condition also applies to
X

momentum in the y- and z- directions)

ng OCCupancy number

@ Consider a system comprised of N non interacting particles
(recall that the phonons in the Debye model or the photons in
the blackbody cavity are such particles).

@ There are many SPS states available to be occupied by these
particle.

@ We can liken the SPS available to be occupied by the particles
in the system as ‘addresses’ of houses. In the system, there
are in principle infinite ‘addresses’ (SPS) (k=1,2,3,--- ,00),
and each house can be occupied by any number of particles.

@ We will use ng to denote the occupancy number of SPS k.

@ ny can be any integer between 0 to infinity.
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Single particle state (SPS)

[

Specifying the state of a single quantum particle is to specify
the set of three descrete numbers k = {n, p, g} for that
particle.

For a given set of three numbers {n, p, g} a positive integer is
assigned to k, e.g, k =1={0,0,0}, k =2={0,0,1},
k=3={0,1,1}, etc.

€k represents the energy of a quantum particle in the state k.
k is the lable of a single particle state (SPS).

@ In principle, the SPS index k runs from 1 to infinity.

Usually, higher k indexes higher excited states (energy higher,
momentum higher).

]

]

Example of specifying a state of 6 quantum particles

For the sake of concreteness, consider an example where there
are N = 6 particles in the system. A particular microstate «
may look like the following:

Particles with indices j = 1,2, 3 are in the SPS

k =1={0,0,0}, particles with indices j = 4,5 are in the
SPS kK =2=1{0,0,1}, and the last particle, with index j = 6
is in the k =3 =4{0,1,1} SPS.




Specifying the state of system is to list down the set of all

occupancy numbers {ng—1, ng=o, Ni=3 - - - }

@ We can specify the state « by the set
{kj;l = kj:2 = kj:3 = 1; kj:4 = kj:5 = 2; kj:6 = 3}

@ Or, equilvalently, {n—1 = 3, nk=2 = 2, nk—3 = 1}. This turns
out the be the more convenient way to specify a state rather
than listing {k;}.

@ Listing all the occupation numbers {ny} for all SPS
k={1,2,---,} amount to a statement of the microstate of
the system.

o If we count the number of particle in each SPS address, and
sum up the number of all the particle counted, we must have
Ng—=1 + Ng=3 + -+ N=0o = ankz N.

Two types of quantum particles: Fermion and Bosons

@ It turns out all the quantum particles in our Universe can be
categorised into two types based on the way they occupy a
single particle state in a quantum many-particle system:

@ Fermion: nx ={0,1}. These particles has spin %, & 52—h, -
and their wavefunctions are antisymmetric, e.g.
(1) (2) = —4(2)%(1). They are said to obey Pauli exclusive
principle because no more than one quantum particle can
occupy a same quantum state.

© Boson: ng ={0,1,2,---}. These particles has integer spins
0h,1h,2h, ---. There is no limit on how many boson can

occupy a single particle state.
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Quantum particles are identical

@ One of the intrinsic differences between Quantum particles
and classical particles is that quantum particles of the same
type are indistinguishable.

@ For example two electron or two photons are indistinguishable
in the sense that the intrinsic properties (‘quantum numbers')
that characterise any electron (e.g. e, me, spin) are universal.

@ All electrons are exactly indentical. As a consequence, if you
exchange two electrons located at {xj,xp} respectively you
can't experimentally distinguish between the configuration
{e1 at x1, e at xo} from {e& at x1, e at x»}.

@ The indistinguishability of quantum particles gives rise to
many subtle effects that render the physical behavior of
quantum systems very much different from the classical ones.

Bosonic and fermionic systems requires grand canonical

ensemble

@ We have to employ grand canonical ensemble (GCE) to
describe these quantum many-particle system.

@ We need GCE because the occupancy number n, for a fixed k
is to become a variable. We will need to deal with the
summation of the form M{=5° {Zgiigo( )} while
summing up all microscopic states to obtain the grand
partition function Z.

@ Be reminded that in GCE, there are two independent variables,
namely k € {1,2,---} and ny. For boson, ng € {0,1,2,---};
for fermion, ng € {0,1}. In order to obtain the grand partition
function Z, we must sum over both k and ny.




Energy of a SPS in GCE, ¢, includes a chemical potential, Constructing the grand partition function Z from the SPS

iz grand partition function Z

@ Consider that we fix a particular SPS k. The grand partition
function for that SPS is obtained by summing over all possible
values of ny, the occupation number in the SPS k, i.e.

@ There are infinite one-particle state (SPS) in the GCE, each is
labelled by k =1,k =2,--- k = 0.

@ Each of these SPS is occupied by ny particles, and each of

i Z, = —Bni(ex—1)

these particle has energy «. K Z e .
N

@ Hence the energy of a SPS k is given by ¢, = ni (ex — ).

