Lecture Notes
Vector Analysis
ZCT 211

Lecturer: Yoon Tiem Leong



Triple cross product

3. Ax (BxC) # (AxB)xC

4. Ax (BxC)
(AXB) xC

(A-C)B - (A-B)C
(A-C)B - (B-C)A

the associative law for vector cross products is not
valid for all vectors A, B, C.



i

47. Prove: (a) AX(BxC) = B(A'C)- C(A*B)

(b) (AxXxB)xC = B(A*C) - A(B*(C).

 LHS of (a) * RHS of (a)
i i K * Expand fully the

(4,4 + Ao +Ask) X | By B, Bg expressions
Ci1 Gz Cg B(A-C) - C(A*B)

The compare component by components on both sides, and the results follow.
The trick is: There is no trick involved. Just expand both sides and compare.



The proof of (b)

know [ Ax (BxC) = B(A*C)- C(A*B)
Show this =(b) (AXB)xXC = B(A'C) - A(B* (),

(b) can be trivially proofed based on the (a)
*Simply swap the order of (A x B) with C in (a)
(hence introducing a minus sign) and then
rename B -> A, C -> B, A->C In the resultant
formula: AXB)XC=

-AX|BXC)=-B(A-C+C[A-B,

B->A,C->B, A->C

-CX|AXB|=-A|C-BJ+B|C-A|
|AXBJxC=B[A-C)-A(B-C



Vector Differentiation

space curve

r{e) = =x(w)i + y(w)j + z(u)k.

parametric equations

x =x(u), y=y(u), z=

lim Qr _ dr

) A‘u-‘-‘o Au du

- - -

a vector in the direction of

H - LA

the tangent to the space curve at (x,y, 2) and is giv-
en by

gi —d_xi +4 EI_Z' + El_z.k
du du du.l du

If u=t, then dr/dt=v



DIFFERENTIATION FORMULAS.

If A, B and C are differentiable vector functions of a scalar u, and
¢ is a differentiable scalar function of u, then

1, Ed;(A+B) = %4-‘;—3

2. E%(A-B) - A-% + %-B
3. %(AXB) = A)-:%z-:i + %xB
. La) = 222y

] e —— O —



5. -i(A-BxC) = A«]_’.xég + A~deC +
du du du 3

e e s Ans e r——
4 - dC dB

6. — {AxBxC)} = AX(Bxdﬁujf Ax (5

]
e —— e = et P FE—

Can you derive these equations using
differentiation by parts?



Vector as a function of scalar or a
set of scalar

A=Aji+A j+Ak

A=A, (u) A=A(u)
A.:lA.<Xl y,z) A=A(x,y,z
A A=A(x,y,z,t)

Ai:Ai<Xﬁy3Z’t)



Topics

1. Calculations involving algebra or the taking the

derivations of vectors
2. Application on kinematics (involving r, v, a)
3. Application on dynamics / rotational dynamics,

F = ma etc.
4. Differential geometry

A=AI+A j+A;]
A=A (u)
AZA(x,y,z)
A:A(x,y,z,t)



Partial derivative of a function of
multiple variable

0 L. f(x+Ax,y,Z)
8Xf(xﬂy9z)_hmAx->O (AX)

. X,yv+Avy,z
%f(xsy:z)zllmAx90 f( {Ay)y )




Example of partial derivative

flx,y,z)=x"y'z"



PARTIAL DERIVATIVES OF VECTORS

If A is a vector depending on more than one scalar variable,
say x,y,z for example, then we write A = A(x, v, 2).

JA . A@xtAx, v,z) — A(x,y,2)
= = lim -

ax Ax—Q tﬁx

JA . A(x, y +Qy, z) — A(x,y,2)
— = lim '

ay Ay -0 &y

oA . Ax,y, z+0Az) — A(x,y,2)
=— = lim

0z Az—( Az

We shall assume all vectors encountered are differentiable to any order n needed

An example would be A(x,y,z) as vector potential at fixed time.



Differential of a function of single

and multi-variables
Recall your ZCA 110:

_df (x) For single variable
df (x)= dx dx function
df(x,y,z):af(g’xy’z)dx+6f(2’yy’z> dy  For multiple

of(x.y.z) variables function
+ Y dz

0z




DIFFERENTIALS OF YECTORS

I If A=A44+A4,j+Ak, then dA = dAi + dA,i+ dAk
2. d(A-B) = A-dB + dA-B

3. d(AxB) = AxdB + dAxB

- _ L ———————— - '_
~ _ _ JA JA JA
4. If A= A(x,y,z), then dA = gdx + @dy + 5;6[2 , etc,

—

o & p—



Higher derivatives can be defined as in the calculus. Thus, for example,

°A _ 9 ,9A °A _ 9 ,9A 9°A _ 9 ,0A

3x2  3x'3x)’ 3y%  3y'dy)t 32 T 3:'3:

O°A  _ 2 oA, 3°A 2 2A, A _ a(a?A)
Ox Oy dx Jy '’ Jdy Ox dy Ox '~ Ox 0z° dx 0z2

P, OB JA

| 1. 'a—x(A-B) = A'§; + 5;-]3
\
\ 9 O _ A, OB _ 2A
5,52. B—x(AXB) Axax + axxB
5
Cl _ 3.3 _ 9 (0B 2A
b5 ed B = gl am = giAgs S B
2 2
oB JA OB JA OB 0°A
l Ayor Ty % Ty T o B e



2. Given R = sinti + costj + tk, find

IR

dR d R | dR |
dt '’ dt

@57, ) 53, () (d) |

dR d d d
—_ = = i + — Y] + —(@Yk = sti—sintj + k
(@) - p (sint)i gy (cost)) dt() cost i j
d°R d dR d o d o d _
(5) d_tg = d_t(I) = E;(cost)l - dt(sm t)) + dt(l)k = —8inti — costj

() 1?' = V(cosn)? + (—sinn)? + (1)2 = V2
L

2 — - -
(d) l%l = 1/(-—sint)9+ (—cost)® = 1



6. (a) Find the unit tangent vector to any point on the curve
=t?+1, y =4t-3, z = 2t°— 6t

(a) A tangent vector to the curve at any point is

dr d 2 . . 2
- = = — + —_
— - {(2+1)i + (46—3)i + (2t2—60)k]
= 2ti + 4 + (4t—86)k
The magnitude of the vector is l-j—‘;-l = V()2 + (8)2+ (4t —6)2

2ti + 4 + (4t—6)k
V(26 + (42 + (42— 6)

unit tangent vectoris T =




7. If A and B are differentiable functions of a scalar u, prove:

(a) i(A-B) _ A_dB dA
du

iz | du

B

—é (A' B) - i(AlBi + AQBQ + ASBS)

du
dB dB dB dA dA, dA
= (4, 221 + 272 =38y + (1B, + 2 + 223
oy YR T T Bt R TR
-~ A-ti—B-— + dA-B
du du

Comment: solve by expanding A and B into their component form

A and B are functions of variable u, A= A (u), B= B(u)



8. If A=521i +tj —t°k and B =sinti — cosij,

find (a) g—t(A- B),

You can solve these questions by either (1) carry out the vector
cross or dot product first, then take the derivative next, or (2)
take the derivative of the bi-vectors first, then reduce the
resultant vector derivatives.

