Tutorial 4

Pass up personally on Friday 10 pm class 7 Nov 2011

Tutorial for Chapter 4

- **44.** If $F = x^2z + e^{-y/x}$ and $G = 2z^2y xy^2$, find (a) $\nabla (F+G)$ and (b) $\nabla (FG)$ at the point (1,0,-2). Ans. (a) -4i + 9j + k, (b) -8j
- **46.** Prove $\nabla f(r) = \frac{f'(r) \mathbf{r}}{r}$.
 - 51. If $\nabla \phi = 2xyz^3 \mathbf{i} + x^2z^3 \mathbf{j} + 3x^2yz^2 \mathbf{k}$, find $\phi(x,y,z)$ if $\phi(1,-2,2) = 4$. Ans. $\phi = x^2yz^3 + 20$
- 54. If F is a differentiable function of x.v.z.t where x,y,z are differentiable functions of t, prove that

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \nabla F \cdot \frac{d\mathbf{r}}{dt}$$

- 55. If A is a constant vector, prove $\nabla(\mathbf{r} \cdot \mathbf{A}) = \mathbf{A}$.
- 58. Find a unit vector which is perpendicular to the surface of the surface of the paraboloid of revolution $z = x^2 + y^2$ at the point (1,2,5).

 Ans. $\frac{2\mathbf{i} + 4\mathbf{j} \mathbf{k}}{\pm \sqrt{21}}$
- 64. In what direction from the point (1,3,2) is the directional derivative of $\phi = 2xz y^2$ a maximum? What is the magnitude of this maximum?
- Ans. In the direction of the vector $4\mathbf{i} 6\mathbf{j} + 2\mathbf{k}$, $2\sqrt{14}$
- **76.** If ω is a constant vector and $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$, prove that div $\mathbf{v} = 0$.
- 82. If A = r/r, find grad div A. Ans. $-2r^{-3}$ r

- 91. Evaluate $\nabla \times (\mathbf{r}/r^2)$. Ans. 0
- 103. Show that $\mathbf{E} = \mathbf{r}/r^2$ is irrotational. Find ϕ such that $\mathbf{E} = -\nabla \phi$ and such that $\phi(a) = 0$ where a > 0.

 Ans. $\phi = \ln(a/r)$
- **104.** If A and B are irrotational, prove that $A \times B$ is solenoidal.
- **105.** If f(r) is differentiable, prove that f(r) is irrotational.