@ [ enters the expression of the energy in the SPS because we @ The grand partition function Z is constructed by taking the
are working in a GCE, which neccesiates the introduction of product of all the SPS grand partition function from k =1 to
the extra varibale to take care of the variation in particle k=00, ie.
number n.

Z =21 Zy—p Bp=z - = MZT 2 (1)

Constructing the grand partition function Z from the SPS SPS grand partition function for fermions Z}(H

grand partition function Z; (cont.)

@ For fermions only n, € 0,1 are allowed.

@ The SPS d partition function i
@ In other words, knowing the SPS grand partition function Z, © grand partition Tunction is

Z can be constructed according to Eq. (1) (and hence all ZIEF) _ Z e=Bler—n) _ g=B0-(es—p) 4 g=B1(ek—1) _ 11 oBlu—e)

thermodynamical properties). ne=0,1
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SPS grand partition function for bosons Z,((B)

® For bosons nx € {0,1,2---}
@ The SPS grand partition function is

ng=00
ZIEB) _ Z eBnk(u—ex)

nk:0

@ To obtain Z,((B), we substitute x = e#(#=€) so that

ng=o00

Z,EB) = Z X"k

nK=0

Grand thermodynamic potential for fermions QUF) (T, V. 1)

@ Grand thermodynamic potential for fermions
QFN(T,V,u) = —kTIn(Z- 2 Z3---)
k=00
= —kT[nZi+InZ+In2Z3] = —kT > InZ;
k=1
k=00

= —kT Y In(1+ *=))
k=1
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SPS grand partition function for bosons Z,”’ (cont.)

@ The sum 7%= x converges to —— only if
nk=0 g T—x

x =) « 1= < e

2B = (1- P9 T < ek

Grand thermodynamic potential for bosons QB)( T, V. 1)

@ Grand thermodynamic potential for bosons is

k=00
QBN(T,V, 1) = —kT > In(1 — &%)
k=1




The average particle number of a GCE

Fermi-Dirac (FD) distribution

aQ(F) 1
F\ _ _ _ (F)
@ First we would like to use the grand potential function to (N") = — ( ou - Z eBle—i) 11 Z<nk )
evaluate the average particle number of a GCE at fixed volume v.T k k
and temperature, which can be obtained from the relations where
e (B)y _ 1
W=~ (@) V. T ™) = efle—n) 41’ (2)

is the expectation (or the average) occupation number in SPS
state k in a fermionic system. Eq. (2) is the celebrated
Fermi-Dirac distribution.

Bose-Einstein (BE) distribution

Phonon or phonon modes are bosonic particles with energy

ek = hw

@ Note that (NB) reduces to (n) = (€% —1)~! when ;=0
and ¢, = hw. This is the expectation occupation number for

(B)\ _ 1
M) = Bam

state k in a bosonic system. Eq. (3) is the celebrated
Bose-Einstein distribution.

is the expectation (or the average) occupation number in SPS
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where the Debye model and blackbody cavities. In both of these

systems, the phonon and photon are boson, and have chemical
potential zero. We can interprete the phonon or phonon
modes as bosonic particles with energy ¢, = fuw for all SPS k.




The average occupation numbers of a single particle state Features of Bose-Einstein distribution

as a function of (e — jt)

@ ¢y is always larger than i for bosonic system.

<n> @ In the limit f#(ex — pt) — oo, the Bose-Einstein distribution

reduces to the Maxwell-Boltzmann distribution, ~ e~5¢. This

corresponds to the classical limit (high temperature or large

F), <n®> Ck)

@ In the limit B(ex — 1) — 0, (n(B)) = co. This corresponds to

the quantum limit. It happens when kT < € — .

@ Also note that the divergence orginates from the e®(e—#) _ 1
term in the denominator of (n(B)). Since the corresponding

5.00 5.00  fe) sign for the FD case is a ‘+', no such divergence occurs for

Fermion.

0 < (nF) < 0.

B(ex — ) is limited to lie in the positive domain Vk.

Figure: The average occupation numbers of a single particle state as a
function of F(e — ). The index k has been omitted

[

@

Featurs of Ferm:-Dirac istributior

o In the limit 8(cx — 1) — oo, the Fermi-Dirac distribution 1.1 Definitions and motivations

reduces to the Maxwell-Boltzmann distribution, ~ e~?¢_ This
corresponds to the classical limit (high temperature or large
€k) 2.1 Classification of states occupation numbers

o In the limit A(ex — p) = —oc, (n(F)) — 1. This corresponds
to the quantum limit. It happens when ¢, < u and

kT < e — pi.
e 0< (nFy <1. © Chapter 3 Electrical Conductivity in Metals
@ Unlike the BE case, it can be larger or smaller than ¢ in the @ 3.1 The Drude model

FD case. The constraint y < ¢, does not apply to fermion. @ 3.2 A critique of the Drude model

@ 3.3 The Sommerfeld model

@ 3.4 Electrons at high and low temperatures

@ 3.5 Metals at room temperature

@ 3.6 Thermodynamics of the Sommerfeld model

@ As such, S(ex — p) for the FD case can lie in both the positive
and negative domain Vk.
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Wiednamm-Frank law Assumptions in Drude's model

@ Drude in 1900 treated electron in metal as though they
behave essentially like freely moving idea gas obeying kinetic
@ Classically, people believe that the electrons in the metal theory of gases with Boltzmann distribution.
contribute significantly to both the electrical conductivity and
thermal conductivity.