A-B = 5t°sint — t cost.

d
—_— . — « — 4
dt(A B) A

) 7 Method 1
T (A-B) = & (5¢°sint — t cost)
= (5t°—1)cos ¢t + 11¢sint
dB dA Method 2

‘B
dt dt

(5¢°i + tj] — t°k) (costi + sintj) + (10ti + §j — 3¢°k)*(sinti — cost i)

(5t°— 1) cos¢ + 11t sint



8. If A=521i +tj —t°k and B =sinti — cosij,

d dB dA
— - — 4 ==
(b) dt(Ax B) A X 7 T X B
i j k | i i k
= 5t t —3| + 10¢ 1 - 312
COS t sint 0 sint —COSst¢ 0

= (t®sint — 3t%>cost)i — (%cost + 3t2sint)j + (5¢2sint — sint — 11¢ cost)k

Visualise the curve of C = ii—(Ax B)
using Mathematica



12. Uniform circular motion

A particle moves so that its position vector is given by

I = coswtl + sinwtj where w is a con-
stant. Show that (a) the velocity v of the particle is perpendicular

tor, (b) the acceleration a is
directed toward the origin and has magnitude proportional to

the distance fromthe origin, (¢) rxv = a constant vector.

dr . . :
(@) v = > = —wsinwti + w coswt j

dt
r-v = lcoswti + sinwtj) *[—w sinwt i + w coswt j]
2 dv
(b = — = —w?coswti — w?sinwt j
) dtQ dt

= —w? [cos wti + sinanj] = —wgr

The acceleration, directed toward the center of the circle, centripetal Mci{..mim



() rxv = [coswe i + sinwt j] x [—w sinwt i + w cos wt .i]

i j k
COS Wi sin wt 0

| —w sinwt w coswt 0

= w(cos?w: + sinwt)k = wk, a constant vector.

This Is the vector of angular momentum/m,
fixed in direction and magnitude.

In other words, the angular speed Is constant
and the circular object is not making any
angular acceleration.

Visualise uniform circular motion using Mathematica



14. Show that A. %A - 494

" dt dt
2 d d o dA
A-A = A", S (A-A) = (4)= 24 =
a _ aA.9A L dA , _ , d4
dr(A Ay = A dt | di A= 2Ad¢
dA _ , dA
A = A4



16. If P(x,y,2) = xy?z and A = xzi—2xy?j +yz?Kk,

aﬁ
find — (PA)
Ox” 2z P
PA = (xy22)(xzi— xy2j + y2z2 k)
= x29222§ — x2y%2§ + xy%23k

-g(d)A) = —a'(nyQzQ i — x%y%z §j +xy32° k)
z

z
= 2242z 4§ — x24%j + 3Bxy3z2k
el

X

= 4xy?zi — 2xy*j + 3yS29Kk

aQ
5.3, PA)

(2x%y%z i — x29* j + 3xy2 22 k)



3

0
0x° 0z

(PA) = —2—3—(495;(22 i — 2xy*j + 39222 k)
x

= 4y%zi — 29%j



28.

If r is the position vector of a particle of mass m relative

to point O and F is the external force

on the particle, then rxF =M is the torque or moment of F about O.
Show that M =dH/dt, where
H=rxmv and v is the velocity of the particle.

d
M = rxF = rxdt(mv)
d 4 ar
But dt(rxmv) = rxdt(mv) + dtxmv
. a
rx—{mv) + vxmv
d
= rxdt(mv) + 0

M o= o (rxmv) = — M is called the angular momentum.



Differential geometry

C is a space curve defined by the function r(u),



Unit tangent vector at a point P on a
curve C

B % is a unit tangent vector to C

the arc length s measured from some fixed

point on C lim ., |dr|=ds
curve C

arc length s

A fixed point



ds
The rate at which T changes with respect to the
arc length s measures the curvature of C

. . dT .
Te direction of g5 ISN, where

N IS normal to the curve at
that point. N Is also
perpendicular to T




Principle normal

We call the unit vector N (which is defined as a

unit vector in the direction as that of 4T )
ds
principal normal

dT
The magnitude of g atthe point on the

4T
ds

curve is denoted as =K

Hence, we write

dT

3‘;=KN

k is called the curvature of C at the specified point

0 = 1/k the radius of curvature



Binormal to the curve B

T,N,B form a localized right-handed rectangular co-
ordinate system at any specified point of C



The coordinate system {T, N, B} Is
called trihedral / triad at the point

As s changes, the triad
{T, N, B} changes along the curve C
— moving trihedral



Frenet-Serret formulas

iT IN IB
E;_KN’ = 7B — kT, o

oy = — TN

T is a scalar called the torsion

o = 1/7 is called the radius of torsion



To characterise the geometry of a
curve in 3D space

* TWO quantities are required to describe the
geometry of a 3D curve

K curvalure

T torsion
B I
ds ds

It tells you how B varies with s It tells you how T varies with s



dT

18. Prove the Frenet-Serret formulas (a) To = kN
T.-T=1
dT
T. =0
ds
o T is perpendicular to T
s dT dT
If N is a unit vector in _t_he difection 7s then Js = KN



18. Prove the Frenet-Serret formulas (5) dB _ — TN

ds

To show this, need to prove the following:

dB

d B
— 1T
ds

Since {T, N, B} forms a right-handed
system, a vector which is simultaneously
perpendicular to both B and T necessarily
means it is pointing in the N direction.



First, show %LB

I T s ds ds

Independently, d(BB)_d<B2)—2Bd—B
ds  ds ds

d B d B
2B.E_ZBE—O

dB_d|B| dB
b =—_ =0 s D
ecause s s - ds




dB
Now show 7

By definition, B=T X N

d B dT dN
a5~ gg XN+ (TX=—5=)

:(KNXN)+(T><dd—JSV)

54N
ds

1T



dB

d_B—TXd_N
ds ds

d B
»—01T
ds
The above relation can be deduced immediately
(from the properties of cross product). Can you

see how?

If you want to prove it explicitly, this is how

d B d N dN
Tg—T(TXI)—(TXT)I—O



We have shown that dB/ds Is simultaneously
perpendicular to both B and T. This means it is
pointing in the N direction, since {T, N, B}
forms a right-handed system.

iB
ds

We ;35.11 B the binormal, T the torsion

TN



18. Prove the Frenet-Serret formulas (¢) % = T7B~«T

Don't simply prove it using brute force.

Prove It using the proof you have got In
(a) and (b), namely,

(a) %I = kN () B - /N
S

and use the following “ingredients”

{T, N, B} forms a right-handed system

d L. dB, dA
3. du(AXB) = Axdu + duxB



18. Prove the Frenet-Serret formulas (¢) % = T7B~«T

N=BXT
aN _ aT , dB
ds Bxds ¥ ds T

= BXKN — TNXT

= —KT +7TB = 7B — KT.



