ZCA 207 Statistical Mechanics
 Test II
 Tuesday, 30 Mar 10, $4.00 \mathrm{pm}-5.00 \mathrm{pm}$
 Venue : SK1

This test contains only ONE question printed on two pages. Answer all parts.

Name:

Matrix No.

1. By definition, the 1-particle partition function for a given particle labelled is i is $z_{i}=\sum_{\text {all microstates }} e^{-\beta \epsilon(n)}$, where $\beta=\frac{1}{k T}$ is the inverse temperature parameter, $\epsilon(n)$ is the energy correspond to a microstate n.
(a) Write down the energy levels of an one-dimensional harmonic oscillator oscillating at an intrinsic angular frequency ω. You must define clearly the quantity you write down.
[10 marks]
(b) Referring to your answer in (1a), what is the 1-particle partition function of a quantum oscillator? Simplify your expression by summing over all the energy states n.
[20 marks]
(c) Based on the partition function of the 1-particle partition function as obtained in (1b), deduce the degree of excitation, $\langle n\rangle$ (the Bose-Einstein distribution) for a given quantum oscillator.
[20 marks]
(d) Deduce the average energy of a single oscillator, $\langle\epsilon\rangle$.
(e) From (1d), deduce the heat capacity of a single harmonic oscillator as a function of temperature T.
[20 marks]
(f) Deduce the limit of the result in (1e) when $k T \gg \hbar \omega$.
[10 marks]

Solutions

1. (a) The energy levels of a QHO is given by

$$
\epsilon(n)=\epsilon_{n}=\left(\frac{1}{2}+n\right) \hbar \omega
$$

where $n=0,1,2, \cdots$. The quantum number n characterises the degree of excitation of the QHO.
(b) see page 246 Amit, Eq.(3.2.7)

$$
z=\sum_{n=0}^{n=\infty} e^{-\beta \epsilon_{n}}=\sum_{n=0}^{n=\infty} e^{-\beta\left(\frac{1}{2}+n\right) \hbar \omega}=e^{-\beta \frac{\hbar \omega}{2}} \sum_{n=0}^{n=\infty} \exp (-\beta n \hbar \omega)=\frac{e^{-\beta \frac{\hbar \omega}{2}}}{1-e^{-\beta \hbar \omega}}
$$

(c) see page 302, Amit.

$$
\langle n\rangle=z^{-1} \sum_{n=0}^{n=\infty} n e^{-\beta\left(\frac{1}{2}+n \hbar \omega\right)}=\frac{\sum_{n=0}^{n=\infty} n e^{-\beta \hbar \omega}}{\sum_{n=0}^{n=\infty} e^{-\beta \hbar \omega}}=-\frac{d}{d x} \ln \left(\frac{1}{1-e^{-\beta \hbar \omega}}\right)=\frac{e^{-\beta \hbar \omega}}{1-e^{-\beta \hbar \omega}}=\frac{1}{e^{\beta \hbar \omega}-1} .
$$

(d) see page 302, Amit.

$$
\langle\epsilon\rangle=-\frac{\partial}{\partial \beta} \ln z=-\frac{\partial}{\partial \beta} \ln \frac{e^{-\beta \hbar \omega / 2}}{1-e^{-\beta \hbar \omega / 2}}=-\frac{\partial}{\partial \beta}\left[-\beta \hbar \omega / 2-\ln \left(1-e^{-\beta \hbar \omega / 2}\right)\right]=\frac{\hbar \omega}{2}+\frac{\hbar \omega}{e^{\hbar \omega / k T}-1}
$$

(e)

$$
\begin{equation*}
c=\frac{\partial\langle\epsilon\rangle}{\partial T}=\frac{\partial}{\partial T}\left(\frac{\hbar \omega}{2}+\frac{\hbar \omega}{e^{\hbar \omega / k T-1}}\right)=k\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\frac{\hbar \omega}{k T}}}{\left(e^{\frac{\hbar \omega}{k T}}-1\right)^{2}} \tag{1}
\end{equation*}
$$

(f) Let $x=\beta \hbar \omega$. In the high temperature limit, $x \rightarrow 0, e^{\beta \hbar \omega}=e^{x} \approx 1+x$, hence $c \approx k x^{2} \frac{(1+x)}{[(1-x)-1]^{2}}=$ $k(1+x)=k$.