@ Drude assumed that

@ The electron gas is assumed to be in a state of thermodynamic

@ The ratio of electrical conductivity to thermal conductivity for equilibrium
K . . ’ .
metal, -, as measured by Wiedmann-Frank (middle 19th @ the free-electron in metals contributes significantly to both
century) is roughly a constant x T, where the contant is electrical conductivity and thermal conductivity of metals. !
@ Although electrons are charged, the interaction between them
~2 X 1078WQ/K2‘ are negligible and they do not effect one another's motion.

@ Both K and & can be derived by considering the transport

This constant is also relatively independent of the materials. ) i
phenomena of a freely moving particle system.

! Actually, one of Drude’s assumption is wrong: It turns out that the
electrons do not contribute significantly to the heat capacity except at
extremely low temperature.

Electrical conductivity Electrical conductivity (cont.)

@ Electrical conductivity of metals is closedly related to the drift ° ﬁence the 22:/erage velgbglty, i.e. the drift velocity, is
velocity of the free electrons in the metal under an electric v=_(w—- 51t =-7%

The flowing of electrons moving with an average velocity of v
gives rise to a current density.

[

field E.

@ The drift velocity is the effective velocity of the electrons that
have to undergo frequent collision in the metal while drifting By definition, the current density is given by
along the direction —E under the electric force —eE. J=—evn= —en(—T%) = K;TE, where n electron number
density of the metal.

(7]

@ The drift velocity is also called the thermal velocity)
@ The conductivity of a metal is defined as the current flowing

@ Between successive collisions, the electrons move as free R :
as a respond to an external electric field E via J = ¢E.

particles under ‘free-fall’ due to the force —eE. The
acceleration due to the force —eE on an electron is Combining both J = —evn and E via J = oE, we arrive at
a= —eE/m, hence v = vy — %t. the expression of the eletrical conductivity in terms of the

(7]

@ The free-fall motion only lasted on average 7, defined as the mean free time 7,

mean free time. It is the average free-fall time between two 2
successive collision among the electrons. o=
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Thermal conductivity

@ The thermal conductivity is given by

= 1 1
K = §nV€c = §n02c77 (5)
where ¢ the specific heat capacity per electron, £ the mean

free path. We have used the relation £ = vr.

@ This result is obtained by analysing the transport phenomena
using kinetic theory of gases. Detailed derivation of this
equation can be found in page 67 of Amit.

A critique of the Drude model

@ Drude’s model is partially succesful: the order of magnitude
estimate of the ratio % e~ ><10*8VVQ/K2 is right, but is still
about 2 times too small when compared to the experimental
values.

@ Purely classical treatment leads to quantitatively incorrect
prediction for the ratio % The prediction of % in the
Drude’s model turns out to be of the same order of magnitude
as that of the experimental data is somewhat a conincidence.

@ A correct treatment for K and & should take into account of
the quantum statistical behavior of electrons in metal, which
was so done in the Sommerfeld model.
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K /o in the Drude model

@ Up to now, the expressions for & and K are completely
generic, as we have not specified what the average kinetic
energy € = %mV2 and the heat capacity c of the electron gas

are.

@ In Drude's model, the ideal electron gas assumes
Maxwell-Boltzmann velocity distribution, mv? = 3kT.

@ Drude's model also assumes the electron gas obeys classical
thermodynamics, and the electrons obey equipartition law,
where the electronic contribution to heat capacities of the
metal is ¢ = 3k/2 per electron. 2

@ Hence, the Drude model predicts

K mv?c 3Kk2T
o 3e2  2e2

=111 x 1078WQ/K? x T.

2As mentioned earlier, this turns out to be not true, as there is no
experimental evidence that electron gas obeys equipartition law.

A critique of the Drude model (cont.)

@ It turns out that actually the free electrons do not obey
equipartition law in metals, and their contribution to the heat
capacity in metals is negligible at room tempeature as
compared to that contributed by phonons.

@ In the Sommerfeld model (which treats the free electrons in
metal as quantum particles), we shall see that in fact the heat
capacity of metals contributed by free electrons is indeed
much smaller than 3k/2.

@ We will also see that in the Sommerfeld model the wrong
assumption of equipartition law of electron as applied to the
heat capacity ¢ was actually compensated by a larger (and
numerically correct) contribution from the velocity term in K.