19. Sketch the space curve x =3 cost¢, y =3 sint, z =4t and find
(a) the unit tangent T, (b) the principal normal N, curvature «
and radius of curvature o, (¢) the binormal B, forsion 7 and
radius of torsion o .




(a) The position vector for any point on the curve is

r = 3costi + 3sintj + 4tk
% = —3sinti + 3costj + 4Kk
ds _ dr) _ Jdrdr
dt ' dt dt dt

= 1/(--3 sint)2 + (3 cost)2 + 4° = 5
T -= Q _ dr/dt
ds ds /dt

I

C . 3 : 4
—_ - + = + =
5sm::1 5cost;| 5k



(b) %I = —--3-costi —_ §-sintj
A

5 5
dT dT /dt 3 : 3 . .
—— — = — —— _— == L
T 1s /dt o5 COoSt 1 o5 Sint
Since ‘E-T—‘ = KN
ds
dT _ _ >
‘3_;_ x| N K as K20
~ dT 3 1 25
K = !‘3‘; Y- and PO =5 = q

= —-costi - sintj




c) B = TXN
i j k
= — -g- sint % CcoSt¢ %
— COSt — sint 0

4 . . . 3
5 S11 COS1i ) 5



Chapter 4

Gradient, divergence and curl



THE VECTOR DIFFERENTIAL OPERATOR DEL,

V53-1+32_j+-3_k51.§.+j_§_+ki

Ox oy z X oy oz

The operator V is also known as nabla

- 4
This vector operator possesses properties
analogous to those of ordinary vectors.



Vo

Let ¢ (x,y, 2)
defines a differentiable scalar field

V¢ or grad ¢, is defined by

Vo = (2i+25+ 2k
3, . 9%, , 3
R PR vl



Del operator converts a scalar field
Into a vector field

¢’ (x, Y, 2 )defines a differentiable scalar field

- W

V¢ defines a vector field



Directive unit vector

The component of Vb in the direction of
a ém‘t vector a }s given byLVc;b -EQ

di rectional derivative of ¢ in the direction a.
qu -a IS

the rate of change of @ at (%, v, z)_iH

{hedirection a




For example, a=I
_09(x,y,z). 00(x,y,2) .
V(I)(X’yaz)_ 8X 1+ ay ]
+a¢(X,y,Z)k
0y

(V )iz od(x,y,z) Rate of change of ¢
Oli=—"71 at (x,y,z) along the
direction I



THE DIVERGENCE

Vix,y,2) = Vi+Fj+ Kk

the divergence of V, written V«V or div V,

V.v = (-a%i + ;(%j + %k).(léi + Iéj + I:/ak)
_ o, , 3V, . 9V

Ox Oy oz

o . A I
A scalar /V \{ 7(" \4 V‘\ opsecrigr

function



THE CURL
V(x, y, z)a differentiable vector field

the curl or rotation of V

9 9 . 9 . .
s = — S e <+ +
Vxv (51 + 3y * 5, KDY x (i + K3 + Yk
| i § K
_ |l =2 3
Ox Oy Oz
v, v v,
W, OV 0, Mk
= (3, — 37 ) (32 — ox )



1

2
3
4.
)

FORMULAS INVOLVING V

. Vp+y) = Vo + Vy

. V-(A+B) = V-A +V-B

. Vx(A+B) = VxA + VxB
V-(pA) = (Vg)-A + ¢ (V-A)

. Vx (@A) = (VdyxA + d(Vx A)



FORMULAS INVOLVING V

8. V(A-B) =

9. V- (Vo) =

. V-(AxB) = B-(VxA) — A-(VxB)
. VxAxB) = (B-V)A — B(V-A) — (A-V)B + A(V:B)

B-V)A + (A-V)B + Bx(VxA) + Ax(VxB)

Ve

where V-

10. V x (Vo)

11. V-(VxA) = 0.

H

0.

o, VP, T
axQ ayQ aZQ

2 2 2
:6%5 + éa;é' + :a%—g- is called the Laplacian

The curl of the gradient of ¢ is zero.

The divergence of the curl of A is zero.

12. Vx(VxA) = VV-A) — V A



2. Prove (a) V(F+G) = VF+VG, () V(FGY= FVG+G VF

where F and G are differentiable sca-
lar functions of x,y and z

This Is just an algebraic exercise.
But still you got to make sure you
know how to do it despite the
straightforwardness.



2. Prove (a) V(F+G) = VF+VG, () VIFGY= FVG+G VF

where F and G are differentiable sca-
lar functions of x,y and z

fe. 0., 9

(@) V(F+G) = (-a—x-i + 5; i 3, k) (F+G)
= ai(F+G) + j%(ﬁc) + k%(F+G)
- 30 o _3_ fe. Pe. Po) a
(i3, Tig, th I v a5 iy +ky)e
- 30 _B_ fe. Pe. 9, k-2
(13, Tigy, ThIF r Uy iy tke



2. Prove (a) V(F+G) = VF+VG, () VIFGY= FVG+G VF

where F and G are differentiable sca-
lar functions of x,y and z

W VES) = L1+ i L 0ES
= %(FC)i + %(Fc)j + —.C;Q;(FG)I;
= (F%f+0%—f)i + (F%f +G%—f)j + (F%;G +G%—f)k
F(%—fi+%—fj+§—fk) + G(%fi+%—fj+§-fk)

= FVG + GVF



3. Find Vo if (a) ¢ =1n|r |

=xi +yj + zk
] = Va2 +y2+ 22
@ = 1n |r| = 3 In(x2+y° +72°)
qu = %Vln(x2+y2+z2)

¥4

Y

: 2y +

N
N}~
~—
[~ I

=
NS
+
<
N |
+
N
N
el

xi +yj + zk r
x2+y2+ 22 r2

|

22

x2 +y2+22

)



3. Find Vo if (b) ¢ = + .

V = v -1; = V 1 ‘)
d) (T) (\/x2+*y2+32
= V{@? +y9+22)'1/b}

e

= i—a—(x2+y2+22)—1/2 + j-—a—(x2+y2+22)—1/2 + k= (x2+y2+22)"

x a)’ Oz

-.3/22x} + j {_%(x2+y2+22)"3/22y} + k{—%(x2+y2+22)‘3/22z}

1/2

= i {—-%(x2+y2 +22)

—xi—yJj—2zKk
(x2+y2+32) 872

- L
3
-



Can you recognize these?

b=
Vp =~

r

Of course, you have already seen them before
(apart from a constant) in at least two instances



Can you recognize these?

b= 7
Vo = s =5

¢(r): spherically symmetric gravitational/Coulomb
potential

Vo : gravitational field / Coulomb field



,"53} Show that V& is a vector perpendicular
to the surface ¢ (x,y,z) = ¢ where ¢ is a constant.

-

I Is perpendicular to dr at

P on the s
0 Need to show V ¢is
y perpendicular to dr

X




Show V¢ Is perpendicular to dr

Vo .dr =

C,'b d),] + ad)k) (dxi + dyj + dzKk)
w9 T

ad)dx + qba»ly + c’?bal,z
O dy 3z
= dfb
= 0 since P(x,y,2) =c¢
Vq‘b is perpendicular to dr and therefore to the surface.



6. Find a unit normal to the surface x°y + 2xz = 4

at the point (2,—2,3).

Use the previous result. Ve . dr = 0

V& is perpendicular to the surface

Find V¢ atP(2,-2,3).ltisa
vector normal to the surface at P.

The normal unit vector at P

can then be obtained via qu/ Vo



V(ny + 2x2)
= —2i + 4j + 4k at the point (2,—2,3)

a unit normal to the surface =

— ] 2
M_=-——1-i+gj+—k

V(=2 +(4) +(4Y 3 3 3

Is there any other unit normal?



12. F'ind the angle between the surfaces

x°+y2+22=9 and z =x°+y?—3
at the point (2,—1,2).

See mathematica file chap4.nb for the looks of
these surfaces

The angle between the surfaces at the point is the
angle between the normals to the surfaces at the

point.
quzv Vo,

Simply: find the angle between these two
vectors






at (2,—1, 2)
Vb, = V2 +y2+22) = 4i — 2j + 4k

Vo,
(V1) (Vby) = |V¢’1l qub*zl cos O

Vix2+y%2—2) = 4i — 2j — Kk

cos & = 0.5819

& = arc cos 0.5819 = 54°25'

See mathematica code, Ch4.nb, to visualise these
surfaces and the the normals



15. If A = x%zi — 2°2°j + xy%zk,
find V- A (or div A) at the point (1,—1,1).

his Is a simply a simple algebraic example to
show how divergence work on a vector field.

V-A = (“E"i+“la—j+‘E—k)-(x22i—2ysz?j+xy22k)
axl T,

J

A

fe fe

= (xQz) + —(— 2y322) + (xygz)
. Sy

= Wz — By2? +xy° = AL — 6(=1°(1)° + (1)(=1¥ = -3



16. (b) Show that V-V = Vb
| o | . 2
= 0 L, 0 L, 9

ox°  9y°  09z°

where V°

V-ch - (-?—i +—-a—j + _'c_ﬁ_k)‘ (?j-)-i + E@j + _a_?"ik)
x Oy oz 'ox
0 o d Jo d O

%R T %) T RS
_ 2o, e, ¢
S ke Oy? Ja2

2 2 2

= ('—‘a—--l-‘——a——'l'—?-—)(b = V2¢

x° Oy? 0z2%



17. Prove that V (1) =

2 2
VQ 1 82 0 0 1
(7) = (_§+'é“‘"+:5—2)(——* )
X )4 < 2 42452
fe, 1 _ 2..2, 2=1/2 _ 2. o, o=3/
3. /xé+y2+22) _ax(x +y +22) = x(x“+y<+2%)
e 1 - 2 3/2
axg(/x2+y2+22) ) x [ ¥ ry ) ]
%2 — 42 — 32




Similarly

52 ! 2y2 — 22 xQ

(- )
ayQ I/x +y +z (x +y 4z )5/2

82 E 222 — %2 — 52

— ) = —

(=
922 1/x o2 422 (x2+y2 + 22 /2

Then by addition,
o v 2

a 0 0 1

= +-—-- +——)(—-‘— =) = 0.

ai\? 2% VXx +y2+z




2
V' ¢ =0 is called Laplace’s equation.

® = 1/r is a solution of this equation.



Gauss's law In Iintegral form
(Electrostatics)

E-dA=¢

f Gaussian surface

Gauss law for electrostatic field

For Gaussian surface enclosing zero net charge,
Gauss law in the integral form reduce to

E-dA=0

f Gaussian surface



Gauss's law In differential form
E-dA=0

f Gaussian surface

You will learn in later chapter that Gauss law can
be cast into an equivalent form

E-dA=0 > VE:()

f Gaussian surface

On the other hand, electric field E and the electric
potential ® are related via

E=-V ¢



Derivation of Laplace equation
V: =0

* Taking the divergence of the electric field, we
can express the Gauss law In differential form
In terms of electric potential

E=—V ¢
i Taking divergence

V-E=V(-V¢)
V-E=—V°$=0
because V-E =0



Solution to the Laplace equation

2
V' ¢ =0 is called Laplace’s equation.

Laplace equation Is just Gauss law stated in the
form of the Laplacian of the electric potential.
So, instead of dealing with electric field on the
Gaussian surface, you just simply need to solve
the Laplace equation for the potential field.



Example: Application of divergence In
fluid dynamics

The flow of fluid i1s characterised by the velocity vector
field, v(x,y,2)

Calculate the loss In the volume element per unit time

Zz




x component of velocity v at P

x component of v at center of face AFED

x component of v at center of face GHCB




volume of fluid crossing AFED per unit time (¥4 —

volume of fluid crossing GHCB per unit time (v, +



L.oss 1n volume per unit time in x direction

= (2) - (1) = _a_"l Ax Ny Nz

X



in volume per unit time in y direction

in volume per unit time in z direction




total loss in volume per unit volume per unit time

(—tﬁ + %yf + %L;G)Axﬂyﬁz ‘

Vv = *V
Ax Dy A




Continuity equation for
iIncompressible fluid

*Incompressible fluid: fluid that Is
neither created nor destroyed at any
point.

Hence no 'volume loss' will occur to
an incompressible fluid.

Vev =0



Solenoidal vector

Vev =0

A vector V is solenoidal if its divergence is zero



24. If A = x°yi — 2xzj + 2yzk, find curl curl A.

curl curl A = Vx (VxA)

i j k
_ K] 9 9
Ve | & 3y o
ny — 2x 2z 2yz

= Vx [(2x+22)i — (x2+22)k]



_ 9 9 9
o Oy oz
2x + 2z 0 —x — 22
= (2x +2)]

A = xyi — 2xzj + 2yzk
Vx(Vx Ay = (2x+2))



26. Evaluate V-(Axr) if VxA =0

Hint: 1. Cast V:-(Axr) into a form that
explicitly contains Vxa

2.Use: V-(AxB) = B-(VxA) — A-(VxB)

V- (Axr)=r(VxA)-A-(Vxr)

Note:
A Is a general vector field;
I IS position vector.



The curl of a position vector Is zero
VXr=0

a@y a@z
—j[(a—X)Z <82)X]+
K[(-2-) y—(-2-)x]=0




V- (Axr)=r(VxA)-A-(V xr)
=r-(VxA)

if VxA=0

V. (A x r) reduces to zero.



27. Prove: (a) Vx(Vd) =0 (curl grad ¢ =0)

Note: @ a general scalar field



ax By Bz
i j k
[>. d d

3 3, _ 2 30, 3 3, 3 %,

. 2 ¢, o _To. T _ I¢
(522 ~ azay S dx  omo:)! Ox 9y Oy Ox




21. Prove:

(b) V- (VxA) =0 (div curl A =0)

Note: A a general vector field






V- (VxA) =0
Where will you see this equation?
When you learn magnetostatics.