Grand partition function of a Fermi gas The average number of electron in the Fermi gas

@ In Sommerfeld’'s model the free electrons in metal (as a 3D o QF) = —kTInZ = —kT 33, In (1 + &), from which
container of a volume V) are treated as free quantum we can derive the average number of electron in the grand
particles obeying fermi statistics. ensemble,

@ We will call the quantum version of free electron gas the
Fermi gas. N = a0

@ Each of the electron in the free electron gas has kinetic energy o

. . 2
of a free particle given by ¢ = 2. _ kTZ kA In (1 I eﬁ(u—q))
@ From the previous chapter, the grand partition function such a K Oy
fermion system is known, B 1 B 1
(F) - zk: 1+ eBle—sn) zk: 1 4 eBlex—i)
Z=M2Z, "7, )
p— — 2 .
where Z,((F) =1+ eBlu—en), 14 ePER—1

The summation over SPS k for N PDF of the Fermi gas in momentum space

@ The summation over the SPS index k is to be replaced by the @ From Eq. (6) we can derive dN, given by
summation over all momentum states in the metal’s volume 3
_ 2V d’p
V: l.e., 3 dN = FT
d Ao —h
S axv [OF e
k ° % is the probability to find an electron with momentum p
so that around the velocity volume element d3p.
3 , 1 @ By definition, this is just the PDF in momentum space for the
;2 - 2\//d_3p {1 + eﬂ(é’—m.u)] ) free electrons in the metal, i.e.
w1+ eﬁ(g_m—ﬂ«) h 3 3
dNv 2V d°p 2 d°p _ f(p)d3p
@ The factor 2 is to take care of the fact that each electron has N Nh3 1+ eﬂ(éﬁm—u) nh3 1+ eﬁ(g’%—u) B 7

two spin states. _ ) _
) . where n = N/V is the number density of free electron in the
@ Hence, the average number of electron in the metal is given by

metal.
d3 1 @ This is the Fermi-Dirac analogue of the Maxwell-Boltzmann
N=2v [ ZP 6 s
- h3 ) PEERY (6) momentum distribution function for the case of classical free
Tt particles.
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PDF is all you need

@ The PDF in momentum space is the most important
ingredient we need for the purpose to predict the physical
behavior of the free electron in metal (e.g., mean energy,
electrical conductivity, electronic contribution to heat
capacity, etc.)

f.(¢) the energy distribution function

@ (¢) can be further cast into the convinient form

(e) = /OOO efe(€)de,

f(¢) the energy distribution function given by

£le) — 4 (2m)3/21/2 1 %
9= h3 1+ efle—n) N
e T g —

degeneracy factor average number at energy €

o f.(¢) tells us how is the quantum states of the Fermi gas
system is occupied as a function of energy and temperature
(c.f this with PDF in momentum space).

Average energy (¢) from momentum PDF

@ But first we would like to use it to calculate the most obvious
macroscopical physical quantity that is momentum-related,
i.e., the average energy (purely kinetic) (¢) of the electrons in

the metal
P2 3
(€) Z/—f(p)d p

2m

@ (€) can be evaluated in terms of € = 2’% = dp = (%)1/2 de.

@ = [E s

2m

p> 2 1 2
= 2m WL B PP

m n 1 + eﬁ(ﬁ_ﬂ')

B gr 1 , (m)1/2d
= € W—l—|—eﬁ(€_ﬂ) me Z €
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Density of state (DOS), g(¢)

3/2,1/2
@ The degeneracy factor g(¢) = % is also known as

density of state.
@ Most commonly g(¢) is just called ‘density of state’ (DOS).

@ It is the number of quantum states that are available to be
occupied between ¢ and € + de.

@ g(¢) is quite general and is independent of the statistical
nature of the particle.

@ |t describes the number of states at each energy level that are
available to be occupied.

@ A high DOS at a specific energy level means that there are
many states available for occupation.

@ A DOS of zero means that no states can be occupied at that
energy level.




n.(¢) as a probability DOS and the statistical nature of the particles determine

the behavior of an ensemble.

1

m. It is

@ We should also familiar with the term n.(¢) =
just the Fermi-Dirac occupation function.

@ It is the average number of fermion (in this case, electron) at

energy state ¢. Note that the form of n.(¢) suggests that the @ The behavior of the electron in the metal, as according to the
average number of electron at an energy state ¢ depends Sommerfeld model, is determined by the statistical nature (as
strongly on temperature. inferred in ne(¢)) and also the DOS of the system.

@ One may interprete nc(€) as the probability of how the @ In general, the overall behavior of an enesemble is determined
electrons shall be distributed at different energy states (i.e. ¢) by the DOS of the system, and wheather the particles of are
as a function of temperature fermions or bosons.

@ Multiplying this probability with the DOS tell us how are the
quantum states actually being occupied as a function of
energy.

Implicitly dependence of ;i on 7 and n

Chemical potentail /i is temperature and number density

dependent

@ In general, the chemical potential 1t is also dependent on
temperature and number density n, which could be worked
out from the expression of the average number of electron in
the metal N in Eq. (6).

@ Eq (7) renders i to implicitly depend on (3 and n, as the RHS
of the equation,

00 61/2
@ In terms of ¢, this is /0 mde
oV 1 is an implicit function of 5 and L.
N = /F—ﬁ -4mp3dp @ Note that the integrand ¢ is to be integrated out from the
1+ P55 —1) picture, hence the it is not a function of the variable «.
_ /87rV 1 om (m)1/2d
o h3 1+ efle—n) ¢ 2¢ ¢
. N . 3/2 A 0 61/2
=n = V= (2m) F/o L efen de (7)
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To establish the temperature dependence of n.(¢), first

establish the temperature dependence of 1.

-1
ne(e) = n(e ) = [1+ 0|
@ In what follows, we would like to investigate the bahavior of

the free electron in the Sommerfeld model at both limits of @ We wish to know what will happen to the Fermi-Dirac

high and low temperatures. occupation number nc(e) in the limits when T — 0
(equivalent to § — o0) and when T — oo (equivalent to
g —0).

@ To do so, we must fist establish the temperature dependence
of 1 at low and high temperature limits.

The FD distribution reduces to MB distribution in high

First, how does /« behave in the high temperature limit,
temperature limit

3= 07

@ To answer this, take a look at
@ We conclude the high temperature limit behavior:

00 61/2
ne~ ————de
/0 1+ ePee—Bu lim ;8 = —co,
B—0

@ n, as a physical quantity, must never become infinite under all

i @ Or in other words, ;1 becomes more and more negative as T
conditions.

increases.

@ Note that in the ¢ — 0o, 3 — 0 limit, e’ — constant. T . . .
@ This limiting behavior, when applied to the Fermi-Dirac

. /2 €l/2 .
@ As a consequence, t.he.mtegral TrePee Br ~ Ticonstante Br M occupation function n(¢), allows us to conclude that in the
the ¢ — 00718 — 0 limits. hlgt T limit
o If —Bu — constant in the ¢ — oo limit, then the integral will ne(e) ~ Cexp(—fe),
: /2 . . :
behave like ~ ——— rendering the integration and hence n where C = exp(B1).

to diverge. o . o
@ This is just the classical Boltzmann distribution.

@ Hence . should behave according to e ?# — o0 as 8 — 0 so
that the integration does not ‘explode’ in the ¢ — oo limit.
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How /« behaves in the low temperature limit, 5/ — oo? Degenerate Fermi gas

@ The previous result applies to electrons with a fixed spin. An
electron may have two spin states, e.g. spin up or spin down.
o Look at n(¢) = m for the answer. @ Taking spin degeperacy into a.ccount, all the energy levels
o If e > limg s 1 _0 be.Iow 1t is occupied by one spin up.state electron, and one
' 1+efle=n) spin down state electron, resulting in each state below € = 1t
o Ife < p, limg o HTI}HF =1 to be occupied by effectively two electrons.
@ The occupation number of a particular energy states ¢ by the @ No electron is to be found at energy above the threshold

electron of a given spin is either 0 or 1, dependening on energy ¢ = ji.
whether the energy level ¢ is above or below the chemical
potential z at that temperature.

@ That means, in the T — 0 limit, if there are N electrons in
the metal, they will fill up each energy level right from bottom
of the energy states at ¢ = 0 until the highest energy level
defined as ep = L.

[

Such state of an electron gas is called a degenerate Fermi gas.

Figuratve epresentation of degenerate Fermi g

@ This way of stacking up all particles in their energy level from
bottom up in the ensenble is to be contrasted with the
classical Boltzmann distribution for ideal gas according to
n. ~ e B¢ where all particles in the MB distribution will

. concontrate at the ground level ¢ = 0 in the 5 — oo limit.

3 l‘fae;m}'%inergy @ In constrast, the particles in the degenerate Fermi gas stack

against each other obeying the rules that only two electrons of

opposite spins are allowed in each energy level. This is a

} N electrons quantum feature of fermions consistent with Pauli's exclusive

principle.

0000 0 ©

@ The so-called Fermi energy, given by ¢g = % (3—7’;)2/3, s a

particular important energy scale that characterises the
spin degeneracy Sommerfeld model.

Cﬁﬁﬁﬁ e o

@ It is defined as the highest occupied energy level in a
degenerate Fermi gas at T = 0.
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Chemical potential at T =0 is ¢f

@ Fermi energy is the maximal (kinetic) energy state occupied
by electrons at T = 0. It also play the as chemical potential
at T=0.

@ Chemical potential in general is temperature dependent.

@ At T =0, the value of g, yi90 = (T = 0) is then simply
equals to the Fermi energy ¢f.

3D momentum space

@ The N free electrons in the metal will fill the energy levels
from the bottom in energy space up to the Fermi energy level.

@ Each electron in the energy level i has a corresponding
momentum p; where ¢; = p,?/2m.