Magnetic field B Is express In
terms of vector potential via

B=V XA
The fact that there Is no magnetic

monopole Is represented by the
statement \/.B=0

Hence the equation V-(VxA) =0
follows.



30. If v=wxr, prove @ = zcurl v
where @ is a constant vector.

curlv = Vxv = Vx (wxr)
i | k

= VX |lw, wo, wg

x y z

= Vx [(oz — way)i + (Wax —wy2)j + (@1y —wox)k]



= V x [(wzz — Way)i + (Wsx —wq2)j + (wly—ng)k]

i j k
_ 9 9 9
ax ay az

WozZ — Waqy Wax — Wq2 WYy — Wox

— Z(Cf)ii + O.)QJ + O.)ak) = 2@



The curl of a vector field v

* This problem indicates that the curl of a vector
field has something to do with rotational
properties of the field.

o If the field v Is that due to a moving fluid, for
example, then a paddle wheel placed at various
points in the field would tend to rotate in regions
where curl v # 0 (vortex field)

 |f curl v =0 In the region there would be no
rotation and the field v is then called
Irrotational.



The curl of a vector field v

e curl v#0: vis a vortex field (it 'rotates’)

o curl v=0: vis an irrotational field (it does not
'rotate’)



29. Prove V x (Vx A) = _VQA + V(V'A)

THE VECTOR DIFFERENTIAL OPERATOR DEL
Veld,,:,0

— i+ -3 + —k

Ox Oy 0z

possesses properties analogous to those of ordinary vectors.

So that you can prove 29 using the vector
triple cross product result

Ax (BxC) = B(A-C) — (A-B)C



29. Prove V x (Vx A) = _VQA + V(V'A)
AXx (BXC) = B(A-C) — (A-B)C

Placing A=B=V and C =F,

Vx (VxFpy = V(V.Py — (VWhF = V(V.F) — VF



Vx(VxA) = —VQA + V(V-A)

Where would you encounter the
above identity?

When you learn Maxwell equations
In electrodynamics.



Maxwell’s equations of electromagnetic theory.,

oH

31. If V.-E=0, VH=0, VXE = — S

VxH = %E-, show that E and H satisfy
t

2
’a"’a _ o E
VQH = 52 and VQE 5z




You start from the identity proven in the previous
slide and apply it on the E field:

Vx(VxA = —VQA + V(V-A)

A - E

\J
Vx (VxE) = —VQE + V(V-E) = —VQE
Eq. (1)

because V:'E =0



Independently,
Vx(VxE) = Vx (-‘@'ﬂ)

ot
- _ 9.y . _9 CE
) Bt( < Bt( Ot
Combining Eqg. (1) and Eq. (2),
32
Then VQE A

Ot

) =

2
_9E
oOt?
Eqg. (2)



Similarly,

Vx(Vxa) = _V'H + ViV-n) = _V'H
Vx (VxH) = Vx (g-E—) = —-@—(VxE)
Ot Ot
_ 3.3 _ _Un
ot Ot ot?
BQH

Then VQH =

ot”



—_— = — - - — — e e e ——

2 2 2 2
—a——‘f + _a_ﬁ + Ou = E—E is called the wave equation
Ox? ayQ 0z° ot? .

The electric and magnetic fields, E and H,
propagates according to the wave equation —

prediction of electromagnetic wave propagating in
free space.

In other words, light Is just electromagnetic wave.



Chapter 5

Vector integration



ORDINARY INTEGRALS OF VECTORS.

Let R(u) = Ry(u)i + Ro(u)j + Ra(u)k be a vector depending
on a single scalar variable u, where R;(u), Ro(u), Ra(u) are

supposed continuous in a specified interval. Then

fR(u)du = ifRi(u)du + ijg(u)du + kfRs(u)du

is called an indefinite integral of R(u).



If there exists a vector S(u) such that R(u) = ﬁ;(S(u)), then

fR(u)du = fj—u(S(u)) du = S(u) + ¢

where ¢ is an arbitrary constant vector independent of u.



definite integral

b b J
f Ru)du = f E_J(S(u)) du
a

a

b
= s@) +cl = S®) - s)
a



1. If R(u) = (u~uvdi + 26°j — 3k,
2
find (a) fR(u) du and (b)f R(u) du .
1

(a) fR(u) du = j [(H—u2)i + 2u3:| — BI{] du
= if(u-ug)du +jf2u3du +l{f—-3du
3 us

2
= i(%‘"‘%“"ﬂl) + 1(2 + c) + Kk(—3u tcg)

2 3 4

= (%_%—)i + %j — 3uk + c3i + c2) * c3k
u” u” ut

= (-5'—'9—)1 + _Z_j - 3uk + ¢



— — —— — + — i — +
, R(w)du (5 )i o ] 3u c

3
= [(222 ?:)i + E;j ~ 3(2k +c¢] —
[« f 133)1 + -lg-j ~ 3(1)k + c]
= 24 15j -~ 3k

6 2



Another Method.

2 2 2 2
L R(u)du = ifl (u—uQ)du + jj.l wldy + lif1 - 3 du

A I‘2 + k(—3u) |2
21 1



2. The acceleration of a particle at any time ¢t20 is given by

a = g—:’— = 12cos2ti — 8sin2tj + 16tk

If the velocity v and displacement r are zero at ¢ =0, find v and r at any time.

Integrating,

vV = lleCOStht + jf—BSiHtht + kflﬁtdt

= 6sin2ti + 4cos2tj + 8£k + ¢
Putting v=0 when ¢ =0,

wefind 0 = 0i +4j + Ok + ¢4 and ¢, = —4]j.



v =§‘f = 6sin2¢ti + (4cos2t—4)j + 8t° k.
Integrating,
r = ifﬁsinztdt + jf(4coszt—4)dt t kf 82 dt
= —3cos2ti + (2sin2t—4¢t)j + -g—tsk + ¢

Putting r=0 when ¢=0, Co = 31

r = (3~=3cos2t)i + (2sin2t~4¢8)j + %tak



2
3. Evaluate fA X %—;‘3— dt .

The trick Is: do not integrate directly by brute force.
Instead, cast the integrant into the form of a
differentiation

f[AXdZA

dt’

]dt:f [% (something)|dt

SO that

f [% (something )] dt=something + constant vector



2
3. Evaluate fA X d A dt .

{ . dA. _
A% ) =

2
d A
— dt

fo dt®

dt*
d°’A . dA _dA

AX—5 + — X =

dt? dt dt

d dA
—(AX —)\dt
fdt( dt)

Ax-@ + C.

dt



LINE INTEGRALS.
Let r(u) = x(u)i + y(u)j + z(u)k,
where r(u) is the position vector of (x,y,2),

define a curve C joining points P, and B,, p
where u=u4 and u=u, respectively.

y Curve C
‘ P

r(u=u,)

r(u=u,)




Let A(x,y,Z) = Aii + A2j + A.gk
be a vector function of position defined and con-
tinuous along C.