@ We can imagine each of this state be represented by a point
in a 3D momentum space. A vector in the 3D momentum
space, pi = {pPxi, Pyi, Pzi }, then represents a quantum state
which energy is «;.

@ The electron’s start to fill up the energy states from ¢ = 0 up
to ¢ = ¢f. Similarly, in the 3D momentum space, these
electron will first fill up the lowest momentum states.

‘2

@ The radius square |p;|* is proportional to the energy of ¢;.
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Derivation of cr = i

@ Split the integration of n of Eq. (7) into

o o0
n = (2m)3/24—§ /0 Y2nc(e)de+ / M2n(e)de

h JHo ,
ne(e)=1 vanishes be;e;use ne(€)=0
Ar 2 32
= (2m)3/2 — =g -
h3 3

3n)2/3

This will give jig = % (8—7T =¢f.

Volume element in momentum space, d°p

@ Recall that a ‘point’ in phase space represents a state which
occupies a volume element of d3pd3r = h3 in the phase space.

@ Now, we are considering a point in momentum space (not a
phase space). What is the volume element in momentum
space representing a momentum state?

@ A point in momentum space can be considered as the special
case where the spatial contribution being integrated out from
the orignal phase space volume, symbolically,

d*rd®p = h*®(phasespace volume element)
l / dPr=V
d3p = h3/V:

where V is the 3D volume of the metal containing the free
electrons.




Volume element in momentum space, d°p (cont.)

@ Hence, each ‘point’ in momentum space occupies a volume of
h3/V, and each of this ‘point’ represents a quatum state.
Each quantum state accomodates two electrons (one for spin
up and one for spin down), as allowed by Pauli Exclusive
Principle.

@ The sphere in the momentum space containing all the states

occupied by the Fermi gas is called the Fermi sphere. It has a
radius of pg (definition will be given later).

Counting number of states in the momentum space of

radius pr

& Since there are N free electron in the metal, we can calculate
the radius of the sphere in the momentum space in which
these N electrons reside.

@ Let the radius of the sphere be pg, then the volume is
Vi = %‘Trpf’_-.

has an volume element of h3/V.

@ Each of these point has a degeneracy of 2 (i.e. each
momentum state in the 3D momentum space represent two
electrons, one for spin up and one for spin down), hence we
have 2 x VEV/h3 = N, which gives pg in terms of n = N/ V:

3n\ /3
== h.
PF (8’7‘(’)

@ The number of ‘points’ in VF is Vg/(h®/V) since each ‘point’
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Fermi sphere in momentum space

Figure: Representation of a 3D Fermi sphere in momentum space. Each
point in the circle represents a momentum states, and each of these
states (a ‘point’ in the sphere) occupies a ‘volume’ element of h*/V. In
the figure, the symbol k is used instead of p for momentum.

@ pr is called the Fermi momentum. It defines the radius of the
Fermi sphere. Fermi momentum is the largest momentum of
the free electron in the metal in T = 0.

@ Comparing it with the Fermi energy ¢ = (3—7’;)2/3 %2, we can
write )
[ &
2m

@ Fermi velocity is defined as ve = pr/m.

@ We also define Fermi temperature via kTp =ep. T
corresponds to the temperature for which a classical particle
must attain in order to have an energy of ¢f.

Fermi momentum, Fermi velocity




Table showing Fermi energy, temperature, velocity

Table 5.3.3. Values of the Fermi energy, Fermi velocity and Fermi temperature for
several metals. For the last row, the Fermi wavelength, see Exercise 3.18.

= Li Be Na Mg Al K Cu Ag Sb Au

r(eV) 7T 143 32 71 1.7 21 70 55 109 55
vp(108ms™!) 13 225 11 1.6 20 085 16 14 20 14
Tr(10* K) 55 166 38 82 136 25 82 64 127 64
Ar(A)

)

Chemical potential in the low and high temperature limits

@ At this point, we conclude that

© the low temperature limit behavior of chemical potential is
such that limg_, o j+ = €, a positive constant.
© In the high temperature limit, limg_q 1t = —c0.
© Somewhere between T =0 to T = oo, i decreases
monotonically from ¢r at T = 0 to become more negative as
T increses. At T =0.989Tf, o =0.
@ Be noted that for different types of particles have different ..
For example, photon and phonon have i = 0.
@ But for other elementary particles (such as electron, proton,

etc) in a GCE, p is generally a function of temperature, and is
particle-type specific.

Fermi gas of most metals is degenerate at room

temperature

@ For T >» Tr, the free electron gas behaves classically; for
T <& T, the free electrons in metal behave like a degerate
Fermi gas.

@ Since Tg for most metals are of the order ~ 10%K, this leads
to the fact that at room temperature electrons in most metal
behave as degenerate Fermi gas rather than as classical
particle.