Then the integral of the tangential component of
A along C from P, to P,, written as

Fo
r A-dr = fA-dr

“'Py C

= fAidx+A2dy+A3dz
C

is an example of a line integral.



Line integration as the limit of discrete
‘A,- sum AioArl_

N L R i discrete variable
Ar, o y . CurveC
. \\ \ A \ \\\ :\ \\
r b { A r=r.-r,
- .
P, 5 - X 1



6. If A = (3x%+6y)i — 14yzj + 20x2z°k,

evaluatefA-dr from (0,0,0) to (1,1,1) along the follow-
C

ing paths C;

(a) x =t, y=52, z=1.



, - Path C, as defined by
o x =t y=t2, z=1°
from (0,0,0) to (1,1,1)

15 \ /\7% en the parameter
e  tvariesfrom0to 1,

T ~__apoint P traverses
~ from (0,0,0) to

- (1,11) along the

oob - curve C

0.5

0.0
0.5

R See mathematica
2 /" code, Ch5.nb

2.0



f A<dr =
C

f[(3x2+ 6y)i — 14yz j +20x22l1] e(dxi + dyj + dz k)
C

= f(3x2+6y) dx — 14yz dy + 20xz% dz

s



If x=t, y=t>, z=t>,

points (0,0,0) and (1,1,1) correspond to t=0 and ¢£=1 respectively.

f A-dr
C

1
f (3t2+6t2)dt — 142 (2) dt?) + 20¢)(e3)? d(°)
£=0

1
f 02 dt — 2822 dt + 60:° d:
t=0

1
(9t” —28t°+60:°) dt

t=

Q

1
3% —a’ +6:°] = s
O

H



Another Method.

A = (3x2+6y)i — 14yzj + 20xz°K

Along C,x =¢t, y=t%, z=1°
A = 0t%i — 14¢°§ + 206’k
r=axi+yj+zk =¢i+65j +°k
dr = (i +2tj + 3t2k) d¢

1
f’"d' _:f(9t2i-—14t5j+20t7k)-(i+2tj+3t2k)dt
C =0

1
= f (9t2 — 28:° + 60t9) dt = 5
0



6. If A = (3x%+6y)i — 14yzj + 20x2z°k,

evaluate f A-dr from (0,0,0) to (1,1,1) alongthe follow-
C

(b) the straight lines from (0,0,0) to (1,0,0),
then to (1,1,0), and then to (1,1,1).



2.0

path (b)

x=1,y= 1, dx 0,dy=0
2z vanes from 0tol

00
20"

15\

x=1, z}:fl()’l dx=0, dz =0
“ oy varies from 0 to 1

y =0, z =0, dy:O x varies from 0 to 1



The path C is divided into three segments, each
IS to be evaluated independently according to
the geometry of the line segment involved.

A = (3x2+6y)i — 14yzj + 20xz° k

P,
[2A-dr = fAidx+A2Jy+A3dz
vpi a



(3x +6y)l - 14yzj + 20xz°k
Along the stralght line from (0,0,0) to (1,0,0)

f (3x°+6(0)) dx — 14(0)(0)(0) + 20x(0)° (0)
= 1

y =0, z =0, dy:O x varies from 0 to 1



(3x +6y)l - 14yzj + 20xz°k
Along the straight line from (1, 0 ,0) to (1,1,0)

05

f (3(1°+6y)0 — 144(0)dy + 20(1)(0)°0 = O
y=0

x=1, z=!0, dx=0,dz=0
“ oy varies from 0 to 1

2.0



= (3x°+6y)i — l4yzj + 20x2°k
Along the straight line from (1,1,0) to (1,1,1)
f (3(1)2+6(1))0 — 14 (1) z(0) + 20(1)z dz

20
3

-

x = l’yz ]_’ dx==0, dy=0
z varies from 0 to 1

2.0



Adding,

f A-dr

Q

i

1 + 0

=

b



Note: Line integration of a generic vector from one
fixed point to another along two different paths are
generally not the same, as seen In prewous
examples. -

0-0 ,,_J‘_,_“,_,'Y‘,,_',_,,_,_,
207




9. Find the work done in moving a particle once around
a circle C in the xy plane, if the circle has
center at the origin and radius 3 and if the force field is
F = (2Zx—y+2)I + (x +y—-zQ)j + (3x — 2y +42)k
¥

he circular path with
P(x.,y) radius r iIs
parametrised by the
parametric equations

X=COoSt, y=sint

When t varies from 0 to 21, point
P would have traversed clockwise
by a full circle



F = (2&x—vy+2)1 + (x+y-—22)j + (3x — 2y +4z)k

dr =dxi +dy]j
f F-dr = f [(2x—y)i + (x+y)i + Bx—=2)k] - [dxi + dyj]
c C
1 = f (2x—y)dx + (x+y)dy
C
P(X.y)
0 v . .
Since the circular path C is
located on the x-y plane,
there Is no variation in the
\ z-variable, hence dz=0 In

dz=0 dr.



f F-dr = f (2x —y)dx + (x+y)dy
¢ C

X=cos t, dx =-sin tdt; y = sin t, dy=cos t dt

- a

27T
fp.dr - f [23cost) — 3sint] [—3sint]de +
¢

t=0 |

+ [3cost + 3sint] [3 cos.ﬁ_] d}

= 187
Setting the limit of integration from t=0 to t=21
amounts to performing the line integration in the
anticlockwise (+ ve) direction.



If the limit of integration Is instead set from
t=2m to t=0, that amounts to performing the
line integration in the clockwise (-ve)
direction. As result, the line integration
would result in a relative negative sign:

S~

O
F-dr = f [23cost) — 3sint] [—3sint]de +
¢

t=2mT |

+ [3cost + 3sint] [3 cos.ﬁ_] d}
= 187

Clockwise , -ve direction



Line integration Is direction-
dependent

From the previous example, it Is seen that in a
given line integration, the direction of integration
maltters.

In most cases, integrating along opposite direction
results in a relative minus sign between two line
Integrations (but this is not in general true).



Line integration Is direction-
dependent

So, which iIs the correct answer in the previous
example? The +ve one or the -ve one?

The correct statements are:

The work done Is +181t if Integrate along the circle
In the clockwise direction;

The work done Is -18mt If integrate along the circle
In the anticlockwise direction;



10. (a) f F=V¢, where ¢ is single-valued and has continuous
partial derivatives, show that the
work done in moving a particle from one point P, = (x4, ¥4, 21)

in this field to another point

P, = (x5, ¥2, 25) is independent of the path joining the two points.

— - J— - — —_ -

(b) Conversely, if f F.dr is independent of the path C joining
C

any two points, show that there
exists a function ¢ such that F =V,



10. (a) f F=V¢, where ¢ is single-valued and has continuous
partial derivatives, show that the

work done in moving a particle from one point P, = (x4, ¥4, 21)
in this field to another point

P, = (x5, ¥2, 25) is independent of the path joining the two points.