@ This explains the unsatisfactory prediction of the Drude model
(which assumes the electron as classical gas at room
temperature).
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Graph of chemical potential as function of T/ Tf

Figure: Chemical potential as function of T/ Tr. u is a monotonically
decreasing function of temperature.




If 11i(T) =~ ¢F, it's approximately a degenerate Fermi gas at

T

@ 1 = ¢f is the condition that characterises a degenerate Fermi
gas. However, j(T) at any arbitrary temperature T is not
exactly equal eg. We would like to know up to what
temperature 1t = ¢ holds.

@ Knowing this allows us to justify whether electrons in a metal
do behave as degenerate Fermi gas or otherwise at an
temperature T.

Is ;«(T) ~ ¢ a good approximation at room temperature?

(cont.)

@ We note that in the low temperature limit,
T« Tr & kT < ¢F,

@ In such case, the RHS of Eq. (9) becomes

w/€r 3/2
z/ xY2dx = 2/3 (ﬂ) .
0 €F

Equate this to the LHS of Eq. (9) = % we arrive at (1 = eF.
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Is «(T) ~ cF a good approximation at room temperature?

@ To do so, we define the dimensionless variable x = ¢/¢f and
cast n of Eq. (7) in terms of ef

n= 8w (2mer V2 = (2m)¥/? Ar [ —61/2 de
3 h? B Jo 1+ efle=n)

2 3/2 o 61/20'6

> 3= rren (8)
2 W EE 1/2 9)

N _:/ X dx+/ {7} dx.
3 Jo l4exp [;—f,.(x — ;%)] 1/

(9)

@ In other words, as long as T <« TF, making ;(T) = ef does
not violate Eq. (9).

@ What this means is that in the limit T < Tf, which is
fulfilled for most metals at room temperature, the chemical
potential at a non-zero temperature p(T), with T < TF, is
well approximated by the Fermi energy ¢f, justifying the
treatement that the free electrons in metal at room
temperature behave like a degenerate Fermi gas.




FD distribution is a step function at T =0 FD distribution at different temperatures

@ For the Fermi gas at degenerate state at T =0, n.(¢) is a
step function in e.

@ The Fermi gas begins to deviate from a step function at
temperature T > 0. The deviation becomes prominent when
T — TF or larger. 0

0.}2 0.4 01.6 ‘].}8 1}.{] 1.2 114 1;.6 >

Figure: The FermiDirac occupation function at different temperatures as
a function of the dimensionless variable x = ¢/eg. Note that the function
deviates from a step function as temperature increases. The tail at which
€ > ¢f for T > 0K contains excited electrons into energy states above
the Fermi energy level, which are ohterwise unoccupied at T = 0.

We wish to work out what is the electronic heat capacity The FD distribution has a ‘tail’ beyond ¢ > ¢f

in the Sommerfeld model

@ First, we would need to know what the average energy of the
electrons in a metal (€) is at temperature 0 < T < TF.

@ From the previous discussion on Debye model, we already @ In terms of ¢, fi(c) = %6;3/261/2 [1 + eﬁ(e—u)]_l_
knew that photon vibrations explain fairly well the heat 1
capacity of crystalline lattice at all temperature. Electronic ® Note that ne(c) = [1+("#)] " is not a strict step function
contribution to the heat capacities hence should be tiny. We for T # 0 asis n.(c) at T =0.
wish to verify that this is indeed the case. @ However, as long as 0 < T < T, the tail of n.(¢) for

@ To this end we would like to use the free electron’s number 0 < T < TF extends slightly beyond é =1

density distribution (as predicted in the Sommerfeld model) to @ The slight distortion of n.(e) for 0 < T « T as compared to
work out what would be the contribution of the free electron ne(e) at T =0 can be considered as an purturbation effect

to the heat capacity of metal at a temperature 0 < T < Tp. due to the non-zero temperature 0 < TlF <« 1. See the fig. of
ne(€) at various T as a function of =.
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Taylor expands (¢) at € = 1 Taylor expands (¢) at ¢ = /. (cont.)

@ ie for0 < T <« TF,

@ = /0 " (ede

o Alsoat 0 < T « Tg, p(T) is slightly shifted to the right of

3 _ °° -1
o (which is the chemical potential at T = 0), e.g. = 56’:3/2/ 3/2 [1 + eﬂ(e_”)} de
> 0
p(T) ~ o = eF. 3 iz —1
_ —3/2 3/2 -
® Hence for 0 < T < Tf, we can Taylor expand (¢) at = 2fF /0 e [1 +e H)} de
¢ = ;1(T) to the second order in Tlp 3 gy [ 1
R / (32 [1 + eﬁ(w)} de
2 H
3 _ H T
= 55F3/2 /0 32 de + perturbative terms in ?F
(10)

The temperature independent term The perturbative term due to T/ Tg

® The temperature dependent perturbation arises from the

@ This first term in the RHS of Eq (10) is the non-perturbative integration from the tail of n.(e) for the energy range of ¢ =
term (temperature independent) where [e#(¢=#) 4 1]71 =1 and beyond, i.e. %6;3/2 2321+ efo’(e—u)]_l de.
for e < pu. g