P, You are asked
to show that, If

F=V ¢

then

Path 1

P Path 2
fPatthdr fPahZ r



IfF=V ¢

Work done
P F
= f2 F-dr = Vb -dr
Pj_ Pl
F
- fz(ggglq.‘a_isj+§—@k).(dxi+dyj+dzk)
P, Ox Jy 2
F
- ‘ a—-@dx + -Qgédy + E@JZ
1

Fo
f dp = PP) — PP = D(xp,¥2,29) — P(x1,¥1,21)

Fy
Then the integral depends only on points P, and P
and not on the path joining them.



Conservative ﬂeld

Fy
If f F-dr is independent of the path C joining P; and P,
1

then F is called a corservative field.



Conversely, we can also show that if the line integration
f F-dr

IS Independent of the path C joining any two points,
there exist a function @ such that

F=V ¢

@ 1S known as the 'scalar potential



Proof using vectors.

If the line integral is independent of the path, then

(x,y,2) (x,y,2)
O(x,y,2) = f Fedr = f F-—d—r ds

(21,51, 21) (%1, ¥1, 21) ds
By differentiation, d_qS = F. ar :
ds ds
d
But 3? = qu-g% (see next slide for a proof)

(Vb — F)-fi-':- = 0
ds

Since this must hold irrespective of g—g , We have F = Vq‘).



Chap 4, page 61, Q8, part (b), (c)

A Yo
t —_— —_—
(b) Evaluate Jﬁlslzn“0 v

(¢) Show that é_qé = Vo .
ds



From the calculus,

Ap = Lon v 2oy v 2

S 3z
Ad 9P D 9Ly | 0P Az
p0As T A As T3 As T Bz As
Wb _ | Ny | i
ds  Ox ds Jdy ds Oz ds

0 0 d d d
= (£i+ gy—?j+;—a—?k).(£i+ E%j+§§k)

- ar
) Vqb.d:s



Note that since g is a unit vector, Vc;bg-g is the

component of V¢ in the direction of this unit vector.



Conclusion of Q10

A conservative field is one which line integration
of a field is independent of path.

If a field can be expressed in terms of a
differentiable scalar function ¢ via

A=V ¢

then A Is conservative.

Conversely, If a field A is conservative, it can
always be expressed a gradient of some scalar

function, A = V ¢



11.
(a) If F is a conservative field,
prove that curlF=Vx F =g (i.e. F is irrotational).

If F is a conservative field, then by Problem 10, F = V.

curl F = Vx ch,‘)_: 0
(see Problem 27(ae), Chapter 4).



11.

(b) Conversely, if VxF =0 (i.e. F is irrotational),
prove that F is conservative.

If VxF=¢
i j
3 3 2.,
Ox Oy Oz
1 F, Fy
OF _ OF oF, OF, oF, OF,




11.

%k 3, 3 _3 O _ O
Oy -~ 9z dz  Ox ° Ox _87
It can be proven that

F= qu follows as a consequence of this.

For detalls of the proof, read it yourself.

Thus a necessary and sufficient condition that a

field F be conservative is that curl F = VXF = 0.



THEOREM. If A=V¢ then

Py
1. f A-dr is independent of the path C in R joining P; and P,.

P . . .
" (i.e., A is conservative)

2. f A-dr =0 around any closed curve C in R.
C

Theorem No.1 is what we have just proven Iin
Q10.

Theorem No.2 can be proved using Theorem 1.



Closed Line integration

Consider a line integration along a path C

fA-dr
C

If C is a closed curve (which we shall suppose is a simple

closed curve, i.e, a curve which does not intersect itself anywhere)

the integral around C is often denoted by

fA-dl' = f Asdx + Ap,dy + Azd:z



Fo
13. Prove that if J. F.dr is independent of the path joining any
P.

any two points P, and P, in a given

region, then f F-dr = 0 for all closed paths in the region and conversely.



Need to prove two statements:

Fo
|f F.dr is independent of the path joining any two points A, and P,
Pi

then f F.dr = 0 for all closed paths

|f f F.-dr = 0 for all closed paths in the region

then

Fo
f F.dr is independent of the path joining any two points P, and P,
Py



Proof of the first statement

Let P,AP,BP, be a closed curve. Then

fF-dr = f Fedr = f F-dr + f F-dr

P, AB,BP; P, 4P, B,BP

fF-dr — fF-dr =

P, AP, P, BE, /

The first part Is proven. But
we still need to prove the
converse statement. B



Proof of the converse statement

if th-dr = 0, then

f Fedr = fF-dr + f Fedr =

P, AR, BP, P, 4P, P,BP;
f Fedr - f F.dt = 0
Pi.APQ PiBPQ F,

j F-dr

P1AP2 PiBPQ ! B

Il
e

ey

=)



Conclusion from
Q10, Q11, Q13

The following statements are equivalent:

F IS conservative
F= Vg
VxF = 0

f F.dr is independent of the path C joining any two points
C

f F-dr = 0 for all closed paths



12.
(a) Show that F = (2xy+zs)i + x2j + 3xz°k

is a conservative force field.
(b) Find the scalar potential.

(¢) F'ind the work done in moving an object

in this field from (1,—2,1) to (3,1,4).



12.
(a) Show that F = (2xy+zs)i + x2j + 3xz°k

is a conservative force field.

Easiest to prove the statement by showing that
the curl of F Is zero.

i j k

o o 9| = 9.
VxF - Ox dy Oz
2xy + z3  x% 3xz2

Thus F is a conservative force field.



(b) Find the sca)ar potential.

First Method.

F = Vo

0 P p

_é_(xz')i +'é"'<y£)j +—'§>k — (2xy+z3)i +x2j + 3x22k|
b _

(1) g‘%) = 2xy + 23 (2) %"‘;é = x2 (3) S, 3xz2

Integrate (1), (2) and (3) to obtain ¢



(b) Find the sca)ar potential.

sy @ ’g";é =23 S—-‘f = 3x2°
® = x°y + xz° + f(y,2)
¢ = ny + gx,z)
Q‘) = xZS + h(x’y)

These agree if we choose f(y,z) =0, g(x,z) = xz° , h{x,y) = x2y

so that d) = x2fy + :3cz:3 + constant



(b) Find the sca)ar potential.

Another method

Fedr = V-.dr

o o op .
= 5 dx + ay dy S, dz = d(,'b
dp = F-dr

— (ny +z3) dx + x2 dy + 3:11:2:2 dz
= (2xy dx +x° dy) + (2° dx + 3xz% dz)

= dGx°y) + d@xz°)

¢ = x%y + xz° + constant.

1

d (ny +xz°)



one
Work d
(¢)

. F.dr
JI:

1

2 dz
3x2
+
+ x° dy
3y dx
2z
b (2xy +
i f.P

F
3
2y + x2 Pl
x
3 —
“y +x2°)
" d(x"y
j';l

(3,1,4)

2
= 20
+ xz° |

2

y

- X

-2,1)
(1,



(c) Work done

Fo
F.dr
Py

A better still method is to use the potential function

¢ = x%y + xz° + constant.
F.dr = Vd-dr
N o P . -
-axdx+aydy+azdz_dqb
dp = F.dr

P
Work done = fQ F.dr :fijdq):cl)(Pz)—d)(Pl):A(b
A =¢(3,1,4)-$(1,-2,1)=202



Work done by conservative field and
potential energy difference

For conservative fields, work done by the field
when moving a particle from point P to P_ is equal

to the change of potential energy between P to P,

W(r,~r,) f F(r)dr=A¢o=0(r,)- ¢(r)



Have you seen any conservative

field before?
Of course yes.

L GM m.
Gravitational force, Fy(r)= el
. . . GMm
Its corresponding potential function, U (r )= .

Both are related via F,(r)=V U (r)

Work done by gravitational force on a mass m
fromr tor,

(r,=»r,) f F r=AU=U(r,)—-U(r,)



Other conservative fields you have
seen before

Electrostatic field I1s also a conservative field.

9Q -~ y(r)=—%_ F(r)=VU(r)

F(r)= :
4ﬂ€r ner

Elastic force of a spring,

F(x)=kxx  U(x)==x* F(x)=—U(x)

What else?



|s frictional force conservative?

* No.

 Why?

e Despite the end points are the same, work
done by frictional force is path dependent.

* Hence, there Is no corresponding “frictional
potential” from which work done can be
calculated as the difference of the “potential
function” between two points.



ZCT 211 Vector Analysis

Tutorial questions to submit. Take the questions from the textbook by Spiegel, Vector Analysis, Schaum
series.

Chapter 1 Vectors and Scalar

Q38, Q39, Q44, Q47, Q59, Q61, Q64(a)
Q66(c) modified:
66. Graph the vector fields defined by

xi+yi

1/31:.2+;)r2

(¢) Vix,y ) =



Tutorial for Chapter 2

64. Find the projection of the vector 4i — 3j + k on the line passing through the points (2,3,—1) and (~2,—4,3).

65. If A=4i—j+3k and B = —2i +j — 2k, find a unit vector perpendicular to both A and B.

80. If A=i—2j—3k, B=2i+j—k and C =i+3j—2k, find:
(@) |(AxB)xC]l, (¢c) A (BxC), () (AxB) x (B xC)
() |A x (BxC)|, (d) (AxB)-C, (N (AxB)(B-C)

83. Find the area of a triangle with vertices at (3,-1,2), (1,-1,—3) and (4,-3,1).
88. Simplify (A+B)* (B+C)x (C +A).

95. Let points P, and R have position vectors r, = 3i—2j—~k, r,=i+3j+4k
and r = 2i+j—2k relative to

an origin O. Find the distance from P to the plane OQR.
100. Prove that (AxB):(CxD) + (BxC):-(AxD) + (CxA).-(BxD) = 0.



Tutorial 3

Pass up personally
on
Monday class
12 pm, 27 Oct 2014



Tutorial for Chapter 3
32.

Find the velocity and acceleration of a particle which moves along the curve x =2 sin 3¢, y = 2 cos 3¢,
z=8t at any time ¢> 0. Find the magnitude of the velocity and acceleration.
Ans, v=6cos3ti — 6sin3¢j + 8k, a=—18sin3ti — 18cos 3ti, |v|=10, |al|=18

33.

Find the velocity and acceleration of a particle which moves along the curve x =2 sin 3¢, y = 2 cos 3¢,
z=8t at any time ¢£> 0. Find the magnitude of the velocity and acceleration.
Ans, v=6cos3ti — 6sin3¢tj + 8k, a=—18sin3ri — 18cos 3ti, |v|=10, |al|=18

341 If A = 52 i — ¢t +(2t+1H)Kk and B = (2t—3)i + j — tk, find
@-ZLia-B), HZLAaxB), )L la+B], @) L (AxBy at ¢=1
dt ’ dt ’ dt ’ dt dt -

Ans., (a) —6, (b) 7 +3Kk, (c)1,
(dyi +6j + 2k

38.
dQA 2 . dA
If a2 = 6ti— 24t " j +4 sint k, find A giventhat A=21i+j and dt = —i—3k att=0.
Ans. A = ((°—t+2)i + (1—2t1j + (t—4sinn)k
44,

If A= x%yzi ~ 222°j + xz°Kk and B = 221 + yj — x°k, find a::ay (AxB) at (1,0,-2).
Ans. —4i — 8j



43.

If C, and C, are constant vectors and A is a constant scalar, show that H = e~ % (C1 sin Ay +C, cos )\y)
2 > H
satisfies the partial differential equation gx';' + ‘ayg = 0.

47.

Find (a) the unit tangent T, (b) the curvature «, (c¢) the grinclpal normal N, (d) the binormal B, and (e) the
torsion 7 for the space curve «x =t—t9/3. 54 =t2, z=t+t7/3.

1—=21 + 2§ + (1+D)k 9 1 — 2
Ans. T = N = — _— .
" V2(1 + 42 ) 1+t"’l 1+tQJ (e T
€ = 01 4 422
2 . o (1+t)
by K= 1 _ P R V1 et 7 B AR )
1+ V(1 + £)

66.

A particle moves along the curve r = (£2— 4)i + (¢2 + 42)j + (8t°— 3t°)k, where ¢ is the time. Find the
magnitudes of the tangential and normal components of its acceleration when ¢=2.

Ans. Tangential, 16 : normal, 2v'73



Tutorial 4

Pass up personally
on
Friday 10 pm class
7/ Nov 2011



Tutorial for Chapter 4

44. If F = x°z +ey/x and G = 222y—xy2,

find (a) V(F+G) and (b) V(FG) at the point (1,0,—2).
Ans. (a) —4i +9j +k, (b) —8)

46. Prove Vf(r) = f(:)! .

51, If Vc;b = Qxyzsi + xgzaj + 3x2yz? k,
find ©(x,y,z) if d(1,—-2,2) = 4. Ans. O = :lvc‘?y;’:3 + 20

54. If F is a differentiable function of x.v.z.t where x,y,z are
differentiable functions of ¢, prove that

ak oF | gp.dt

dt Ot dt



53. If A is a constant vector, prove V(r -A) = A.

38. Find a unit vector which is perpendicular to the surface of the

surface of the paraboloid of revolution z = x 2 +y? at the

point (1,2,5). Ans 2i + 4] — kK
v 21

64. In what direction from the point (1,3,2) is the directional derivative

of ¢ =2xz—y° a maximum® What is
the magnitude of this maximum ?
Ans. In the direction of the vector 4i — 63 + 2k, 2V 14

76. If @ is a constant vector and v = @ xr, prove that divv = 0.

82. If A=r/r, find grad divA. Ans. —2r 2 r



91. Evaluate Vx (r/r’). Ans. 0

103. Show that E = r/r? is irrotational. Find ¢
such that E = — V¢ and such that ¢®(a) =0 where a> 0.

Ans. @ = In(a/r)

104. If A and B are irrotational, prove that A X B is solenoidal.

105. If f(r) is aifferentiable, prove that f(r)r is irrotational.