@ It turns out that (after some lengthy algebra), the second
order temperature-perturbed term is

1/2
57 T 532 §~7T—2u1/2 (kT)° _ 3t ( T 2.
e 2% 372 8 Tr

@ Hence, it can be easily integrated as

2 2

_3p [H _32 2 3 452
3 3/2/ 3/2de — 3€F3/2 2ys2 3
0

® This unperturbed term is temperature independent. @ The first order term in the Taylor expansion vanishes

conincidentally.
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(¢) as a function of temperature

Putting everything together, we now have

N 3N5/2 3M1/26}__/2ﬂ_2( T )2

{e) = 3/2 T (11)
5 GF/ 8 TF

Note that in Eq (11), (¢(T)) is explicitly a function of T, p(T).

Obtaining Cy from (¢(T)) requires j«( T) be expressed in

terms of N, T

@ Next, we would like to obtain the heat capacity of the metal
due to the free electron, which is to be derived by taking the
partial derivative of (¢) with respect to temperature at
constant V and N, i.e.

Cvo=n (g)/\/,v'

@ To this end, we must express (t(T) in terms of N, T so that
(e(T)) is expressed as function of T without the
j-dependence.

/¢ as implicit function of T by Taylor expanding Eq. (8)

@ In order to express p in terms of T and N, use the integral
relation for ef in Eq. (8),

g 32 0 61/26/6
3°F T o 14 efle=n)’

@ Again, the RHS of (8) is made up of the unperturbed term
(comes from the integration for the range ¢ = 0 to ¢ = ) and
the temperature perturbed term (comes from the integration
for the range ¢ = 1 and beyond).

@ Lengthy algebra like that leading to Eq. (11) leads to

1_5_3/2/00 124, N“’3/2+7r_2 r 1/2 l 2
= 26;: 0 1+ eBle—p) — e?_-/Q 8 \ )

Binomial expansion of Eq. (12) using approximation

R

@ Eq. (12) is an algebraic equation expressing how 1t is implicitly
dependent on T.

@ To obtain i as a function of T explicitly, we approximate
u = ¢f for the p in the TLF term in the RHS, so that Eq. (12)
is approximately

leading to
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@ Inserting ;t = p(T) in to Eq. (11), we have

3 572 (T \?
~ = 1+ — | —
(€)= 5er |1+ 35 (Tp) ]
4
where higher order terms in (TLF) is ignored.

@ Note that in the limit T — 0, the average energy (¢) is %e,:.

Cy from Sommerfeld model is just what we would wish for

@ The result is just what we would wish to obtain in the
begining, that indeed the electronic constribution to the heat
capacity to metal is much suppressed than what was predicted
by the classical equipartition theorem.

@ In classical theory, the equipartition law (incorrectly) predicts
that each electron contributes %k to the heat capacity, which
is not observed in experiment.

® The Sommerfeld model predicts that the electron contribution
to the specific heat capacity of metal is %ZT—TFk & %k, a result
that is consistent with the Debye model on the heat capacity
of metal.

Deriving Cy from (c)

@ Hence, the heat capacity of the metal due to the degenerate
Fermi electron gas is

o - (29
aT N,V
2 2
5 9T 12 \ TFr

_ mNk (T
2 Tr) '

Phonon vs electronic contribution to Cy in high and low

temperatures

@ In most ranges of temperature the heat capacity is dominated
by phonon’s contribution over electron’s.

@ At low temperature, i.e. T < ©p, phonon's contribution is
o T3 whereas electron’s is < T.

@ Hence, below certain temperature threshold, electron’s
contribution will dominate over phonon's, and the heat
capacity's temperature dependence displays a o< T behavior
rahter than oc T3, which is observed experimentally.

Printed with FinePrint - purchase at www.fineprint.com




Recaping Drude’s model Bingo! Sommerfeld model’s prediction for the ratio é

@ In Sommerfeld model, ¢ = ”72’}—T V= VE.
F
In the Drude model,
@ Hence
@ Thermal conductivity is given by Eq (5), K = Lnv2cr. —
v iz ven by B (9 e K—mV2C—“2k2T—244x10—8W0/K2T
@ Electrical conductivity is given by Eq (4), 0 = %L, g 3e2  3e2 @~ '
; — 3k
© Heat capacity per eIectron_,2 =" @ The coefficient to the temperature in the ratio is
@ Average kinetic energy, T~ = %
i K _ mv?c _ 3k? 2k 3k T = 2r 2
@ The ratlo,E:W:@T. 37/? _TN
@ Next, we would like to see how Sommerfeld model calculates

these quantities. times larger that that in Drude’'s model.

@ As such, the Sommerfeld model provides a much statisfying
quantitative explanation to the Wiedemann-Franz law.
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